首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The EPR spectra of cytochrome b-562 isolated from the cytochrome b-c1 complex of Rhodopseudomonas sphaeroides were measured at liquid helium temperature. The purified cytochrome b-562 gives a high spin signal at g = 6.0. Anaerobic titration of this signal confirmed the presence of two redox components with Em = 40 and -110 mV at pH 7.5. These values are consistent with the published ones, Em = 55 and -100 mV at pH 7.0, that were optically estimated for the same type of preparation (Iba et al. (1985) FEBS Lett. 183, 151-154). The power saturation behavior of the g = 6.0 signal at different redox potentials indicated a direct spin-spin interaction between these two redox centers.  相似文献   

2.
The oxidation-reduction midpoint potential of the cytochrome b found in the plasma membrane of human neutrophils has been determined at pH 7.0 (Em,7.0) from measurements of absorption spectra at fixed potentials. In both unstimulated and phorbol myristate acetate-stimulated cells Em,7.0 was -245 mV. Changes in pH affected the Em of the cytochrome b, with a slope of approx. 25 mV/pH unit change. The Em,7.0 of the haem group(s) of the membrane-bound myeloperoxidase of human neutrophils was found to be +34 mV. The plasma membranes contained no detectable ubiquinone, and no iron-sulphur compounds were detected by e.p.r. spectroscopy at 5-20 K. No flavins were detected by e.p.r. spectroscopy. The cytochrome b-245 was not reduced by added NADH or NADPH. Dithionite-reduced cytochrome b-245 formed a complex with CO, supplied as a saturated solution, which was dissociated with 26 microseconds illumination from a xenon flash lamp, and the recombination with CO had a half-time of approx. 6 ms. Partly (80%) reduced cytochrome b-245 was oxidized by added air-saturated buffer with a half-time faster than 1 s at 20 degrees C, a resolution limited by mixing time. These results are compatible with cytochrome b-245 acting as an oxidase.  相似文献   

3.
The midpoint potentials of the mitochondrial respiratory chain cytochromes of the protozoan Crithidia fasciculata at pH 7.2, Em7.2, show great similarity to those measured in higher organisms. Values of Em7.2 for cytochromes a and a3 are +165 and +340 mV. Both c cytochromes have Em7.2 = +230 mV. There are two b cytochromes with the same spectral characteristics with Em7.2 = -20 and -135 mV. These values are compatible with two sites of energy conservation for oxidative phosphorylation in these mitochondria. All cytochrome components show potentiometric titrations with n = 1. There is a fluorescent flavoprotein in these mitochondria with Em7.2 = -40 mV and n =2, whose function is not known.  相似文献   

4.
Spectral and potentiometric analysis of cytochromes from Bacillus subtilis   总被引:4,自引:0,他引:4  
Bacillus subtilis cytoplasmic membranes contain several cytochromes which are linked to the respiratory chain. At least six different cytochromes have been separated and identified by ammonium sulphate fractionation and ion-exchange chromatography. They include two terminal oxidases with CO-binding properties and cyanide sensitivity. One of these is an aa3-type cytochrome c oxidase which has characteristic absorption maxima in the reduced-oxidized difference spectrum at 601 nm in the alpha-band and at 443 nm in the Soret band regions. In the alpha-band two separate electron transitions with Em = +205 mV and Em = +335 mV can be discriminated by redox potentiometric titration. The other CO-binding cytochrome c oxidase contains two cytochrome b components with alpha-band maxima at 556 nm and 559 nm. Cytochrome b556 can be reduced by ascorbate and has an Em + +215 mV, whereas cytochrome b559 has an Em = +140 mV. Furthermore a complex consisting of a cytochrome b564 (Em = +140 mV) associated with a cytochrome c554 (Em = +250 mV) was found. This cytochrome c554, which can be reduced by ascorbate, appears to have an asymmetrical alpha-peak and stains for heme-catalyzed peroxidase activity on SDS-containing polyacrylamide gels. A protein with a molecular mass of about 30 kDa is responsible for this activity. A cytochrome b559 (Em = +65 mV) appears to be an essential part of succinate dehydrogenase. Finally a cytochrome c550 component with an apparent mid-point potential of Em = +195 mV has been detected.  相似文献   

5.
Oxidation-reduction titrations of Azotobacter vinelandii cytochrome o + c4 and cytochrome o were performed with simultaneous potential and absorbance measurements under anaerobic conditions. Cytochrome c4 has a midpoint potential (Em, 7.4) of 260mV and purified cytochrome o has an Em, 7.4 of -18mV. Little change in the midpoint potential of cytochrome o was observed when titrated in the pH range 6.2--9.8.  相似文献   

6.
The physicochemical properties of the iron-sulfur clusters present in the NADH:ubiquinone oxidoreductase of Paracoccus denitrificans have been examined in the cytoplasmic membrane particles by redox potentiometry and EPR spectroscopy. Analogous to the iron-sulfur clusters present in the mitochondrial NADH: ubiquinone oxidoreductase, we have found two binuclear and three tetranuclear EPR detectable iron-sulfur clusters, namely, N-1a, N-1b, N-2, N-3, and N-4. In the bacterial system, the two binuclear clusters differ in line shape and in Em values; the cluster with more rhombic symmetry (gx,y,z = 1.918, 1.937, 2.029) has the Em7.0 value of -150 while the almost axial one (gx,y,z = 1.929, 1.941, 2.019) has Em7.0 of -270 mV. The Em of the former cluster is pH dependent (-60 mV/pH) as in the case of mammalian N-1a while the latter is pH independent as is the mammalian cluster N-1b. The pH-dependent P. denitrificans [2Fe-2S] cluster, which we have labeled N-1a, has an Em7.0 as high as that of N-2, in contrast to the mammalian N-1a. Thus N-1a is reducible with a physiological reductant, NADH in this bacterial system. The Em of the cluster N-2 is also pH dependent (Em7.0 = -130 mV) with a pK value near 7.7. The Em values of all other clusters exhibit no pH dependence as in the case of their mammalian counterparts. We have found that the cluster N-1a is the most labile component among the five iron-sulfur clusters and may give rise to variable relative spin concentrations and extremely low Em values due to the facile modifications of the microenvironment of the cluster. The P. denitrificans NADH:ubiquinone oxidoreductase provides a unique and useful site I model system where redox composition is similar to the mitochondrial enzyme but with fewer numbers of polypeptides (Yagi, T. (1986) Arch. Biochem. Biophys. 250, 302-311).  相似文献   

7.
A cytochrome bc1 complex, essentially free of bacteriochlorophyll, has been purified from the photosynthetic purple non-sulfur bacterium Rhodospirillum rubrum. The complex catalyzes electron flow from quinol to cytochrome c (turnover number = 75 s-1) that is inhibited by low concentrations of antimycin A and myxothiazol. The complex contains only three peptide subunits: cytochrome b (Mr = 35,000); cytochrome c1 (Mr = 31,000) and the Rieske iron-sulfur protein (Mr = 22,400). Em values (pH 7.4) were measured for cytochrome c1 (+320 mV) and the two hemes of cytochrome b (-33 and -90 mV). Electron flow from quinol to cytochrome c is inhibited when the complex is pre-illuminated in the presence of a ubiquinone photoaffinity analog (azido-Q). During illumination, the azido-Q becomes covalently attached to the cytochrome b peptide and, to a lesser extent, to cytochrome c1.  相似文献   

8.
T Iyanagi  S Watanabe  K F Anan 《Biochemistry》1984,23(7):1418-1425
The one-electron oxidation-reduction properties of flavin in hepatic NADH-cytochrome b5 reductase were investigated by optical absorption spectroscopy, electron paramagnetic resonance (EPR), and potentiometric titration. An intermediate with a peak at 375 nm previously described by Iyanagi (1977) [ Iyanagi , T. (1977) Biochemistry 16, 2725-2730] was confirmed to be a red anionic semiquinone. The NAD+-bound reduced enzyme was oxidized by cytochrome b5 via the semiquinone intermediate. This indicates that electron transfer from flavin to cytochrome b5 proceeds in two successive one-electron steps. Autoxidation of the NAD+-bound reduced enzyme was slower than that of the NAD+-free reduced enzyme and was accompanied by the appearance of an EPR signal. Midpoint redox potentials of the consecutive one-electron-transfer steps in the presence of excess NAD+ were Em,1 = -88 mV and Em,2 = 147 mV at pH 7.0. This corresponds to a semiquinone formation constant of 8. The values of Em,1 and Em,2 were also studied as a function of pH. A mechanism for electron transfer from NADH to cytochrome b5 is discussed on the basis of the one-electron redox potentials of the enzyme and is compared with the electron-transfer mechanism of NADPH-cytochrome P-450 reductase.  相似文献   

9.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes were demonstrated to be present in the membranes of the alkaliphilic and halophilic purple sulfur bacteria Ectothiorhodospira halophila, Ectothiorhodospira mobilis, and Ectothiorhodospira shaposhnikovii by protoheme extraction, immunoblotting, and electron paramagnetic resonance spectroscopy. The gy values of the Rieske [2Fe-2S] clusters observed in membranes of E. mobilis and E. halophila were 1.895 and 1.910, respectively. In E. mobilis membranes, the cytochrome bc1 complex was present in a stoichiometry of approximately 0.2 per reaction center. This complex was isolated and characterized. It contained four prosthetic groups: low-potential cytochrome b (cytochrome bL; Em = -142 mV), high-potential cytochrome b (cytochrome bH; Em = 116 mV), cytochrome c1 (Em = 341 mV), and a Rieske iron-sulfur cluster. The absorbance spectrum of cytochrome bL displayed an asymmetric alpha-band with a maximum at 564 nm and a shoulder at 559 nm. The alpha bands of cytochrome bH and cytochrome c1 peaked at 559.5 and 553 nm, respectively. These prosthetic groups were associated with three different polypeptides: cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein, with apparent molecular masses of 43, 30, and 21 kDa, respectively. No evidence for the presence of a fourth subunit was obtained. Maximal ubiquinol-cytochrome c oxidoreductase activity of the purified complex was observed at pH 8; the turnover rate was 57 mol of cytochrome c reduced.(mol of cytochrome c1)-1.s-1. The complex showed a strikingly low sensitivity towards typical inhibitors of cytochrome bc1 complexes.  相似文献   

10.
The isolation and purification of cytochrome c550 from the methylamine-oxidizing electron-transport chain in Thiobacillus versutus is reported. The cytochrome is a single-heme-containing type I cytochrome c with a relative molecular mass of 16 +/- 1 kDa, an isoelectric point of 4.6 +/- 0.1, a midpoint potential of 272 +/- 3 mV at pH less than 4 and 255 +/- 5 mV at pH = 7.0, and an axial coordination of the Fe by a methionine and a histidine. The midpoint potential decreases with increasing pH due to the deprotonation of a group tentatively identified as a propionate (pKa = 6.5 +/- 0.1 and 6.7 +/- 0.1 in the oxidized and reduced protein, respectively) and a change in the Fe coordination at pH greater than 10. The electron-self-exchange rate appears to depend strongly on the ionic strength of the solution and is relatively insensitive to changes in pH. At 313 K and pH 5.2 the electron-exchange rate amounts to 0.7 x 10(2) M-1 s-1 and 5.3 x 10(2) M-1 s-1 at I = 40 mM and I = 200 mM, respectively. Amino acid composition and molar absorption coefficients at various wavelengths are reported. Resonances of heme protons and the epsilon H3 group of the ligand methionine of the Fe have been identified in the 1H-NMR spectrum of the reduced as well as the oxidized cytochrome.  相似文献   

11.
A soluble cytochrome c and soluble cytochrome b were purified from the alkalophilic Bacillus firmus RAB. The cytochrome c, with an alpha band at 552 nm, had an apparent molecular weight of 16,500 and was acidic, with a pI of 3.4. At both pH 7.0 and 8.3, the midpoint potential of c-552 was +66 mV. Above pH 8.3, the cytochrome exhibited a pH-dependent decrease in midpoint potential. This property, among others, distinguished the cytochrome c-552 from other membrane-associated c-type cytochromes. The soluble cytochrome b, with an alpha band maximum at 558 nm, had a molecular weight of approx. 15,500 and was also an acidic protein, with a pI of 3.07. It exhibited a pH-independent midpoint potential of +28 mV.  相似文献   

12.
Membrane fragments isolated from the aerobic phototrophic bacterium Roseobacter denitrificans were examined. Ninety-five percent of the total NADH-dependent oxidative activity was inhibited either by antimycin A or myxothiazol, two specific inhibitors of the cytochrome bc1 complex, which indicates that the respiratory electron transport chain is linear. In agreement with this finding, light-induced oxygen uptake, an electron transport activity catalyzed by the "alternative quinol oxidase pathway" in membranes of several facultative phototrophic species, was barely detectable in membranes of Rsb. denitrificans. Redox titrations at 561-575 nm, 552-540 nm, and 602-630 nm indicated the presence of three b-type cytochromes (Em,7 of +244 +/- 8, +24 +/- 3, -163 +/- 11 mV), four c-type cytochromes (Em,7 of +280 +/- 10, +210 +/- 5, +125 +/- 8, and 20 +/- 3 mV) and two a-type cytochromes (Em,7 of +335 +/- 15, +218 +/- 18 mV). The latter two a-type hemes were shown to be involved in cytochrome c oxidase activity, which was inhibited by both cyanide (I50 = 2 microM) and azide (I50 = 1 mM), while a soluble cytochrome c (c551, Em,7 = +217 +/- 2 mV) was shown to be the physiological electron carrier connecting the bc1 complex to the cytochrome c oxidase. A comparison of the ATP synthesis generated by continuous light in membranes of Rsb. denitrificans and Rhodobacter capsulatus showed that in both bacterial species photophosphorylation requires a membrane redox poise at the equilibrium (Eh > or = +80 < or = +140 mV), close to the oxidation-reduction potential of the ubiquinone pool. These data, taken together, suggest that, although the photosynthetic apparatus of Rsb. denitrificans is functionally similar to that of typical anoxygenic phototrophs, e.g. Rba. capsulatus, the in vivo requirement of a suitable redox state at the ubiquinone pool level restricts the growth capacity of Rsb. denitrificans to oxic conditions.  相似文献   

13.
EPR studies of the cytochrome-d complex of Escherichia coli   总被引:2,自引:0,他引:2  
We have examined the thermodynamic and EPR properties of one of the ubiquinol oxidase systems (the cytochrome d complex) of Escherichia coli, and have assigned the EPR-detectable signals to the optically identified cytochromes. The axial high spin g = 6.0 signal has been assigned to cytochrome d based on the physicochemical properties of this signal and those of the optically defined cytochrome d. A rhombic low spin species at gx,y,z = 1.85, 2.3, 2.5 exhibited similar properties but was present at only one-fifth the concentration of the axial high spin species. Both species have an Em7 of 260 mV and follow a -60 mV/pH unit dependence from pH 6 to 10. The rhombic high spin signal with gy,z = 5.5 and 6.3 has been assigned to cytochrome b-595. This component has an Em7 of 136 mV and follows a -30 mV/pH unit dependence from pH 6 to 10. Lastly, the low spin gz = 3.3 signal which titrates with an Em7 of 195 mV and follows a -40 mV/pH unit dependence from pH 6 to 10 has been assigned to cytochrome b-558. Spin quantitation of the high-spin signals indicates that cytochrome d and b-595 are present in approximately equal amounts. These observations are discussed in terms of the stoichiometry of the prosthetic groups and its implications on the mechanism of electron transport.  相似文献   

14.
In order to identify the b-type cytochrome involved in the nitrate reduction in a photodenitrifier, Rhodopseudomonas sphaeroides forma sp. denitrificans, the b-type cytochromes in the spheroplast membranes were characterized. Difference spectra at 77K of spheroplast membranes indicated the presence of two b-type cytochromes with a bands at 556.5 and 562 nm. Three components considered to be of the b-type cytochrome were resolved by anaerobic potentiometric titration at 560-572 nm. Their midpoint potentials at pH 7, Em,7, were - 135 mV, +40 mV and +175 nm and their approximate reduced minus oxidized maxima were determined to be at 565 nm (562 nm at 77K), 560 nm (556.5 nm) and 560 nm (556.5 nm), respectively. These values are almost the same as those reported for R. sphaeroides. The Em,7 value of the cytochrome c involved in the nitrate reductase of this denitrifier was determined to be 250 mV. A b-type cytochrome reduced with NADH and FMN was oxidized by nitrate in chromatophore membranes. The possibility that cytochrome b (Em,7 = 175 mV) is involved in the nitrate reduction is discussed.  相似文献   

15.
The cytochromes in microsomal fractions of germinating mung beans.   总被引:11,自引:1,他引:10       下载免费PDF全文
Detailed studies of microsomal cytochromes from mung-bean radicles showed the presence of cytochrome P-420, particularly in dark-grown seedlings, accompanied by smaller quantities of cytochrome P-450. Similar proportions of cytochrome P-420 to cytochrome P-450 were found spectrophotometrically in vivo with whole radicles and hypocotyls. Assayed in vitro, maximum concentrations of both cytochromes were attained after 4 days of growth, before undergoing rapid degradation. Illumination of seedlings stabilized cytochrome P-450 and decreased the amount of cytochrome P-420. Three b cytochromes were present in the microsomal fraction, namely cytochromes b-562.5 (Em + 105 +/- 23 mV), b-560.5 (Em + 49 +/- 13 mV) and b5 (Em - 45 +/- 14 mV), all at pH 7.0. Of the b cytochromes, cytochrome b5 alone undergoes a rapid degradation after day 4, Changes in cytochrome b concentrations were confined to the microsomal fraction: mitochondrial b cytochrome concentrations were unaltered with age. Protohaem degradation (of exogenous methaemalbumin) was detected in microsomal fractions of mung beans. The rates of degradation were highest in extracts of young tissue and declined after day 4. The degradation mechanism and products did not resemble those of mammalian haem oxygenase.  相似文献   

16.
(1) Cells of Thiobacillus A2 grown chemoautotrophically on thiosulfate or heterotrophically on succinate with oxygen contained b-, c-, o-, a- and a3-type cytochromes. The amount of cytochrome per mg of cell protein was much greater in thiosulfate-grown cells and differences in the relative concentrations of cytochromes were observed for the different growth conditions. (2) The half-reduction potentials at pH 7.0 (Em,7.0) and spectral maxima of c-, b-, a- and a3-type cytochromes were similar in cells grown aerobically with thiosulfate or with succinate as the growth substrate. (3) The half-reduction potential of the 'invisible', or high-potential copper, as determined from the potentiometric behavior of the carbon monoxide-reduced cytochrome a3 complex at pH 8.0, was 365 mV. (4) Reducing equivalents from thiosulfate appear to enter the respiratory chain at the cytochrome c level; however, studies in cell-free extracts were limited due to a loss in respiratory activity with thiosulfate as a substrate upon cell disruption.  相似文献   

17.
Oxidation-reduction midpoint potentials (Ems) were determined at pH 7.0 for cytochromes in the anaerobic respiratory chain of Ascaris mitochondria by redox titration techniques. Cytochrome b558, which is associated with complex II that functions as fumarate reductase in the terminal step of the respiratory chain, was shown to have an Em of -34 mV in the isolated complex II and -54 mV in mitochondria. These values are much higher than the value of Ascaris cytochrome b558. In contrast, Ems of cytochromes C + C1 and cytochrome b559.5 were determined in situ to be 235 mV and 78 mV, respectively, which are comparable to those of their mammalian counterparts.  相似文献   

18.
A biosensor based on cytochrome c3 (cyt c3) has been introduced to detect and quantify superoxide radical (O2*-). Cyt c3, isolated from the sulfate-reducing bacterium (Desulfovibrio vulgaris Miyazaki F. strain), and its mutant were immobilized onto a conducting polymer coated electrodes by the covalent bonding with carbodiimide chemistry. The immobilization of cyt c3 was investigated with quartz crystal microbalance, electrochemical impedance spectroscopy, and cyclic voltammetric studies. The CVs recorded for cyt c3 and a mutant modified-electrodes showed a quasi-reversible behavior having the formal potential of about -471 and -476 mV (versus Ag/AgCl), respectively, in a 0.1M phosphate buffer solution (pH 7.0). The modified electrodes showed the surface controlled process and the electron transfer rate constants (ks) were evaluated to be 0.47 and 0.51 s(-1) for cyt c3 and mutant modified electrodes, respectively. A potential application of the cyt c3 modified electrode was evaluated by monitoring the bioelectrocatalytic response towards the O2*-. The hydrodynamic range of 0.2-2.7 micromole L(-1) and the detection limit of 0.05 micromole L(-1) were obtained.  相似文献   

19.
制备了聚6-甲基香豆素修饰玻碳电极,研究了尿酸(UA)在该修饰电极上的电化学行为。实验结果表明:在pH=5.0的磷酸盐缓冲溶液中,扫描速率为50mV/s时,尿酸在修饰电极上于0.352V处产生一个灵敏的氧化峰,在0.278V处有一弱的还原峰。经线性扫描伏安法测定,氧化峰电流与尿酸浓度在2.5×10-6~1.0×10-5mol/L范围内表现出良好的线性关系,检出限为1.0×10-6mol/L。将修饰电极在常温下放置50d及将体系温度升高到75℃时,修饰电极对尿酸的响应电流大体不变,结果满意。  相似文献   

20.
Using cyano-complexes of iron, tungsten, and molybdenum and a platinum working electrode, we have been able to attain and hold voltages in the range of 400 to 900 mV (vs. standard hydrogen electrode) in an aqueous medium. With this system we have obtained additional information in support of an earlier conclusion that cytochrome a3 has a high Em transition (i.e. greater than 460 mV) in addition to its Em in the 180-200 mV range (Hendler, R. W., K. V. S. Reddy, R. I. Shrager, and W. S. Caughey. 1986. Biophys. J. 49:717-729; Reddy, K. V. S., and R. W. Hendler. 1986. Biophys. J. 49:693-703). The proposed new transition has an Em near 770 mV and an n value greater than 1. The reduced form of the high-potential species of cytochrome a3 does not bind CO, in contrast to the reduced form of the low-potential species which does. A possible reaction scheme for cytochrome aa3 which incorporates the new information is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号