首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang F  Chen J  Fang F  Zhou Y  Wu J  Chang H  Zhang R  Wang F  Li X  Wang H  Ma G  Chen Z 《DNA and cell biology》2005,24(11):758-765
Maternal immunization is the major form of protection against many infectious diseases in early life. In this report, transmission of vaccine-specific maternal antibodies and protection of offspring against a lethal influenza virus challenge were studied. Adult female BALB/c mice were immunized intramuscularly with plasmid DNAs encoding influenza virus hemagglutinin (HA), neuraminidase (NA), or mixture of the two plasmids. The levels of specific antibodies in sera of offspring at different ages and the survival rates following the lethal viral challenge were valued. The results showed effective transmission of maternal antibodies and long-lasting protection in offspring. Along with the growth of offspring, the antibody titers in vivo decreased and the ability against virus infection decreased accordingly. The HA-specific maternal antibodies protected the offspring from a lethal influenza infection up to 2 weeks old, and the NA-specific maternal antibodies protected offspring up to 4 weeks old. Furthermore, antibodies transferred by the mother immunized with the mixture of HA and NA DNAs protected the offspring up to 6 weeks old. This suggests that maternal immunization with a mixture of HA and NA DNAs provide the most effective protection against the virus challenge for the offspring of mice.  相似文献   

2.
New approaches for vaccination to prevent influenza virus infection are needed. Emerging viruses, such as the H5N1 highly pathogenic avian influenza (HPAI) virus, pose not only pandemic threats but also challenges in vaccine development and production. Parainfluenza virus 5 (PIV5) is an appealing vector for vaccine development, and we have previously shown that intranasal immunization with PIV5 expressing the hemagglutinin from influenza virus was protective against influenza virus challenge (S. M. Tompkins, Y. Lin, G. P. Leser, K. A. Kramer, D. L. Haas, E. W. Howerth, J. Xu, M. J. Kennett, J. E. Durbin, R. A. Tripp, R. A. Lamb, and B. He, Virology 362:139–150, 2007). While intranasal immunization is an appealing approach, PIV5 may have the potential to be utilized in other formats, prompting us to test the efficacy of rPIV5-H5, which encodes the HA from H5N1 HPAI virus, in different vaccination schemes. In the BALB/c mouse model, a single intramuscular or intranasal immunization with a live rPIV5-H5 (ZL46) rapidly induced robust neutralizing serum antibody responses and protected against HPAI challenge, although mucosal IgA responses primed by intranasal immunization more effectively controlled virus replication in the lung. The rPIV5-H5 vaccine incorporated the H5 HA into the virion, so we tested the efficacy of an inactivated form of the vaccine. Inactivated rPIV5-H5 primed neutralizing serum antibody responses and controlled H5N1 virus replication; however, similar to other H5 antigen vaccines, it required a booster immunization to prime protective immune responses. Taken together, these results suggest that rPIV5-HA vaccines and H5-specific vaccines in particular can be utilized in multiple formats and by multiple routes of administration. This could avoid potential contraindications based on intranasal administration alone and provide opportunities for broader applications with the use of a single vaccine vector.  相似文献   

3.
为评价在小鼠体内表达流感病毒M1和HA基因诱导的免疫反应,制备共表达H5N1亚型禽流感病毒 (A/Anhui/1/2005) 全长基质蛋白1 (M1) 基因和血凝素 (HA) 基因的重组DNA疫苗pStar-M1/HA和重组腺病毒载体疫苗Ad-M1/HA,将其按初免-加强程序免疫BALB/c小鼠,共免疫4次,每次间隔14 d。第1、3次用DNA疫苗,第2、4次用重组腺病毒载体疫苗,每次免疫前及末次免疫后14 d采集小鼠血清用于检测体液免疫应答,末次免疫后14 d采集小鼠脾淋巴细胞用于检测细胞免疫应答。血凝  相似文献   

4.
Recurrent outbreaks of highly pathogenic avian influenza virus pose the threat of pandemic spread of lethal disease and make it a priority to develop safe and effective vaccines. Influenza virus-like particles (VLPs) have been suggested to be a promising vaccine approach. However, VLP-induced immune responses, and their roles in inducing memory immune responses and cross-protective immunity have not been investigated. In this study, we developed VLPs containing influenza virus A/PR8/34 (H1N1) hemagglutinin (HA) and matrix (M1) proteins and investigated their immunogenicity, long-term cross-protective efficacy, and effects on lung proinflammatory cytokines in mice. Intranasal immunization with VLPs containing HA induced high serum and mucosal antibody titers and neutralizing activity against PR8 and A/WSN/33 (H1N1) viruses. Mice immunized with VLPs containing HA showed little or no proinflammatory lung cytokines and were protected from a lethal challenge with mouse-adapted PR8 or WSN viruses even 5 months postimmunization. Influenza VLPs induced mucosal immunoglobulin G and cellular immune responses, which were reactivated rapidly upon virus challenge. Long-lived antibody-secreting cells were detected in the bone marrow of immunized mice. Immune sera administered intranasally were able to confer 100% protection from a lethal challenge with PR8 or WSN, which provides further evidence that anti-HA antibodies are primarily responsible for preventing infection. Taken together, these results indicate that nonreplicating influenza VLPs represent a promising strategy for the development of a safe and effective vaccine to control the spread of lethal influenza viruses.  相似文献   

5.
为了研究 H5N1 DNA 疫苗对小鼠和鸡的保护效率,用 H5N1 禽流感病毒 HA DNA 疫苗免疫 BALB/c 小鼠和 SPF 鸡 . 小鼠和鸡分别经电穿孔和肌肉注射免疫两次,间隔为 3 周 . 二次免疫后,用致死量的同源病毒进行攻毒实验 . 空白对照组在攻毒后全部死亡,而经电穿孔免疫的小鼠和鸡均获得了完全的保护,并能有效地抑制病毒在小鼠肺脏和鸡泄殖腔的繁殖 . 同时,电穿孔免疫的小鼠和鸡均产生了高水平的特异性抗体 . 经电穿孔免疫的小鼠攻毒后 CTL 反应明显加强 . 这些结果表明, HA DNA 疫苗能有效地保护小鼠和鸡对禽流感病毒的感染,同时也表明电穿孔免疫是 DNA 疫苗免疫的有效途径之一 .  相似文献   

6.
流感病毒表面抗原血凝素( hemagglutinin,HA)是流感核酸疫苗重要的靶抗原,针对HA的保护性中和抗体主要由HA上的五个抗原表位诱导产生.在本文中,我们构建了一种以新甲型H1N1流感病毒HA1为骨架的含2个A/PR/8( H1N1)流感病毒HA抗原表位和3个新甲型H1N1流感病毒HA抗原表位的核酸疫苗,并在B...  相似文献   

7.
高致病性H5N1亚型禽流感病毒 (AIV) 严重威胁到人类健康,因此研制高效、安全的禽流感疫苗具有重要意义。以我国分离的首株人H5N1亚型禽流感病毒 (A/Anhui/1/2005) 作为研究对象,PCR扩增基质蛋白2 (M2) 和血凝素 (HA) 基因全长开放阅读框片段,构建共表达H5N1亚型AIV膜蛋白基因 M2和HA的重组质粒pStar-M2/HA。此外,还通过同源重组以293细胞包装出表达M2基因的重组腺病毒Ad-M2以及表达HA基因的重组腺病毒Ad-HA。用间接免疫荧光 (IFA) 方法检测到了各载体上插入基因的表达。按初免-加强程序分别用重组质粒pStar-M2/HA和重组腺病毒Ad-HA+Ad-M2免疫BALB/c小鼠,共免疫4次,每次间隔14 d。第1、3次用DNA疫苗,第2、4次用重组腺病毒载体疫苗,每次免疫前及末次免疫后14 d采集血清用于检测体液免疫应答,末次免疫后14 d采集脾淋巴细胞用于检测细胞免疫应答。血凝抑制 (HI) 实验检测到免疫后小鼠血清中的HI活性。ELISA实验检测到免疫后小鼠血清中抗H5N1亚型流感病毒表面蛋白的IgG抗体。ELISPOT实验检测到免疫后小鼠针对M2蛋白和HA蛋白的特异性细胞免疫应答。流感病毒M2与HA双基因共免疫的研究,为研究开发新型重组流感疫苗奠定了基础。  相似文献   

8.
Effective antibody responses provide crucial immunity against influenza virus infection. The hemagglutinin (HA) protein is the major target of protective antibody responses induced by viral infection and by vaccination with both inactivated and live-attenuated flu vaccines, but knowledge about the optimal designs of protective HA antigens from different flu serotypes is still limited. In this study, we have significantly improved the immunogenicity of HA-expressing DNA vaccines by using codon-optimized HA sequences for either an H1 serotype (A/NewCal/20/99) or an H3 serotype (A/Panama/2007/99) human influenza A virus and then used these constructs as model antigens to identify the optimal HA antigen designs to elicit high-level protective antibody responses. Two forms of HA antigen, a wild-type, full-length HA and a secreted form with transmembrane (TM) domain-truncated HA, were produced. Both forms of HA DNA vaccines, from either H1 or H3 serotypes, were able to elicit high levels of HA-specific immunoglobulin G responses in immunized rabbits as measured by enzyme-linked immunosorbent assay. Interestingly, the abilities of H1 HA and H3 HA antigens to elicit hemagglutination inhibition (HI) and neutralizing antibody (NAb) responses differ. For the H1 HA antigens, the full-length HA induced significantly higher HI and NAb responses than did the TM-truncated HA. For the H3 HA antigen, both the full-length HA and TM-truncated HA induced high levels of HI and NAb responses. These data indicate that H1 and H3 antigens have different expression requirements for the induction of an optimal protective antibody response and that the structure integrity of HA antigens is critical for eliciting type-specific protective antibody responses. Our findings will have an important impact on future subunit-based flu vaccine development.  相似文献   

9.
抗禽流感病毒多表位DNA疫苗的构建及其免疫效力研究   总被引:17,自引:1,他引:17  
多表位DNA疫苗是建立在常规DNA疫苗基础上的一种新型疫苗。它是用表位作免疫原,这样就比较容易在一个表达载体上克隆病原体的多个抗原基因中具有免疫活性的部分。本试验以H5N1亚型禽流感病毒的HA和NP基因及其表位为基础构建了4个重组质粒:1 pIRES/HA(表达全长的HA基因);2 pIRES/tHA(只表达HA基因的主要抗原表位区);3 pIRES/tHANpep(融合表达HA基因的抗原表位区和NP基因的3个CTL表位);4 pIRES/tHANpep-IFN-γ(用鸡的IFN-γ基因取代质粒pIRES/tHANpep中的neo基因)。分别用这4个重组质粒和空载体质粒pIRES1neo肌注免疫30日龄SPF鸡。免疫3次,间隔为2周,每次每只鸡的剂量为200μg。第3次免疫后两周以高致病性禽流感病毒H5N1强毒攻击,免疫及攻毒前后均采血检测HI抗体效价和外周血CD4+、CD8+T细胞的变化。结果发现,攻毒前各质粒免疫组均检测不到HI抗体,攻毒后1周存活鸡HI抗体效价迅速升高到64~256。流式细胞仪检测显示外周血CD4+、CD8+T细胞在疫苗免疫后都有不同程度的升高。空载体质粒对照组鸡(10只)在攻毒后3~8 d内全部死亡,其他各重组质粒免疫组鸡都获得了部分保护,保护率分别是:pIRES/HA组为545%(6/11),pIRES/tHA组为30%(3/10),pIRES/tHANPep组为36.3%(4/11), pIRES/tHANPepIFNγ组为50%(5/10)。这些结果表明我们构建的多表位DNA疫苗能够诱导机体产生特异性免疫应答,并在同型禽流感强毒攻击时对鸡只提供了一定的保护。  相似文献   

10.
Although live-attenuated influenza vaccines (LAIV) are safe for use in protection against seasonal influenza strains, concerns regarding their potential to reassort with wild-type virus strains have been voiced. LAIVs have been demonstrated to induce enhanced mucosal and cell-mediated immunity better than inactivated vaccines while also requiring a smaller dose to achieve a protective immune response. To address the need for a reassortment-incompetent live influenza A virus vaccine, we have designed a chimeric virus that takes advantage of the fact that influenza A and B viruses do not reassort. Our novel vaccine prototype uses an attenuated influenza B virus that has been manipulated to express the ectodomain of the influenza A hemagglutinin protein, the major target for eliciting neutralizing antibodies. The hemagglutinin RNA segment is modified such that it contains influenza B packaging signals, and therefore it cannot be incorporated into a wild-type influenza A virus. We have applied our strategy to different influenza A virus subtypes and generated chimeric B/PR8 HA (H1), HK68 (H3), and VN (H5) viruses. All recombinant viruses were attenuated both in vitro and in vivo, and immunization with these recombinant viruses protected mice against lethal influenza A virus infection. Overall, our data indicate that the chimeric live-attenuated influenza B viruses expressing the modified influenza A hemagglutinin are effective LAIVs.  相似文献   

11.
The widespread influenza virus infection further emphasizes the need for novel vaccine strategies that effectively reduce the impact of epidemic as well as pandemic influenza. Conventional influenza vaccines generally induce virus neutralizing antibody responses which are specific for a few antigenically related strains within the same subtype. However, antibodies directed against the conserved stalk domain of HA could neutralize multiple subtypes of influenza virus and thus provide broad-spectrum protection. In this study, we designed and constructed a recombinant baculovirus-based vaccine, rBac-HA virus, that expresses full-length HA of pandemic H1N1 influenza virus (A/California/04/09) on the viral envelope. We demonstrated that repeated intranasal immunizations with rBac-HA virus induced HA stalk-specific antibody responses and protective immunity against homologous as well as heterosubtypic virus challenge. The adoptive transfer experiment shows that the cross-protection is conferred by the immune sera which contain HA stalk-specific antibodies. These results warrant further development of rBac-HA virus as a broad-protective vaccine against influenza. The vaccine induced protection against infection with the same subtype as well as different subtype, promising a potential universal vaccine for broad protection against different subtypes to control influenza outbreaks including pandemic.  相似文献   

12.
To develop an efficient nasal influenza vaccine, influenza A and B virus HA with rCTB as a mucosal adjuvant were administered to mice intranasally. Serum anti-HA IgG and IgA antibody responses for both HA vaccines were significantly increased in the presence of rCTB. Higher HI and neutralizing antibody titers and higher mucosal IgA antibody responses in the respiratory tract were detected when rCTB was added than without rCTB. When mice were immunized with HA vaccine with or without rCTB and challenged by intranasal administration of mouse-adapted pathogenic influenza A virus, all mice immunized with HA plus rCTB survived for seven days without any inflammatory changes in the lungs, while not all the mice immunized with HA without rCTB survived, and all of them had lung consolidations. These results demonstrate that intranasal co-administration of rCTB as a mucosal adjuvant with influenza virus HA is necessary not only for the induction of systemic and mucosal HA antibodies, but also for the protection of mice from morbidity and mortality resulting from virus infection.  相似文献   

13.

Background

Simple and effective vaccine administration is particularly important for annually recommended influenza vaccination. We hypothesized that vaccine delivery to the skin using a patch containing vaccine-coated microneedles could be an attractive approach to improve influenza vaccination compliance and efficacy.

Methodology/Principal Findings

Solid microneedle arrays coated with inactivated influenza vaccine were prepared for simple vaccine delivery to the skin. However, the stability of the influenza vaccine, as measured by hemagglutination activity, was found to be significantly damaged during microneedle coating. The addition of trehalose to the microneedle coating formulation retained hemagglutination activity, indicating stabilization of the coated influenza vaccine. For both intramuscular and microneedle skin immunization, delivery of un-stabilized vaccine yielded weaker protective immune responses including viral neutralizing antibodies, protective efficacies, and recall immune responses to influenza virus. Immunization using un-stabilized vaccine also shifted the pattern of antibody isotypes compared to the stabilized vaccine. Importantly, a single microneedle-based vaccination using stabilized influenza vaccine was found to be superior to intramuscular immunization in controlling virus replication as well as in inducing rapid recall immune responses post challenge.

Conclusions/Significance

The functional integrity of hemagglutinin is associated with inducing improved protective immunity against influenza. Simple microneedle influenza vaccination in the skin produced superior protection compared to conventional intramuscular immunization. This approach is likely to be applicable to other vaccines too.  相似文献   

14.

Background

The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model.

Methodology/Principal Findings

For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus - a safe poxviral live vector – resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-γ-secreting (IFN-γ) CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus.

Conclusions/Significance

The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza.  相似文献   

15.
Prophylactic DNA vaccines against the influenza virus are promising alternatives to conventional vaccines. In this study, we generated two candidate gene-based influenza vaccines encoding either the seasonal or pandemic hemagglutinin antigen (HA) from the strains A/New Caledonia/20/99 (H1N1) (pV1A5) and A/California/04/2009 (H1N1) (pVEH1), respectively. After verifying antigen expression, the immunogenicity of the vaccines delivered intramuscularly with electroporation was tested in a mouse model. Sera of immunized animals were tested in hemagglutination inhibition assays and by ELISA for the presence of HA-specific antibodies. HA-specific T-cells were also measured in IFN-γ ELISpot assays. The protective efficacy of the candidate influenza vaccines was evaluated by measuring mortality rates and body weight after a challenge with 100 LD(50) of mouse-adapted A/New Caledonia/20/99 (H1N1). Mice immunized with either one of the two vaccines showed significantly higher T cell and humoral immune responses (P<0.05) than the pVAX1 control group. Additionally, the pV1A5 vaccine effectively protected the mice against a lethal homologous mouse-adapted virus challenge with a survival rate of 100% compared with a 40% survival rate in the pVEH1 vaccinated group (P<0.05). Our study indicates that the seasonal influenza DNA vaccine completely protects against the homologous A/New Caledonia/20/99 virus (H1N1), while the pandemic influenza DNA vaccine only partially protects against this virus.  相似文献   

16.
A recombinant Newcastle disease virus (rNDV) expressing simian immunodeficiency virus (SIV) Gag protein (rNDV/SIVgag) was generated. The rNDV/SIVgag virus induced Gag-specific cellular immune responses in mice, leading to a specific anti-Gag antiviral immunity. This was evidenced by the inhibition of growth of recombinant vaccinia virus expressing an identical Gag antigen (rVac/SIVgag) but not of wild-type vaccinia virus in rNDV/SIVgag-immunized mice. Among intravenous, intraperitoneal, or intranasal immunization routes, intranasal administration induced the strongest protective response against challenge with rVac/SIVgag. We further demonstrated that these immune responses were greatly enhanced after booster immunization with recombinant influenza viruses expressing immunogenic portions of SIV Gag. The magnitude of the protective immune response correlated with the levels of cellular immune responses to Gag, which were still evident 9 weeks after immunization. These results suggest that rNDV and influenza virus vectors are suitable candidate vaccines against AIDS as well as against other infectious diseases.  相似文献   

17.
DNA vaccinations are able to induce strong cellular immune responses in mice and confer protection against infectious agents. However, DNA vaccination of large animals appears to be less effective and requires repeated injections of large amounts of plasmid DNA. Enhancement of the efficiency of DNA vaccines may be achieved by coapplication of cytokine-expressing plasmids. Here we investigated, with woodchucks, whether coadministration of an expression plasmid for woodchuck gamma interferon (IFN-gamma), pWIFN-gamma, can improve DNA vaccination with woodchuck hepatitis virus core antigen (WHcAg). Animals were immunized with pWHcIm (a plasmid expressing WHcAg) alone or with a combination of pWHcIm and pWIFN-gamma using a gene gun. Six weeks postimmunization, all animals were challenged with 10(5) genome equivalents of woodchuck hepatitis virus (WHV). The antibody and lymphoproliferative immune responses to WHV proteins were determined after immunization and after challenge. Vaccination with pWHcIm and pWIFN-gamma led to a pronounced lymphoproliferative response to WHcAg and protected woodchucks against subsequent virus challenge. Two of three animals vaccinated with pWHcIm alone did not show a detectable lymphoproliferative response to WHcAg. A low-level WHV infection occurred in these woodchucks after challenge, as WHV DNA was detectable in the serum by PCR. None of the pWHcIm-vaccinated animals showed an anti-WHcAg antibody response after DNA vaccination or an anamnestic response after virus challenge. Our results indicate that coadministration of the WIFN-gamma gene with pWHcIm enhanced the specific cellular immune response and improved the protective efficacy of WHV-specific DNA vaccines.  相似文献   

18.
为制备能提供交叉保护的疫苗,本研究在证实A型、B型流感病毒HA1 DNA能够提供抗流感病毒保护的基础上,将编码A型和B型流感病毒HA1的基因构建在同一质粒中,制备成嵌合DNA疫苗.将该重组质粒免疫小鼠,并以致死量同种流感病毒A/PR/8/34或B/Ibaraki/2/85攻击,通过测定小鼠的血清抗HA抗体和保护效果(包括存活率、肺部病毒量和体重丢失率)来评价DNA疫苗的免疫效果.结果表明:A、B型流感病毒HAl嵌合DNA疫苗能保护小鼠抵抗两种致死量流感病毒的攻击,具有提供交叉保护的能力.  相似文献   

19.
Despite countermeasures against influenza virus that prevent (vaccines) and treat (antivirals) infection, this upper respiratory tract human pathogen remains a global health burden, causing both seasonal epidemics and occasional pandemics. More potent and safe new vaccine technologies would contribute significantly to the battle against influenza and other respiratory infections. Using plasmid-based reverse genetics techniques, we have developed a single-cycle infectious influenza virus (sciIV) with immunoprotective potential. In our sciIV approach, the fourth viral segment, which codes for the receptor-binding and fusion protein hemagglutinin (HA), has been removed. Thus, upon infection of normal cells, although no infectious progeny are produced, the expression of other viral proteins occurs and is immunogenic. Consequently, sciIV is protective against influenza homologous and heterologous viral challenges in a mouse model. Vaccination with sciIV protects in a dose- and replication-dependent manner, which is attributed to both humoral responses and T cells. Safety, immunogenicity, and protection conferred by sciIV vaccination were also demonstrated in ferrets, where this immunization additionally blocked direct and aerosol transmission events. All together, our studies suggest that sciIV may have potential as a broadly protective vaccine against influenza virus.  相似文献   

20.
DNA immunization offers a novel means to induce cellular immunity in a population with a heterogeneous genetic background. An immunorecessive cytotoxic T-lymphocyte (CTL) epitope in influenza virus nucleoprotein (NP), residues 218 to 226, was identified when mice were immunized with a plasmid DNA encoding a full-length mutant NP in which the anchor residues for the immunodominant NP147-155 epitope were altered. Mice immunized with wild-type or mutant NP DNA were protected from lethal cross-strain virus challenge, and the protection could be adoptively transferred by immune splenocytes, indicating the role of cell-mediated immunity in the protection. DNA immunization is capable of eliciting protective cellular immunity against both immunodominant and immunorecessive CTL epitopes in the hierarchy seen with virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号