首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrooptical (EO) properties of a cell suspension and the specific respiratory activity of cells towards p-nitrophenol (PNP) were compared during PNP metabolism in Acinetobacter calcoaceticum strain A-122. The frequency dependence of the suspension's turbidity changes due to cellular orientation (orientational spectra) at frequencies of an orienting electric field of 10-10,000 kHz was determined. Orientational spectral changes observed during PNP incubation of the cells were followed over the range of 10-502 kHz. There were linear relationships between the magnitude of the EO effect at a 502-kHz frequency and the concentration of PNP over the range of 0.1-0.8 mM, and between the specific respiratory activity of the cells and the concentration of PNP over the range of 0.1-1.0 mM. The knowledge gained from these studies suggests a direct relationship between alterations in the cellular EO properties and PNP metabolism.  相似文献   

2.
The possibility of using the respiratory activity (RA) of microbial cells (of strains S-11 and BA-11 of Pseudomonas putida) as an instrument for quantitative determination of organophosphorous nitroaromatic insecticides, metaphors and sumithion, and their hydrolysis product, p-nitrophenol (PNP), has been explored. The dependences of RA on the concentrations of the three compounds were linear within the range 0.5-2.5 microM. The cells of the strain BA-11 exhibited maximum selectivity in the determination of the compounds. The RA of microbial cells differing in the modes of immobilization (adsorption to carrier surfaces vs. incorporation into gels) have been compared. Prospects of development of the microbial cell-based sensor system for determining metaphors, sumithion, and PNP in aqueous media are discussed.  相似文献   

3.
The possibility of using the respiratory activity (RA) of microbial cells (of strains C-11 and BA-11 of Pseudomonas putida) as an instrument for quantitative determination of organophosphorous nitroaromatic insecticides, metaphos and Sumithion, and their hydrolysis product, p-nitrophenol (PNP), has been explored. The dependences of RA on the concentrations of the three compounds were linear within the range 0.5–2.5 mM. The cells of the strain BA-11 exhibited maximum selectivity in the determination of the compounds. The RAs of microbial cells differing in the modes of immobilization (adsorption to carrier surfaces vs. incorporation into gels) have been compared. Prospects of development of the microbial cell-based sensor system for determining metaphos, Sumithion, and PNP in aqueous media are discussed.  相似文献   

4.
Acrylamide, a neurotoxin and suspected carcinogen, is produced by industrial processes and during the heating of foods. In this study, the microbial diversity of acrylamide metabolism has been expanded through the isolation and characterization of a new strain of Rhodopseudomonas palustris capable of growth with acrylamide under photoheterotrophic conditions. The newly isolated strain grew rapidly with acrylamide under photoheterotrophic conditions (doubling time of 10 to 12 h) but poorly under anaerobic dark or aerobic conditions. Acrylamide was rapidly deamidated to acrylate by strain Ac1, and the subsequent degradation of acrylate was the rate-limiting reaction in cell growth. Acrylamide metabolism by succinate-grown cultures occurred only after a lag period, and the induction of acrylamide-degrading activity was prevented by the presence of protein or RNA synthesis inhibitors. 13C nuclear magnetic resonance studies of [1,2,3-13C]acrylamide metabolism by actively growing cultures confirmed the rapid conversion of acrylamide to acrylate but failed to detect any subsequent intermediates of acrylate degradation. Using concentrated cell suspensions containing natural abundance succinate as an additional carbon source, [13C]acrylate consumption occurred with the production and then degradation of [13C]propionate. Although R. palustris strain Ac1 grew well and with comparable doubling times for each of acrylamide, acrylate, and propionate, R. palustris strain CGA009 was incapable of significant acrylamide- or acrylate-dependent growth over the same time course, but grew comparably with propionate. These results provide the first demonstration of anaerobic photoheterotrophic bacterial acrylamide catabolism and provide evidence for a new pathway for acrylate catabolism involving propionate as an intermediate.  相似文献   

5.
Acrylamide, a neurotoxin and suspected carcinogen, is produced by industrial processes and during the heating of foods. In this study, the microbial diversity of acrylamide metabolism has been expanded through the isolation and characterization of a new strain of Rhodopseudomonas palustris capable of growth with acrylamide under photoheterotrophic conditions. The newly isolated strain grew rapidly with acrylamide under photoheterotrophic conditions (doubling time of 10 to 12 h) but poorly under anaerobic dark or aerobic conditions. Acrylamide was rapidly deamidated to acrylate by strain Ac1, and the subsequent degradation of acrylate was the rate-limiting reaction in cell growth. Acrylamide metabolism by succinate-grown cultures occurred only after a lag period, and the induction of acrylamide-degrading activity was prevented by the presence of protein or RNA synthesis inhibitors. 13C nuclear magnetic resonance studies of [1,2,3-13C]acrylamide metabolism by actively growing cultures confirmed the rapid conversion of acrylamide to acrylate but failed to detect any subsequent intermediates of acrylate degradation. Using concentrated cell suspensions containing natural abundance succinate as an additional carbon source, [13C]acrylate consumption occurred with the production and then degradation of [13C]propionate. Although R. palustris strain Ac1 grew well and with comparable doubling times for each of acrylamide, acrylate, and propionate, R. palustris strain CGA009 was incapable of significant acrylamide- or acrylate-dependent growth over the same time course, but grew comparably with propionate. These results provide the first demonstration of anaerobic photoheterotrophic bacterial acrylamide catabolism and provide evidence for a new pathway for acrylate catabolism involving propionate as an intermediate.  相似文献   

6.
An in vitro study was conducted to examine the metabolism of histidine (His) by mixed rumen bacteria (B), mixed rumen protozoa (P), and a combination of the two (BP). Rumen microorganisms were collected from fistulated goats fed with lucerne cubes (Medicago sativa) and a concentrate mixture twice a day. Microbial suspensions were anaerobically incubated with or without 2 mm each of His, or histamine (HTM), or 1 mm urocanic acid (URA) at 39°C for 12 h. His and other related compounds in both supernatant and microbial hydrolysates were analyzed by HPLC. After 6- and 12-h incubations, the net degradation of His was 26.1% and 51.7% in B, 13.5% and 20.9% in P, and 21.7% and 46.0% in BP, respectively. The rate of the net degradation of His in B (98.0 μmol/g microbial nitrogen/h) was about 2.6 times higher than that of P during a 12-h incubation period. His was found to be degraded into urocanic acid (URA), imidazolelactic acid (ImLA), imidazoleacetic acid (ImAA), and histamine (HTM). Of these degraded His was mainly converted into URA in all microbial suspensions. The production of ImLA and ImAA was higher in B than in P suspensions, whereas the production of HTM was higher in P than in B suspensions. From these results, the existence of diverse catabolic routes of His in rumen microorganisms was indicated. Received: 23 May 2000 / Accepted: 31 July 2000  相似文献   

7.
A study was conducted of possible reasons for acclimation of microbial communities to the mineralization of organic compounds in lake water and sewage. The acclimation period for the mineralization of 2 ng of p-nitrophenol (PNP) or 2,4-dichlorophenoxyacetic acid per ml of sewage was eliminated when the sewage was incubated for 9 or 16 days, respectively, with no added substrate. The acclimation period for the mineralization of 2 ng but not 200 ng or 2 micrograms of PNP per ml was eliminated when the compound was added to lake water that had been first incubated in the laboratory. Mineralization of PNP by Flavobacterium sp. was detected within 7 h at concentrations of 20 ng/ml to 2 micrograms/ml but only after 25 h at 2 ng/ml. PNP-utilizing organisms began to multiply logarithmically after 1 day in lake water amended with 2 micrograms of PNP per ml, but substrate disappearance was only detected at 8 days, at which time the numbers were approaching 10(5) cells per ml. The addition of inorganic nutrients reduced the length of the acclimation period from 6 to 3 days in sewage and from 6 days to 1 day in lake water. The prior degradation of natural organic materials in the sewage and lake water had no effect on the acclimation period for the mineralization of PNP, and naturally occurring inhibitors that might delay the mineralization were not present. The length of the acclimation phase for the mineralization of 2 ng of PNP per ml was shortened when the protozoa in sewage were suppressed by eucaryotic inhibitors, but it was unaffected or increased if the inhibitors were added to lake water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A study was conducted of possible reasons for acclimation of microbial communities to the mineralization of organic compounds in lake water and sewage. The acclimation period for the mineralization of 2 ng of p-nitrophenol (PNP) or 2,4-dichlorophenoxyacetic acid per ml of sewage was eliminated when the sewage was incubated for 9 or 16 days, respectively, with no added substrate. The acclimation period for the mineralization of 2 ng but not 200 ng or 2 micrograms of PNP per ml was eliminated when the compound was added to lake water that had been first incubated in the laboratory. Mineralization of PNP by Flavobacterium sp. was detected within 7 h at concentrations of 20 ng/ml to 2 micrograms/ml but only after 25 h at 2 ng/ml. PNP-utilizing organisms began to multiply logarithmically after 1 day in lake water amended with 2 micrograms of PNP per ml, but substrate disappearance was only detected at 8 days, at which time the numbers were approaching 10(5) cells per ml. The addition of inorganic nutrients reduced the length of the acclimation period from 6 to 3 days in sewage and from 6 days to 1 day in lake water. The prior degradation of natural organic materials in the sewage and lake water had no effect on the acclimation period for the mineralization of PNP, and naturally occurring inhibitors that might delay the mineralization were not present. The length of the acclimation phase for the mineralization of 2 ng of PNP per ml was shortened when the protozoa in sewage were suppressed by eucaryotic inhibitors, but it was unaffected or increased if the inhibitors were added to lake water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Purine nucleoside phosphorylase (PNP) catalyzes reversible phosphorolysis of purine deoxy- and ribonucleosides with formation (d)Rib-1-P and corresponding bases. PNP plays a leading role in the cell metabolism of nucleosides and nucleotides, as well as in maintaining the immune status of an organism. The major aim of the majority of studies on the PNP is the detection of highly effective inhibitors of this enzyme, derivatives of purine nucleosides used in medicine as immunosuppressors, which are essential for creating selective T-cell immunodeficiency in a human body for organ and tissue transplantation. The present work is devoted to the study of the effects of some synthetic derivatives of purine nucleosides on activity of highly purified PNP from rabbit spleen and also from human healthy and tumor tissues of lung and kidneys. Purine nucleoside analogues modified at various positions of both the heterocyclic base and carbohydrate residues have been investigated. Several compounds, including 8-mercapto-acyclovir, 8-bromo-9-(3,4-hydroxybutyl)guanine, which demonstrated potent PNP inhibition, could be offered for subsequent study as immunosuppressors during organ and tissue transplantation.  相似文献   

10.
Summary. In vitro studies were conducted to examine the metabolism of methionine (Met) and threonine (Thr) using mixed ruminal bacteria (B), mixed ruminal protozoa (P), and a combination of these two (BP). Rumen microorganisms were collected from fistulated goats fed with lucerne cubes (Medicago sativa) and a concentrate mixture twice a day. Microbial suspensions were anaerobically incubated with or without 1 mM each of the substrates at 39°C for 12 h. Met, Thr and their related amino compounds in both the supernatants and microbial hydrolyzates of the incubation were analyzed by HPLC. Met was degraded by 58.7, 22.1, and 67.3% as a whole in B, P, and BP suspensions, respectively, during 12 h incubation. In the case of Thr, these values were 67.3, 33.4, and 76.2% in B, P, and BP, respectively. Met was catabolized by all of the three microbial suspensions to methionine sulfoxide and 2-aminobutyric acid. Catabolism of Thr by B and BP resulted in the production of glycine and 2-aminobutyric acid, while P produced only 2-aminobutyric acid. From these results, the existence of diverse catabolic routes of Met and Thr in rumen microorganisms was indicated. Received August 2, 2000 Accepted February 27, 2001  相似文献   

11.
There is a sufficient body of work documenting the distribution of 3-hydroxy oxylipins in microbes. However, there is limited information on the role of these compounds in microbial pathogenesis. When derived from mammalian cells, these compounds regulate patho-biological processes, thus an understanding of 3-hydroxy oxylipin function and metabolism could prove important in shedding light on how these compounds mediate cellular pathology and physiology. This could present 3-hydroxy oxylipin biosynthetic pathways as targets for drug development. In this minireview, we interrogate the relevant yeast and bacterial 3-hydroxy oxylipin literature in order to appreciate how these compounds may influence the inflammatory response leading to disease development.  相似文献   

12.
Enzymes involved in the metabolism of xenobiotic substances are often polymorphic in humans. Such genetic polymorphisms may result in inter-individual differences in detoxification of certain chemicals, and as a consequence, possibly affect health-risk assessments. This present work concerns studies of the influence of polymorphic enzymes in the detoxification of acrylamide and its metabolite glycidamide. Enzymes that enhance conjugation with glutathione (GSH), the glutathione transferases (GSTs), may influence the detoxification of both acrylamide and glycidamide, whereas the enzyme epoxide hydrolase (EH) should only catalyse the hydrolysis of glycidamide. In this study, the doses of acrylamide or glycidamide measured as specific adducts to hemoglobin (Hb) were analysed in blood samples after in vitro incubation with these compounds. Blood samples from individuals with different genotypes for GSTT1 and GSTM1 were studied. No significant differences in adduct levels depending on genotype were noted. In a parallel experiment, incubation with ethylene oxide was used as positive control. In this experiment individuals carrying GSTT1 showed lower adduct level increments from ethylene oxide than individuals lacking GSTT1. Furthermore, addition of ethacrynic acid or laurylamine, compounds which inhibit GST and EH, respectively, did not affect the adduct levels. These results suggest that neither GSTs nor EH have any significant effect on the blood dose, measured as Hb-adducts over time, after exposure to acrylamide or glycidamide.  相似文献   

13.
Biodegradability of PNP has been reported widely in recent years, but the community composition of PNP-degrading microorganisms was still unclear today. In this paper, the biodegradation process with continuously PNP loading from 0 to 6.50 kg m−3 d−1 in 58 days in an aerobic biological fluidized bed (ABFB) reactor has been investigated. The results show that COD and PNP removal stabilized at 95% and 99% during the operation period with a maximum PNP concentration of 1250 mg/L. The high concentration of PNP in substrate led to a significant increase in extracellular polymeric substances (EPS) component of biomass and obvious morphological changes of microbial colonies during the degradation process. In addition, high-throughput sequencing was employed to reveal the highly diverse bacterial and fungal populations in the reactor. At the same time, genera Sphingobium, Penicillum and Debaryomyces belonging to phyla Proteobacteria and Ascomycota were identified to be the dominant species in high concentration PNP degradation process. This work investigated the tolerable degree of aerobic microbes to PNP toxicity as well as the characteristics of microbial communities at different PNP concentration levels. It might add some new insights into bacterial and fungal communities in high p-nitrophenol concentration degradation processes.  相似文献   

14.
The electrooptical properties of Azospirillum brasilense Sp7 cell suspensions, have been studied at a specific interaction with wheat germ agglutinin (WGA), using the dependences between the changes of optical densities of cell suspensions at the electric orientation of cells and the orienting field frequencies of 740, 1000, 1450, 2000, and 2800 kHz. It was shown that the electrooptical (EO) properties of cell suspensions changed at the interaction of A. brasilense Sp7 cells with WGA and that the EO signal value changed irrespective of the cultivation conditions. At the same time, the dynamics of the changes of the EO properties of microbial suspensions was different for microbial cells grown under different conditions. It may be evidence of the differences in the cell surface properties of microbial cells, and of the dependence, between bacterial response to lectin and growth conditions. The possibility of using the EO analysis of bacterial suspensions for the study of the high-specific binding of polypeptide molecular signals with the bacterial target cells and for assessment of the dynamics of this process has been demonstrated.  相似文献   

15.
This study was designed to simulate purine nucleoside phosphorylase (PNP) deficiency by preincubating with guanosine (Guo) to minimize PNP activity while investigating the metabolism of [14C] deoxyguanosine (dGuo) at physiologic concentrations (10 microM) by unstimulated thymocytes, tonsil-derived T and B lymphocytes, and peripheral blood cells over short time periods. GTP was the principal metabolite formed from dGuo by all cell types with functional PNP and hypoxanthine-guanine phosphoribosyltransferase, confirming formation via degradation to guanine with subsequent salvage by hypoxanthine-guanine phosphoribosyltransferase. Thymocytes also formed a small amount of deoxyguanosine triphosphate (dGTP), presumably through direct phosphorylation by deoxycytidine kinase. Incorporation of dGuo into GTP was effectively inhibited in all instances under PNP deficiency conditions and dGTP levels increased up to 10-fold in thymocytes, but tonsil-derived B or T lymphocytes and unfractionated PBL still accumulated no detectable dGTP. E and platelets formed low amounts of dGTP under these conditions. Preincubation with adenine (50 microM) to reverse any Guo-induced toxicity reduced the incorporation of dGuo into GTP without inhibitor in all cell types with intact adenine phosphoribosyltransferase, but had no effect on dGTP accumulation in thymocytes, with or without inhibitor, thus excluding any indirect formation of dGTP via the de novo route. The rapid metabolism of dGuo to GTP, in the absence of PNP inhibition and subsequent effects of the altered GTP concentrations on cellular metabolism, may account for the differing responses reported by investigators with the use of low dGuo concentrations (enhancing), compared with high (inhibitory), concentrations in mitogen-stimulated lymphocyte studies. The exclusive ability of thymocytes to accumulate significant amounts of dGTP, and inability of B cells to do so, provides a logical explanation for the selective T cell immunodeficiency in PNP deficiency.  相似文献   

16.
Arthrobacter protophormiae strain RKJ100 is capable of utilizing p-nitrophenol (PNP) as well as 4-nitrocatechol (NC) as the sole source of carbon, nitrogen and energy. The degradation of PNP and NC by this microorganism takes place through an oxidative route, as stoichiometry of nitrite molecules was observed when the strain was grown on PNP or NC as sole carbon and energy sources. The degradative pathways of PNP and NC were elucidated on the basis of enzyme assays and chemical characterization of the intermediates by TLC, GC, (1)H NMR, GC-MS, UV spectroscopy, and HPLC analyses. Our studies clearly indicate that the degradation of PNP proceeds with the formation of p-benzoquinone (BQ) and hydroquinone (HQ) and is further degraded via the beta-ketoadipate pathway. Degradation of NC involved initial oxidation to generate 1,2,4-benzenetriol (BT) and 2-hydroxy-1,4-benzoquinone; the latter intermediate is then reductively dehydroxylated, forming BQ and HQ, and is further cleaved via beta-ketoadipate to TCA intermediates. It is likely, therefore, that the same set of genes encode the further metabolism of HQ in PNP and NC degradation. A plasmid of approximately 65 kb was found to be responsible for harboring genes for PNP and NC degradation in this strain. This was based on the fact that PNP(-) NC(-) derivatives were devoid of the plasmid and had simultaneously lost their capability to grow at the expense of these nitroaromatic compounds.  相似文献   

17.
Cell suspension cultures of Silybum marianum are able to excrete silymarin compounds into the medium upon elicitation with methyl jasmonate or cyclodextrins. Knowledge of transport mechanism is important to understand Sm metabolism and to develop strategies aimed at increasing production by means of cell cultures. For these reasons, a pharmacological approach was undertaken in this work in order to elucidate the possible mechanism involved in the release of this class of secondary metabolites into the extracellular medium of suspensions.  相似文献   

18.
Biological transformations of steroidal compounds: A review   总被引:1,自引:0,他引:1  
HN Bhatti  RA Khera 《Steroids》2012,77(12):1267-1290
Microbial transformation is an important tool for structural modification of organic compounds, especially natural products with complex structures like steroids. It can be used to synthesize chemical structures that are difficult to obtain by ordinary methods and as a model of mammalian metabolism due to similarity between mammalian and microbial enzyme systems. During recent years research has been focused on the structural modifications of bioactive steroids by using various microorganisms, in order to obtain biologically potent compounds with diverse structures. Steroidal compounds are responsible for important biological functions in the cells and manifest a variety of activities. This article covers the microbial transformation of sterols, steroidal hormones and some new types of steroids known as bufadienolides. Emphasis has placed on reporting metabolites that may be of general interest and on the practical aspects of work in the field of microbial transformations. The review covers the literature from 1994 to 2011.  相似文献   

19.
Enzymes involved in the metabolism of xenobiotic substances are often polymorphic in humans. Such genetic polymorphisms may result in inter-individual differences in detoxification of certain chemicals, and as a consequence, possibly affect health-risk assessments. This present work concerns studies of the influence of polymorphic enzymes in the detoxification of acrylamide and its metabolite glycidamide. Enzymes that enhance conjugation with glutathione (GSH), the glutathione transferases (GSTs), may influence the detoxification of both acrylamide and glycidamide, whereas the enzyme epoxide hydrolase (EH) should only catalyse the hydrolysis of glycidamide. In this study, the doses of acrylamide or glycidamide measured as specific adducts to hemoglobin (Hb) were analysed in blood samples after in vitro incubation with these compounds. Blood samples from individuals with different genotypes for GSTT1 and GSTM1 were studied. No significant differences in adduct levels depending on genotype were noted. In a parallel experiment, incubation with ethylene oxide was used as positive control. In this experiment individuals carrying GSTT1 showed lower adduct level increments from ethylene oxide than individuals lacking GSTT1. Furthermore, addition of ethacrynic acid or laurylamine, compounds which inhibit GST and EH, respectively, did not affect the adduct levels. These results suggest that neither GSTs nor EH have any significant effect on the blood dose, measured as Hb-adducts over time, after exposure to acrylamide or glycidamide.  相似文献   

20.
Low-molecular-weight (LMW) thiols are an abundant class of cysteine-derived small molecules found in all forms of life that maintain reducing conditions within cells. While their contributions to cellular redox homeostasis are well established, LMW thiols can also mediate other aspects of cellular physiology, including intercellular interactions between microbial and host cells. Here we discuss emerging roles for these redox-active metabolites at the host–microbe interface. We begin by providing an overview of chemical and computational approaches to LMW-thiol discovery. Next, we highlight mechanisms of virulence regulation by LMW thiols in infected cells. Finally, we describe how microbial metabolism of these compounds may influence host physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号