首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pollen dispersal was investigated in five remnant populations of Eucalyptus wandoo, a dominant insect-pollinated tree in the fragmented agricultural region of southern Western Australia. Paternity analysis using six microsatellite loci identified a pollen source for 45% of seedlings, and the remainder were assumed to have arisen from pollen sources outside the stands. Outcrossing was variable, ranging from 52 to 89%, and long distance pollen dispersal was observed in all populations with up to 65% of pollen sourced from outside the populations over distances of at least 1 km. Modelling dispersal functions for pollination events within the two larger populations showed little difference between the four two-parameter models tested and indicated a fat-tailed dispersal curve. Similarity of direct and indirect historical estimates of gene flow indicates maintenance of gene flow at levels experienced prior to fragmentation. The study revealed extensive long distance pollen dispersal in remnant patches of trees within a fragmented agricultural landscape in the southern temperate region and highlighted the role of remnant patches in maintaining genetic connectivity at the landscape scale.  相似文献   

2.
Genetic variation at microsatellite markers was used to quantify genetic structure and mating behavior in a severely fragmented population of the wind-pollinated, wind-dispersed temperate tree Fraxinus excelsior in a deforested catchment in Scotland. Remnants maintain high levels of genetic diversity, comparable with those reported for continuous populations in southeastern Europe, and show low interpopulation differentiation (E = 0.080), indicating that historical gene exchange has not been limited (Nm = 3.48). We estimated from seeds collected from all trees producing fruits in three of five remnants that F. excelsior is predominantly outcrossing (t(m) = 0.971 +/- 0.028). Use of a neighborhood model approach to describe the relative contribution of local and long-distance pollen dispersal indicates that pollen gene flow into each of the three remnants is extensive (46-95%) and pollen dispersal has two components. The first is very localized and restricted to tens of meters around the mother trees. The second is a long-distance component with dispersal occurring over several kilometers. Effective dispersal distances, accounting for the distance and directionality to mother trees of sampled pollen donors, average 328 m and are greater than values reported for a continuous population. These results suggest that the opening of the landscape facilitates airborne pollen movement and may alleviate the expected detrimental genetic effects of fragmentation.  相似文献   

3.
We studied the mating system of white spruce (Picea glauca) in a landscape fragmented by agriculture in northern Ontario, Canada. We sampled 23 stands that ranged in size from 1 to >500 trees isolated by 250-3000 m from the nearest other stand. Six polymorphic allozyme loci from four enzyme systems were used to genotype approximately 10 000 embryos from 104 families. We detected no allele frequency heterogeneity in the pollen pool among stands or families (Phi(FT)=-0.025). Overall, estimates of outcrossing were high (t(m)=94% and mean t(s)=91%) but significantly different from unity. Bi-parental inbreeding (t(m)-t(s)=3.2%) was low but significantly different from zero. Allozyme-based outcrossing estimates did not differ significantly among three stand-size classes (SSCs): small (<10 trees), medium (10-100 trees) and large (> or =100 trees). The number of effective pollen donors was high in all SSCs, but was significantly lower in small stands (N(ep)=62.5) than in medium-sized and large stands (both N(ep)=143). The primary selfing rate was significantly higher in medium stands than in large stands. We found no significant difference in genetic diversity measures in the filial (seed) population among SSCs. Overall, these results indicate that white spruce stands in this fragmented landscape are resistant to genetic diversity losses, primarily through high pollen-mediated gene-flow and early selection against inbred embryos. We discuss the importance of using seed data, in conjunction with genetic data, to evaluate the impacts of fragmentation on natural populations.  相似文献   

4.
Wang R  Compton SG  Chen XY 《Molecular ecology》2011,20(21):4421-4432
Fragmentation reduces population sizes, increases isolation between habitats and can result in restricted dispersal of pollen and seeds. Given that diploid seed dispersal contributes more to shaping fine-scale spatial genetic structure (SGS) than haploid pollen flow, we tested whether fine-scale SGS can be sensitive to fragmentation even if extensive pollen dispersal is maintained. Castanopsis sclerophylla (Lindley & Paxton) Schottky (Fagaceae), a wind-pollinated and gravity seed-dispersed tree, was studied in an area of southeast China where its populations have been fragmented to varying extents by human activity. Using different age classes of trees in areas subject to varying extents of fragmentation, we found no significant difference in genetic diversity between prefragmentation vs. postfragmentation C. sclerophylla subpopulations. Genetic differentiation among postfragmentation subpopulations was also only slightly lower than among prefragmentation subpopulations. In the most fragmented habitat, selfing rates were significantly higher than zero in prefragmentation, but not postfragmentation, cohorts. These results suggest that fragmentation had not decreased gene flow among these populations and that pollen flow remains extensive. However, significantly greater fine-scale SGS was found in postfragmentation subpopulations in the most fragmented habitat, but not in less fragmented habitats. This alteration in SGS reflected more restricted seed dispersal, induced by changes in the physical environments and the prevention of secondary seed dispersal by rodents. An increase in SGS can therefore result from more restricted seed dispersal, even in the face of extensive pollen flow, making it a sensitive indicator of the negative consequences of population fragmentation.  相似文献   

5.
Pollen dispersal was investigated in six populations of Calothamnus quadrifidus, a bird-pollinated shrub in the fragmented agricultural region of southern Western Australia. Paternity analysis using six microsatellite loci identified a pollen source within populations for 67% of seedlings, and the remainder were assumed to have arisen from pollen sources outside the populations. Outcrossing was variable, ranging from 5% to 82%, and long-distance pollen dispersal was observed in all populations with up to 43% of pollen sourced from outside the populations over distances of up to 5 km. This extensive pollen immigration was positively associated with population size but not isolation. Comparison of two populations of similar size but different density showed greater internal pollination and less selfing in the denser population, suggesting an influence of density on pollinator behaviour. The study revealed extensive long-distance pollen dispersal for C. quadrifidus within this fragmented agricultural landscape and highlighted the interaction between reserve populations and isolated road verge remnants in maintaining genetic connectivity at the landscape scale.  相似文献   

6.
In the face of widespread deforestation, the conservation of rainforest trees relies increasingly on their ability to maintain reproductive processes in fragmented landscapes. Here, we analysed nine microsatellite loci for 218 adults and 325 progeny of the tree Dipteryx panamensis in Costa Rica. Pollen dispersal distances, genetic diversity, genetic structure and spatial autocorrelation were determined for populations in four habitats: continuous forest, forest fragments, pastures adjacent to fragments and isolated pastures. We predicted longer but less frequent pollen movements among increasingly isolated trees. This pattern would lead to lower outcrossing rates for pasture trees, as well as lower genetic diversity and increased structure and spatial autocorrelation among their progeny. Results generally followed these expectations, with the shortest pollen dispersal among continuous forest trees (240 m), moderate distances for fragment (343 m) and adjacent pasture (317 m) populations, and distances of up to 2.3 km in isolated pastures (mean: 557 m). Variance around pollen dispersal estimates also increased with fragmentation, suggesting altered pollination conditions. Outcrossing rates were lower for pasture trees and we found greater spatial autocorrelation and genetic structure among their progeny, as well as a trend towards lower heterozygosity. Paternal reproductive dominance, the pollen contributions from individual fathers, did not vary among habitats, but we did document asymmetric pollen flow between pasture and adjacent fragment populations. We conclude that long-distance pollen dispersal helps maintain gene flow for D. panamensis in this fragmented landscape, but pasture and isolated pasture populations are still at risk of long-term genetic erosion.  相似文献   

7.
Prosopis species forests in Argentina are increasingly fragmented in the last years mainly by the deforestation activity without any reforestation strategy, the establishment of different crop plantations, and natural fires. The consequence of habitat fragmentation on the genetic potential of Prosopis alba requires a fine-scale analysis of population structure, in particular mating system and pollen dispersal. By means of short sequences repeats, we analyzed a fragmented population of this species in Santiago del Estero (Argentina). Most genetic variation was observed among families within zones (65.5%), whereas the lowest proportion corresponded to the differentiation among zones (2.8%). The fine analysis of structure at family level suggests that this population is complete outcrosser and there is a low but significant biparental inbreeding. Outcrossing rates differ among mother plants and the proportion of full sibs within mother plants ranged from 64% for seeds proceeding from the same pod to 10% for seeds from different pods. The average pollen dispersal distance was estimated to be among 5.36 and 30.92 m by using the KinDist or TwoGener approach. About seven pollen donors are siring each progeny array and the number of seed trees necessary for seed collection aiming to retain an effective population size of 100 was estimated in 16–39 individuals depending on the relatedness estimator used. Pollen and seed dispersal would be limited, what determines the need of conserving short distant patches to avoid the effects of inbreeding and drift within populations as a consequence of intensive use resource for agriculture.  相似文献   

8.
Tropical trees often display long‐distance pollen dispersal, even in highly fragmented landscapes. Understanding how patterns of spatial isolation influence pollen dispersal and interact with background patterns of fine‐scale spatial genetic structure (FSGS) is critical for evaluating the genetic consequences of habitat fragmentation. In the endangered tropical timber tree Dysoxylum malabaricum (Meliaceae), we apply eleven microsatellite markers with paternity and parentage analysis to directly estimate historic gene flow and contemporary pollen dispersal across a large area (216 km2) in a highly fragmented agro‐forest landscape. A comparison of genetic diversity and genetic structure in adult and juvenile life stages indicates an increase in differentiation and FSGS over time. Paternity analysis and parentage analysis demonstrate high genetic connectivity across the landscape by pollen dispersal. A comparison between mother trees in forest patches with low and high densities of adult trees shows that the frequency of short‐distance mating increases, as does average kinship among mates in low‐density stands. This indicates that there are potentially negative genetic consequences of low population density associated with forest fragmentation. Single isolated trees, in contrast, frequently receive heterogeneous pollen from distances exceeding 5 km. We discuss the processes leading to the observed patterns of pollen dispersal and the implications of this for conservation management of D. malabaricum and tropical trees more generally.  相似文献   

9.
Aims Forest fragmentation and reduced tree population densities can potentially have negative impacts on mating patterns, offspring genetic diversity and reproductive performance. The aim of the present study is to test these hypotheses comparing an extremely fragmented, low tree density (~0.02 trees/ha) holm oak (Quercus ilex L.) stand from Central Spain with a nearby high tree density stand (~50 trees/ha).Methods We genotyped adult trees and seeds from the low-density stand (436 seeds from 15 families) and the high-density stand (404 seeds from 11 families) using nine microsatellite markers. With these data, we performed paternity analyses, determined pollen flow, mating patterns and pollen pool structure, and estimated progeny genetic diversity in both stands. We also studied seed set and production and performed a pollen supplementation experiment to determine whether reduced tree density has limited foreign pollen availability.Important findings We have found extensive pollen immigration (>75%) into the low tree density stand and Monte Carlo simulations revealed that pollen moves larger distances than expected from null models of random dispersal. Mating patterns and differentiation of pollen pools were similar in the high-density stand and the low-density stand but we found higher inter-annual differentiation of pollen pools in the former. Progeny genetic diversity and self-fertilization rates did not differ between the low-density stand and the high-density stand. Seed set rates were significantly lower in the low-density stand than in the high-density stand and experimental cross-pollen supplementation evidenced that foreign pollen availability is indeed a limiting factor in the former. However, seed crops did not differ between the low-density stand and the high-density stand, indicating that limitation of foreign pollen is not likely to be of great concern in terms of reduced seed production and potential recruitment. Poor forest regeneration due to other ecological and human factors is probably a more important threat for the persistence of fragmented and low tree density stands than reduced pollen flow and only extremely small and isolated tree populations would be expected to suffer severe loss of genetic diversity in the long term.  相似文献   

10.
Paternity analysis based on eight microsatellite loci was used to investigate pollen and seed dispersal patterns of the dioecious wind-pollinated tree, Araucaria angustifolia. The study sites were a 5.4 ha isolated forest fragment and a small tree group situated 1.7 km away, located in Paranalpha State, Brazil. In the forest fragment, 121 males, 99 females, 66 seedlings and 92 juveniles were mapped and genotyped, together with 210 seeds. In the tree group, nine male and two female adults were mapped and genotyped, together with 20 seeds. Paternity analysis within the forest fragment indicated that at least 4% of the seeds, 3% of the seedlings and 7% of the juveniles were fertilized by pollen from trees in the adjacent group, and 6% of the seeds were fertilized by pollen from trees outside these stands. The average pollination distance within the forest fragment was 83 m; when the tree group was included the pollination distance was 2006 m. The average number of effective pollen donors was estimated as 12.6. Mother-trees within the fragment could be assigned to all seedlings and juveniles, suggesting an absence of seed immigration. The distance of seedlings and juveniles from their assigned mother-trees ranged from 0.35 to 291 m (with an average of 83 m). Significant spatial genetic structure among adult trees, seedlings, and juveniles was detected up to 50 m, indicating seed dispersal over a short distance. The effective pollination neighborhood ranged from 0.4 to 3.3 ha. The results suggest that seed dispersal is restricted but that there is long-distance pollen dispersal between the forest fragment and the tree group; thus, the two stands of trees are not isolated.  相似文献   

11.
Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.  相似文献   

12.
Wang KS 《Genetica》2004,122(2):105-113
Three relatively isolated stands were used to study gene flow in European beech (Fagus sylvatica L.) in Northern Germany. Nine allozyme loci (Got-B, Idh-A, Lap-A, Mdh-B, Mdh-C, Mnr-A, 6-pgdh-A, Pgi-B and Pgm-A) were utilized for multilocus-genotyping adult trees and seeds. Expected heterozygosity (He) ranged from 0.325 to 0.351 for the three stands. F(ST) revealed that there was small differentiation among stands (mean F(ST) = 0.013). The indirect estimates of gene flow (Nm) based on the mean F(ST) were high and the average Nm was 19.14. External gene flow by pollen ranged from 0.7 to 1.2% inferred from new alleles in seed samples. Moreover, paternity analysis was used to assess effective pollen dispersal by inferring paternity of offspring. The weighted mean distances of pollen dispersal for these three stands were 36.8 and 37.1 m based on simple exclusion procedure and most-likely method, respectively. Two of the trees in one stand had rare allozyme alleles (Lap-A1 and Idh-A4, respectively), which were used to directly measure pollen movement away from those trees. The frequency of the rare Lap and Idh alleles in seeds declines as the distance from the source tree increases. The weighted mean distance of pollen dispersal with rare allele Lap-A1 or Idh-A4 was 26.3 m.  相似文献   

13.
Habitat fragmentation might significantly affect mating and pollen dispersal patterns in plant populations, contributing to the decline of remnant populations. However, wind-pollinated species are able to disperse pollen at longer distances after opening of the canopy. Our objectives were to characterize the mating system parameters and to estimate the average distance of effective pollen dispersal in the wind-pollinated conifer Austrocedrus chilensis. We sampled 19 “mother trees,” 200 progeny, and 81 additional adults (both male and female), in a fragmented population at the Argentinean Patagonian steppe. We registered the spatial positions of individuals and genotyped all samples with five microsatellite markers. We found a high genetic diversity, a moderated rate of biparental inbreeding (t m? ??t s?=?0.105), and a complete absence of correlated paternity (r p?=??0.015). The effective number of pollen donors contributing to a single mother (N ep) was 13.9. Applying TWOGENER, we estimated a low but significant differentiation among the inferred pollen pools (ΦFT?=?0.036, p?=?0.001) and a very large average pollen dispersal distance (d?=?1,032.3 m). The leptokurtic distribution (b?=?0.18) presumes a potential for even larger dispersal distances. The high genetic diversity, the mating patterns, and the extensive pollen dispersal presume that habitat fragmentation did not have a negative impact on pollen movement in this population of A. chilensis. Genetic connectivity among fragmented populations scattered in the Patagonian region is possible, and we stress the need of management policies at the landscape level.  相似文献   

14.
Bacles CF  Ennos RA 《Heredity》2008,101(4):368-380
Paternity analysis based on microsatellite marker genotyping was used to infer contemporary genetic connectivity by pollen of three population remnants of the wind-pollinated, wind-dispersed tree Fraxinus excelsior, in a deforested Scottish landscape. By deterministically accounting for genotyping error and comparing a range of assignment methods, individual-based paternity assignments were used to derive population-level estimates of gene flow. Pollen immigration into a 300 ha landscape represents between 43 and 68% of effective pollination, mostly depending on assignment method. Individual male reproductive success is unequal, with 31 of 48 trees fertilizing one seed or more, but only three trees fertilizing more than ten seeds. Spatial analysis suggests a fat-tailed pollen dispersal curve with 85% of detected pollination occurring within 100 m, and 15% spreading between 300 and 1900 m from the source. Identification of immigrating pollen sourced from two neighbouring remnants indicates further effective dispersal at 2900 m. Pollen exchange among remnants is driven by population size rather than geographic distance, with larger remnants acting predominantly as pollen donors, and smaller remnants as pollen recipients. Enhanced wind dispersal of pollen in a barren landscape ensures that the seed produced within the catchment includes genetic material from a wide geographic area. However, gene flow estimates based on analysis of non-dispersed seeds were shown to underestimate realized gene immigration into the remnants by a factor of two suggesting that predictive landscape conservation requires integrated estimates of post-recruitment gene flow occurring via both pollen and seed.  相似文献   

15.
Annona crassiflora (Annonaceae) is a protogynous beetle-pollinated savannah tree species, widely distributed in the savannahs of the Cerrado biome. Studies on the mating system and pollen dispersal of protogynous species are very scarce. Here, we used six microsatellite loci to assess the mating system and pollen dispersal of A. crassiflora in a savannah remnant in Central Brazil. We mapped and sampled leaves of 112 adult trees and collected 74 fruits from 20 mother trees (1–4 fruits per plant) to obtain the seeds used (460) for mating system and parentage analyses. Annona crassiflora has predominantly allogamous mating systems, with a high multilocus outcrossing rate (tm?=?0.974, SE?=?0.011) that did not differ among mother trees (F?=?1.32, p?=?0.165). However, tmts was variable among seed trees, indicating that some seeds were produced by mating among relatives. Our results also showed multiple paternity within fruits. Multilocus correlation of outcrossed paternity was high (rp?=?0.302, SE?=?0.045), indicating that for each mother tree, the probability that the same pollen donor sired two random sibs was 30.2%, and the mean number of pollen donors per mother tree was high (6.3). We detected a maximum pollen dispersal distance of 360.7 m and an average of 124.3 m (SD?=?80 m), but most pollination events (73%) occurred at shorter distances (<?160 m), indicating short-distance pollen dispersal, most likely due to the pollinator behaviour.  相似文献   

16.
In tropical forests, selective logging removes large trees that are often the main contributors to pollination. We studied pollination patterns of the African mahogany, Entandrophragma cylindricum (Sapelli). We investigated two plots in Cameroon corresponding to three tree densities: unlogged forest (Ndama 2002), a mildly logged forest 1 year after logging (Ndama 2003) and a severely logged forest 30 years after logging (Dimako). We used four microsatellite markers to perform paternity analysis. Selfing remained below 2% in all treatments. Pollen flow was mainly long distance but with some proximity effects. Average observed within-plot pollination distances were 338, 266 and 385 m, and pollination by trees outside the plots was 70% (Ndama 2002), 74% (Ndama 2003) and 66% (Dimako). Despite sampling a limited number of seeds from a limited number of mother trees, we obtained seeds sired by 35.6-38.3% of the potential within-plot pollen donors. While trees 20 cm in diameter contributed to pollination, results in Dimako suggest that individual larger trees contribute more to pollination than small ones. This effect was not detected in the other treatments. The results suggest extensive pollen flow in Sapelli. Hence, in Sapelli, the main limiting factor for regeneration after logging may be a reduction in the number of trees capable of producing seeds rather genetic effects due to limits to pollen dispersal.  相似文献   

17.
We examined genetic differentiation among eight local populations of a metapopulation of Magnolia stellata using 10 nuclear and three chloroplast microsatellite (nSSR and cpSSR) markers and evaluated the influence of historical gene flow on population differentiation. The coefficient of genetic differentiation among populations for nSSR (F(ST) = 0.053) was less than half that for cpSSR (0.137). An isolation-by-distance pattern was detected for nSSRs, but not cpSSRs. These results suggest that pollen flow, as well as seed dispersal, has significantly reduced genetic differentiation among populations. We also examined patterns of contemporary pollen flow by paternity analysis of seeds from nine seed parents in one of the populations using the nSSR markers and found it to be greatly restricted by the distance between parents. Although most pollen flow occurred within the population, pollen flow from outside the population accounted for 2.5% of the total. When historical and contemporary pollen flows among populations were compared, the levels of pollen flow seem to have declined recently. We conclude that to conserve M. stellata, it is important to preserve the whole population by maintaining its metapopulation structure and the gene flow among its populations.  相似文献   

18.
Aims The dispersal of pollen and seeds is spatially restricted and may vary among plant populations because of varying biotic interactions, population histories or abiotic conditions. Because gene dispersal is spatially restricted, it will eventually result in the development of spatial genetic structure (SGS), which in turn can allow insights into gene dispersal processes. Here, we assessed the effect of habitat characteristics like population density and community structure on small-scale SGS and estimate historical gene dispersal at different spatial scales.Methods In a set of 12 populations of the subtropical understory shrub Ardisia crenata, we assessed genetic variation at 7 microsatellite loci within and among populations. We investigated small-scale genetic structure with spatial genetic autocorrelation statistics and heterogeneity tests and estimated gene dispersal distances based on population differentiation and on within-population SGS. SGS was related to habitat characteristics by multiple regression.Important findings The populations showed high genetic diversity (H e = 0.64) within populations and rather strong genetic differentiation (F ′ ST = 0.208) among populations, following an isolation-by-distance pattern, which suggests that populations are in gene flow–drift equilibrium. Significant SGS was present within populations (mean Sp = 0.027). Population density and species diversity had a joint effect on SGS with low population density and high species diversity leading to stronger small-scale SGS. Estimates of historical gene dispersal from between-population differentiation and from within-population SGS resulted in similar values between 4.8 and 22.9 m. The results indicate that local-ranged pollen dispersal and inefficient long-distance seed dispersal, both affected by population density and species diversity, contributed to the genetic population structure of the species. We suggest that SGS in shrubs is more similar to that of herbs than to trees and that in communities with high species diversity gene flow is more restricted than at low species diversity. This may represent a process that retards the development of a positive species diversity–genetic diversity relationship.  相似文献   

19.
Sato T  Isagi Y  Sakio H  Osumi K  Goto S 《Heredity》2006,96(1):79-84
Few studies have analyzed pollen and seed movements at local scale, and genetic differentiation among populations covering the geographic distribution range of a species. We carried out such a study on Cercidiphyllum japonicum; a dioecious broad-leaved tree of cool-temperate riparian forest in Japan. We made direct measurement of pollen and seed movements in a site, genetic structure at the local scale, and genetic differentiation between populations covering the Japanese Archipelago. Parentage analysis of seedlings within a 20-ha study site indicated that at least 28.8% of seedlings were fertilized by pollen from trees outside the study site. The average pollination distance within the study site was 129 m, with a maximum of 666 m. The genotypes of 30% of seedlings were incompatible with those of the nearest female tree, and the maximum seed dispersal distance within the study site was over 300 m. Thus, long-distance gene dispersal is common in this species. The correlation between genetic relatedness and spatial distance among adult trees within the population was not significant, indicating an absence of fine-scale genetic structure perhaps caused by high levels of pollen flow and overlapping seed shadows. Six populations sampled throughout the distribution of C. japonicum in Japan showed significant isolation-by-distance but low levels of genetic differentiation (F(ST) = 0.043), also indicating long-distance gene flow in C. japonicum. Long-distance gene flow had a strong influence on the genetic structure at different spatial scales, and contributes to the maintenance of genetic diversity in C. japonicum.  相似文献   

20.
In this study, the mating system, contemporary pollen flow, and landscape pollen connectivity of the wild olive tree (Olea europaea subsp. cuspidata) were analyzed in a fragmented landscape of less than 4-km diameter located in north-western Ethiopia. Four remnant populations of different sizes were investigated. Eight highly polymorphic microsatellite markers were used to genotype 534 adults and 704 embryos. We used contrasting sampling schemes and different methodological approaches to analyze the pollen flow. We observed a lower rate of inbreeding and correlated mating in the fragmented vs. the non-fragmented subpopulation. Using parentage analysis, we detected a bidirectional pollen movement across subpopulations. Pollen flow was found to be directed towards small subpopulations based on parentage and anisotropic analysis. Pollen immigration amounted to more than 50%. Although most pollination occurred within a distance of less than 200 m, longer distance pollen movements of more than 3 km were also detected. Pollen dispersal in the large and dense subpopulation was reduced, and a smaller number of effective pollen sources were detected compared to a smaller fragmented subpopulation. We obtained consistent estimates for the number of effective pollen donors (approximately 6 per mother tree) using three different methods. The average pollen dispersal distance at the landscape level amounted to 276 m while at the local level, 174 m was estimated. Bigger trees were better pollen contributors than smaller trees. We showed here for the first time that pollen dispersal in wild olive follows a leptokurtic distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号