共查询到20条相似文献,搜索用时 0 毫秒
1.
Four types of cells can be distinguished in the epithelium of the caeca of three species of mosquito larvae. Specialized cells secreting a 160nm caecal membrane occur either near the opening of the caeca into the midgut (Aedes, Anopheles) or in the posterior half of the caeca (Culex). The presence of chitin could be demonstrated in this membrane with wheat germ agglutinin. In larvae of A. aegypti and C. pipiens the posterior part of the caeca is occupied by ion transporting cells. In larvae of A. stephensi these cells are interspersed among other cells, even in the anterior part of the caeca. The ion transporting cells resemble other insect cells involved in osmoregulation. Their microvillar membranes are studded with 14 nm portasomes and are closely associated with mitochondria. The main type of caecal cell seems to be responsible for resorption and storage of nutrients and for the secretion of enzymes. Small and undifferentiated cells were observed sporadically and seem to be imaginal cells. 相似文献
2.
3.
Microfilarial perforation of the midgut of a mosquito 总被引:1,自引:0,他引:1
To determine whether the midgut envelope of mosquitoes is disrupted by the passage of microfilariae, ultrastructural changes induced by microfilariae of Brugia malayi were observed in midguts of Aedes aegypti mosquitoes. Basal and apical plasma membranes were destroyed, disrupting the full depth of the midgut wall. Ingested ferritin lay against the gut wall, suggesting absence of the peritrophic membrane during penetration. Exsheathment of microfilariae appears to be enhanced by movement against the constricting midgut wall. It was concluded that particles present in the lumen of the gut may be disseminated passively to the hemocoel. 相似文献
4.
Togavirus-associated pathologic changes in the midgut of a natural mosquito vector. 总被引:4,自引:2,他引:4
下载免费PDF全文

Arthropod-borne viruses were not previously believed to cause discernible pathologic changes in their natural mosquito vectors. We report cytopathologic lesions in the midgut of the mosquito, Culiseta melanura, 2 to 5 days after oral infection with eastern equine encephalomyelitis virus. Sloughing of densely staining, heavily infected epithelial cells into the midgut lumen was observed by light and transmission electron microscopy, along with degeneration of cells within the epithelium. Pathological changes in midgut epithelial cells sometimes included loss of brush border and basal lamina integrity. Disruption of the midgut basal lamina could result in bypassing of barriers to virus dissemination within the mosquito and allow rapid transmission to occur. Alternatively, luminal sloughing of heavily infected midgut epithelial cells may serve to modulate mosquito infections. These findings challenge previous beliefs regarding the benign nature of arbovirus-invertebrate host relationships. 相似文献
5.
Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. 总被引:3,自引:0,他引:3
R H Dadd 《Journal of insect physiology》1975,21(11):1847-1853
Digestive enzyme pH optima were determined in vitro for the larvae of three mosquito spp., Culex pipiens, Aedes aegypti, and Anopheles stephensi. All had optimal amylase activity at about pH 8 and optimal protease activity over a broad range between pH 10 and 12. pH within the digestive tract of intact live larvae was determined from the colours of indicator dyes ingested with kaolin and visible in the gut through the transparent or translucent body tissues. In all three spp. the contents of the anterior midgut were held at a pH just exceeding 10, with an abrupt fall to about pH 7·5 in the posterior third midgut. 相似文献
6.
7.
8.
Summary During molting, the epithelium of the posterior caeca (PC) of the midgut in the terrestrial crustacean, Orchestia cavimana, is active in calcium turnover. In the preexuvial period, epithelial cells that progressively differentiate into cell-type III secrete ionic calcium (originating from the old cuticle) from the base to the apex of the cell within a typical extracellular network of channels; the calcium is then stored in the PC lumen as calcareous concretions. Immediately after exuviation, the epithelial cells rapidly differentiate into cell-type IV, reabsorbing calcium from the concretions through successive generations of spherites which quickly appear, grow, and then disappear from the apex to the base of the same extracellular network. The PC epithelium is thus alternatively calcium-loaded and unloaded. When the calcium-reabsorbing process is complete (average 48 h after exuviation), the epithelial cells again differentiate into two different regional cellular types (cell-type I in the distal segment and cell-type II in the proximal segment) characteristic of the intermolt period.The dynamic changes in the PC epithelium during the postexuvial period are discussed, including the characteristic features of cell-type IV and of the reabsorption spherites. 相似文献
9.
10.
This review examines what is presently known of the molecular interactions between Plasmodium and Anopheles that take place in the latter's midgut upon ingestion of the parasites with an infectious blood meal. In order to become 'established' in the gut and to transform into a sporozoite-producing oocyst, the malaria parasite needs to undergo different developmental steps that are often characterized by the use of selected resources provided by the mosquito vector. Moreover, some of these resources may be used by the parasite in order to overcome the insect host's defence mechanisms. The molecular partners of this interplay are now in the process of being defined and analyzed for both Plasmodium and mosquito and, thus, understood; these will be presented here in some detail. 相似文献
11.
12.
We observed Plasmodium gallinaceum ookinetes in both intracellular and intercellular positions in the midgut epithelium of the mosquito Aedes aegypti. After epithelial cell invasion intracellular ookinetes lacked a parasitophorous vacuolar membrane and were surrounded solely by their own pellicle. Thus, the ookinete in the midgut epithelium of the mosquito differs from erythrocytic and hepatic stages in that the parasite in the vertebrate host is surrounded by a vacuole. The midgut epithelial cytoplasm around the apical end of invading ookinetes was replaced by fine granular material deprived of normal organelles. Membranous structure was observed within the fine granular area. Most ookinetes were seen intracellularly on the luminal side and intercellularly on the haemocoel side of the midgut epithelial cells. These observations suggest that the ookinete first enters into the midgut epithelial cell, then exists to the space between the epithelial cells and moves to the basal lamina where the ookinete develops to the oocyst. 相似文献
13.
The ultrastructure of endocrine cells in the midgut of the adult mosquito, Aedes aegypti, resembled that of endocrine cells in the vertebrate gastro-intestinal tract. Midgut endocrine cells, positioned basally in the epithelium as single cells, were cone-shaped and smaller than the columnar digestive cells. The most distinctive characteristic of endocrine cells was numerous round secretory granules along the lateral and basal plasma membranes where contents of the granules were released by exocytosis. Secretory granules in each individual cell were exclusively of one type, either solid or 'haloed', and for all cells observed, the range in granule diameter was 60-120 nm. The cytoplasm varied in density from clear to dark. Lamellar bodies were prominent in the apical and lateral cellular regions and did not exhibit acid phosphatase activity. The basal plasma membrane was smooth adjacent to the basal lamina, whereas in digestive cells the membrane formed a labyrinth. Some endocrine cells reached the midgut lumen and were capped by microvilli; a system of vesicles and tubules extended from beneath the microvilli to the cell body. An estimated 500 endocrine cells were distributed in both the thoracic and abdominal regions of the adult midgut. In one midgut, we classified a sample of endocrine cells according to cytoplasmic density and granule type and size; endocrine cells with certain types of granules had specific distributions within the midgut. 相似文献
14.
Okuda K de Almeida F Mortara RA Krieger H Marinotti O Bijovsky AT 《Journal of insect physiology》2007,53(12):1307-1315
Haematophagy, the utilization of blood as food, has evolved independently among insects such as mosquitoes, bedbugs, fleas, and others. Accordingly, several distinct biological adaptations have occurred in order to facilitate the finding, ingestion and digestion of blood from vertebrate sources. Although blood meals are essential for survival and reproduction of these insects, mechanical and chemical stresses are caused by the ingestion of a sizable meal (frequently twice or more times the weight of the insect) containing large amounts of cytotoxic molecules such as haem. Here we present data showing that the stresses caused by a blood meal induce cell death in the midgut epithelium of Culex quinquefasciatus mosquitoes. The process involves apoptosis, ejection of dead cells to the midgut lumen and differentiation of basal regenerative cells to replace the lost digestive cells. The basal cell differentiation in blood-fed mosquito midguts represents an additional mechanism by which insects cope with the stresses caused by blood meals. C. quinquefasciatus adult females are unable to replace lost cells following a third or fourth blood meal, which may have a significant impact on mosquito longevity, reproduction and vectorial capacity. 相似文献
15.
Rupp I Sologub L Williamson KC Scheuermayer M Reininger L Doerig C Eksi S Kombila DU Frank M Pradel G 《Cell research》2011,21(4):683-696
Physical contact is important for the interaction between animal cells, but it can represent a major challenge for protists like malaria parasites. Recently, novel filamentous cell-cell contacts have been identified in different types of eukaryotic cells and termed nanotubes due to their morphological appearance. Nanotubes represent small dynamic membranous extensions that consist of F-actin and are considered an ancient feature evolved by eukaryotic cells to establish contact for communication. We here describe similar tubular structures in the malaria pathogen Plasmodium falciparum, which emerge from the surfaces of the forming gametes upon gametocyte activation in the mosquito midgut. The filaments can exhibit a length of > 100 μm and contain the F-actin isoform actin 2. They actively form within a few minutes after gametocyte activation and persist until the zygote transforms into the ookinete. The filaments originate from the parasite plasma membrane, are close ended and express adhesion proteins on their surfaces that are typically found in gametes, like Pfs230, Pfs48/45 or Pfs25, but not the zygote surface protein Pfs28. We show that these tubular structures represent long-distance cell-to-cell connections between sexual stage parasites and demonstrate that they meet the characteristics of nanotubes. We propose that malaria parasites utilize these adhesive "nanotubes" in order to facilitate intercellular contact between gametes during reproduction in the mosquito midgut. 相似文献
16.
17.
This study carried out on the posterior caeca of Orchestia in intermolt by means of light and electron microscopy shows that the diverticula of the midgut consist of two segments which are different from an anatomical point of view. The distal segment is in close relationship to the dorsal blood vessel, whereas the proximal segment, twice as long as the distal one, only touches the haemocoel. The cells of the distal segment are characterized by a brush border, some apical extrusions, a great number of ribosomes, rough endoplasmic reticulum, often associated with the mitochondria, the matrix of which is clear, high activity of the Golgi complexes, and a great development of extracellular channels. All these features indicate an activity in synthesizing proteins and transport. In the proximal segment, the cells are characterized by a striated border, reduced intercellular space, and especially by a great development of the smooth endoplasmic reticulum sometimes associated with mitochondria having a dense matrix. These diverse features indicate absorption ion and water transport. From an ultrastructural point of view, the posterior caeca of Orchestia cannot be considered homologous to the Malpighian tubules. Whereas during molting the posterior caeca of Orchestia are sites of calcium storage, during intermolt they are probably involved in the processes of water and mineral regulation and excretion. 相似文献
18.
Riehle MA Moreira CK Lampe D Lauzon C Jacobs-Lorena M 《International journal for parasitology》2007,37(6):595-603
Bacteria capable of colonizing mosquito midguts are attractive vehicles for delivering anti-malaria molecules. We genetically engineered Escherichia coli to display two anti-Plasmodium effector molecules, SM1 and phospholipase-A(2), on their outer membrane. Both molecules significantly inhibited Plasmodium berghei development when engineered bacteria were fed to mosquitoes 24h prior to an infective bloodmeal (SM1=41%, PLA2=23%). Furthermore, prevalence and numbers of engineered bacteria increased dramatically following a bloodmeal. However, E. coli survived poorly in mosquitoes. Therefore, Enterobacter agglomerans was isolated from mosquitoes and selected for midgut survival by multiple passages through mosquitoes. After four passages, E. agglomerans survivorship increased from 2 days to 2 weeks. Since E. agglomerans is non-pathogenic and widespread, it is an excellent candidate for paratransgenic control strategies. 相似文献
19.
Partial characterization of oligosaccharides expressed on midgut microvillar glycoproteins of the mosquito, Anopheles stephensi Liston 总被引:2,自引:0,他引:2
Midguts of the malaria-transmitting mosquito, Anopheles stephensi, were homogenized and microvillar membranes prepared by calcium precipitation and differential centrifugation. Oligosaccharides present on the microvillar glycoproteins were identified by lectin blotting before and after in vitro and in situ treatments with endo- and exo-glycosidases. Twenty-eight glycoproteins expressed a structurally restricted range of terminal sugars and oligosaccharide linkages. Twenty-three glycoproteins expressed oligomannose and/or hybrid N-linked oligosaccharides, some with alpha1-6 linked fucose as a core residue. Complex-type N-linked oligosaccharides on eight glycoproteins all possessed terminal N-acetylglucosamine, and alpha- and beta-linked N-acetylgalactosamine. Eight glycoproteins expressed O-linked oligosaccharides all containing N-acetylgalactosamine with or without further substitutions of fucose and/or galactose. Galactosebeta1-3/4/6N-acetylglucosamine-, sialic acidalpha2-3/6galactose-, fucosealpha1-2galactose- and galactosealpha1-3galactose- were not detected. Terminal alpha-linked N-acetylgalactosamine residues on N-linked oligosaccharides are described for the first time in insects. The nature and function of these midgut glycoproteins have yet to be identified, but the oligosaccharide side chains are candidate receptors for ookinete binding and candidate targets for transmission blocking strategies. 相似文献
20.
W M?ller 《Biochimie》1991,73(7-8):1093-1100
A short personal recollection of HG Wittmann is given with emphasis on his basic contribution to the structure of the ribosome, in particular the ribosomal proteins. With these considerations in mind, two interrelated problems are reviewed here. The first relates to the internal symmetry both in tRNA and in the tetrameric L12-protein complex. The second problem to be addressed relates to the dynamics of transfer RNA in the ribosome and the role of L12 proteins in this process. The importance of electrostatic repulsion in the maintenance of the mutual spatial orientation of tRNAs and L12 in the ribosome is emphasized in relation to a pendulum model for how L12 may steer translocation. 相似文献