首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A transferred-DNA insertion mutant of Arabidopsis that lacks AKT1 inward-rectifying K+ channel activity in root cells was obtained previously by a reverse-genetic strategy, enabling a dissection of the K+-uptake apparatus of the root into AKT1 and non-AKT1 components. Membrane potential measurements in root cells demonstrated that the AKT1 component of the wild-type K+ permeability was between 55 and 63% when external [K+] was between 10 and 1,000 microM, and NH4+ was absent. NH4+ specifically inhibited the non-AKT1 component, apparently by competing for K+ binding sites on the transporter(s). This inhibition by NH4+ had significant consequences for akt1 plants: K+ permeability, 86Rb+ fluxes into roots, seed germination, and seedling growth rate of the mutant were each similarly inhibited by NH4+. Wild-type plants were much more resistant to NH4+. Thus, AKT1 channels conduct the K+ influx necessary for the growth of Arabidopsis embryos and seedlings in conditions that block the non-AKT1 mechanism. In contrast to the effects of NH4+, Na+ and H+ significantly stimulated the non-AKT1 portion of the K+ permeability. Stimulation of akt1 growth rate by Na+, a predicted consequence of the previous result, was observed when external [K+] was 10 microM. Collectively, these results indicate that the AKT1 channel is an important component of the K+ uptake apparatus supporting growth, even in the "high-affinity" range of K+ concentrations. In the absence of AKT1 channel activity, an NH4+-sensitive, Na+/H+-stimulated mechanism can suffice.  相似文献   

2.
In an attempt to understand the process mediating K(+) transport into roots, we examined the contribution of the NH(4)(+)-sensitive and NH(4)(+)-insensitive components of Rb(+) transport to the uptake of Rb(+) in barley (Hordeum vulgare L.) plants grown in different ionic environments. We found that at low external Rb(+) concentrations, an NH(4)(+)-sensitive component dominates Rb(+) uptake in plants grown in the absence of NH(4)(+), while Rb(+) uptake preferentially occurs through an NH(4)(+)-insensitive pathway in plants grown at high external NH(4)(+) concentrations. A comparison of the Rb(+)-uptake properties observed in roots with those found in heterologous studies with yeast cells indicated that the recently cloned HvHAK1 K(+) transporter may provide a major route for the NH(4)(+)-sensitive component. HvHAK1 failed to complement the growth of a yeast strain defective in NH(4)(+) transport, suggesting that it could not act as an NH(4)(+) transporter. Heterologous studies also showed that the HKT1 K(+)/Na(+)-cotransporter may act as a pathway for high-affinity Rb(+) transport sensitive to NH(4)(+). However, we found no evidence of an enhancement of Rb(+) uptake into roots due to Na(+) addition. The possible identity of the systems contributing to the NH(4)(+)-insensitive component in barley plants is discussed.  相似文献   

3.
The tss1 tomato (Lycopersicon esculentum) mutant exhibited reduced growth in low K+ and hypersensitivity to Na+ and Li+. Increased Ca2+ in the culture medium suppressed the Na+ hypersensitivity and the growth defect on low K+ medium of tss1 seedlings. Interestingly, removing NH4+ from the growth medium suppressed all growth defects of tss1, suggesting a defective NH4(+)-insensitive component of K+ transport. We performed electrophysiological studies to understand the contribution of the NH4(+)-sensitive and -insensitive components of K+ transport in wild-type and tss1 roots. Although at 1 mm Ca2+ we found no differences in affinity for K+ uptake between wild type and tss1 in the absence of NH4+, the maximum depolarization value was about one-half in tss1, suggesting that a set of K+ transporters is inactive in the mutant. However, these transporters became active by raising the external Ca2+ concentration. In the presence of NH4+, a reduced affinity for K+ was observed in both types of seedlings, but tss1 at 1 mm Ca2+ exhibited a 2-fold higher Km than wild type did. This defect was again corrected by raising the external concentration of Ca2+. Therefore, membrane potential measurements in root cells indicated that tss1 is affected in both NH4(+)-sensitive and -insensitive components of K+ transport at low Ca2+ concentrations and that this defective transport is rescued by increasing the concentration of Ca2+. Our results suggest that the TSS1 gene product is part of a crucial pathway mediating the beneficial effects of Ca2+ involved in K+ nutrition and salt tolerance.  相似文献   

4.
AtKuP1: a dual-affinity K+ transporter from Arabidopsis.   总被引:19,自引:0,他引:19       下载免费PDF全文
H H Fu  S Luan 《The Plant cell》1998,10(1):63-73
Plant roots contain both high- and low-affinity transport systems for uptake of K+ from the soil. In this study, we characterize a K+ transporter that functions in both high- and low-affinity uptake. Using yeast complementation analysis, we isolated a cDNA for a functional K+ transporter from Arabidopsis (referred to as AtKUP1 for Arabidopsis thaliana K+ uptake). When expressed in a yeast mutant, AtKUP1 dramatically increased K+ uptake capacity at both a low and high [K+] range. Kinetic analyses showed that AtKUP1-mediated K+ uptake displays a "biphasic" pattern similar to that observed in plant roots. The transition from the high-affinity phase (K(m) of 44 microM) to the low-affinity phase (K(m) of 11 mM) occurred at 100 to 200 microM external K+. Both low- and high-affinity K+ uptake via AtKUP1 were inhibited by 5 mM or higher concentrations of NaCl. In addition, AtKUP1-mediated K+ uptake was inhibited by K+ channel blockers, including tetraethylammonium, Cs+, and Ba2+. Consistent with a possible function in K+ uptake from the soil, the AtKUP1 gene is primarily expressed in roots. We conclude that the AtKUP1 gene product may function as a K+ transporter in Arabidopsis roots over a broad range of [K+] in the soil.  相似文献   

5.
High-affinity potassium and sodium transport systems in plants   总被引:20,自引:0,他引:20  
All living cells have an absolute requirement for K+, which must be taken up from the external medium. In contrast to marine organisms, which live in a medium with an inexhaustible supply of K+, terrestrial life evolved in oligotrophic environments where the low supply of K+ limited the growth of colonizing plants. In these limiting conditions Na+ could substitute for K+ in some cellular functions, but in others it is toxic. In the vacuole, Na+ is not toxic and can undertake osmotic functions, reducing the total K+ requirements and improving growth when the lack of K+ is a limiting factor. Because of these physiological requirements, the terrestrial life of plants depends on high-affinity K+ uptake systems and benefits from high-affinity Na+ uptake systems. In plants, both systems have received extensive attention during recent years and a clear insight of their functions is emerging. Some plant HAK transporters mediate high-affinity K+ uptake in yeast, mimicking K+ uptake in roots, while other members of the same family may be K+ transporters in the tonoplast. In parallel with the HAK transporters, some HKT transporters mediate high-affinity Na+ uptake without cotransporting K+. HKT transporters have two functions: (i) to take up Na+ from the soil solution to reduce K+ requirements when K+ is a limiting factor, and (ii) to reduce Na+ accumulation in leaves by both removing Na+ from the xylem sap and loading Na+ into the phloem sap.  相似文献   

6.
Futile plasma membrane cycling of ammonium (NH4+) is characteristic of low-affinity NH4+ transport, and has been proposed to be a critical factor in NH4+ toxicity. Using unidirectional flux analysis with the positron-emitting tracer 13N in intact seedlings of barley (Hordeum vulgare L.), it is shown that rapid, futile NH4+ cycling is alleviated by elevated K+ supply, and that low-affinity NH4+ transport is mediated by a K+-sensitive component, and by a second component that is independent of K+. At low external [K+] (0.1 mM), NH4+ influx (at an external [NH4+] of 10 mM) of 92 micromol g(-1) h(-1) was observed, with an efflux:influx ratio of 0.75, indicative of rapid, futile NH4+ cycling. Elevating K+ supply into the low-affinity K+ transport range (1.5-40 mM) reduced both influx and efflux of NH4+ by as much as 75%, and substantially reduced the efflux:influx ratio. The reduction of NH4+ fluxes was achieved rapidly upon exposure to elevated K+, within 1 min for influx and within 5 min for efflux. The channel inhibitor La3+ decreased high-capacity NH4+ influx only at low K+ concentrations, suggesting that the K+-sensitive component of NH4+ influx may be mediated by non-selective cation channels. Using respiratory measurements and current models of ion flux energetics, the energy cost of concomitant NH4+ and K+ transport at the root plasma membrane, and its consequences for plant growth are discussed. The study presents the first demonstration of the parallel operation of K+-sensitive and -insensitive NH4+ flux mechanisms in plants.  相似文献   

7.
8.
High-affinity K+ uptake in plants plays a crucial role in K+ nutrition and different systems have been postulated to contribute to the high-affinity K+ uptake. The results presented here with pepper (Capsicum annum) demonstrate that a HAK1-type transporter greatly contributes to the high-affinity K+ uptake observed in roots. Pepper plants starved of K+ for 3 d showed high-affinity K+ uptake (K m of 6 M K+) that was very sensitive to NH and their roots expressed a high-affinity K+ transporter, CaHAK1, which clusters in group I of the KT/HAK/KUP family of transporters. When expressed in yeast (Saccharomyces cerevisiae), CaHAK1 mediated high-affinity K+ and Rb+ uptake with K m values of 3.3 and 1.9 M, respectively. Rb+ uptake was competitively inhibited by micromolar concentrations of NH and Cs+, and by millimolar concentrations of Na+.  相似文献   

9.
Identification of a high affinity NH4+ transporter from plants.   总被引:17,自引:1,他引:17       下载免费PDF全文
  相似文献   

10.
11.
We have investigated both the kinetics and regulation of 15NH4+ influx in roots of 3-month-old hydroponically grown Citrus (Citrus sinensis L. Osbeck x Poncirus trifoliata Blanco) seedlings. The 15NH4+ influx is saturable below an external ammonium concentration of 1 mM, indicating the action of a high-affinity transport system (HATS). The HATS is under feedback repression by the N status of the plant, being down-regulated in plants adequately supplied with N during growth, and up-regulated by N-starvation. When assayed between 1 and 50 mM [15NH4+]0, the 15NH4+ influx showed a linear response typical of a low-affinity transport system (LATS). The activity of the LATS increased in plants supplied with NH4+ as compared with plants grown on an N-free medium. Transfer of the plants to N-free solution resulted in a marked decrease in the LATS-mediated 15NH4+ influx. Accordingly, resupply of NH4+ after N-starvation triggered a dramatic stimulation of the activity of the LATS. These data provide evidence that in Citrus plants, the LATS or at least one of its components is inducible by NH4+. Even when up-regulated, both the HATS and the LATS displayed a limited capacity, as compared with that usually found in herbaceous species. The use of various metabolic uncouplers or inhibitors indicated that 15NH4+ influx mediated by the HATS is strongly dependent on energy metabolism and H+ transmembrane electrochemical gradient. By contrast, the LATS is not affected by protonophores or inhibitors of the H(+)-ATPase, suggesting that its activity is mostly driven by the NH4+/NH3 transmembrane gradient. In agreement with these hypotheses, the HATS-mediated 15NH4+ influx was strongly inhibited when the solution pH was raised from 4 to 7, whereas influx mediated by the LATS was slightly stimulated.  相似文献   

12.
1. Rice was grown for 5 months in a sand solution culture at two different
  1. K levels. The higher K supply resulted in a reduced uptake of Na +, Mg ++, and Ca++ by shoots. The uptake of NH4+-N of the shoots, however, was increased by the higher K supply.
  2. In short term experiments, ill which the NH4+-N of the uptake solution was labelled by N 15, increasing K concentrations in the uptake solution did not depress the NH4 + uptake of young rice plants. Higher K concentrations in the uptake solution favoured the translocation of labelled N from the roots to the shoots. In some cases the higher K levels resulted also in an enhanced transfer rate of labelled N from the soluble to the insoluble N fraction.
  3. Increasing levels of Mg++ in the uptake solution did not affect the uptake of labelled NH4-N.
  4. I t is concluded that K + and NH4 + do not compete for common binding sites of the uptake mechanism in rice roots. This lacking competition suggests the speculation that NH4+-N is absorbed mainly in form of NH8 by plant cells.
  相似文献   

13.
The energetics of ammonium ion transport by Escherichia coli have been studied using [14C]methylammonium as a substrate. Rapid assays for uptake allowed kinetic parameters (CH3NH3+ Km = 36 microM; Vmax = 4 nmol X s-1 X mg-1 to be determined in the absence of CH3NH3+ metabolism. Cells cultured in media containing 1 mM NH4+ failed to express CH3NH3+ transport activity. Methylammonium accumulated at levels which were 100-fold higher than those of the medium. This accumulation was dependent upon the addition of glucose or pyruvate. The entry of CH3NH3+ supported by glucose oxidation in an F1F0-ATPase-deficient mutant was blocked by uncoupler. Transport by wild-type cells under similar conditions was significantly inhibited by arsenate. Thus, CH3NH3+ uptake requires both ATP and an electrochemical H+ gradient. This transport activity was lost upon exposure of E. coli to osmotic shock, but could be recovered by incubation of shocked cells with boiled shock fluid or with glucose plus K+ in the presence of chloramphenicol. Similar reconstitution was observed in K+-depleted parental strains, but not in a mutant defective in K+ transport, demonstrating a requirement for internal K+. However, external K+ proved to be a noncompetitive inhibitor (Ki = 1 mM) of CH3NH3+ uptake by K+ -replete bacteria. External Na+ had no effect on transport. The addition of NH4+ or CH3NH3+ induced a rapid exodus of intracellular 86Rb+, an analog which was able to substitute for K+. The molar ratio of CH3NH3+ uptake to Rb+ exit was 1.12 +/- 0.11. These findings support a mechanism for CH3NH3+ (NH4+) accumulation which requires K+ antiport (exchange) and is driven by the electrochemical K+ gradient.  相似文献   

14.
1. Na+ as well as Li+ move across the apical membrane through amiloride-sensitive ionic channels. 2. K+ movements across the apical membrane occur through Ba2+- and Cs+-sensitive channels which do not allow the passage of Na+ or Li+. 3. A third pathway in the apical membrane is permeable for Na+, K+, Cs+, Rb+, NH+4 and Ti+. The currents carried by these monovalent cations are blocked by Ca2+ and divalent cations as well as La3+. 4. In the urinary bladder, the Ca2+-sensitive currents are stimulated by oxytocin, activators of cytosolic cAMP and cAMP analogues. Also the oxytocin activated currents are blocked by divalent cations and La3+. 5. Nanomolar concentrations of mucosal Ag+ activate the third channel and open the pathway for movements of Ca2+, Ba2+ and Mg2+, which are known to permeate through Ca2+ channels in excitable tissues.  相似文献   

15.
Chemotactic stimulation of Dictyostelium discoideum induces an uptake of Ca2+ by the cells followed by a release of Ca2+. In this study we investigated the mechanism of Ca2+ release and found that it was inhibited by La3+, Cd2+ and azide. Ca2+ release occurred in the absence of external Na+, indicating that an Na+/Ca2+ exchange was not involved. Plasma membranes contained high- and low-affinity ATPase activities. Apparent K0.5 values were 8 microM for the major Mg2+-ATPase and 1.1 microM for the high-affinity Ca2+-ATPase, respectively. The Mg2+-ATPase activity was inhibited by elevated concentrations of Ca2+, whereas both Ca2+-ATPases were active in the absence of added Mg2+. The activities of the Ca2+-ATPases were not modified by calmodulin. The high-affinity Ca2+-ATPase was competitively inhibited by La3+ and Cd2+; we suggest that this high-affinity enzyme mediates the release of Ca2+ from D. discoideum cells.  相似文献   

16.
The impact of mineral N supply, N-free or NO3(-) with or without NH4+, on the subsequent uptake of NO3(-) by maritime pine seedlings associated with the ectomycorrhizal fungus Rhizopogon roseolus was studied using ion-selective microelectrodes. NO3(-) net fluxes into N-starved non-mycorrhizal short roots (NMSRs) were low and measurable only over the NO3(-) concentration range of 0-70 microM. The simple kinetics observed in those roots may reflect the dominant operation of a high-affinity NO3(-) transport system (HATS) which is constitutive. NO3(-) pretreatment increased the NO3(-) net fluxes and led to a complex kinetics that may reflect the operation of other HATS. A simple kinetics was observed in plants pre-incubated at high NH4+ concentration. In contrast, NO3(-) uptake kinetics presented only one saturation phase in the fungus, whether associated with the plant or not. NO3(-) uptake was greater after a pretreatment in N-free or NO3 (-) solution, but NH4+ pretreatment led to a threefold reduction in NO3 (-) uptake. These results suggest that the regulation of NO3(-) transport systems varies between the host and the fungal partner. This variation is likely to contribute to the positive effect of mycorrhizal association on N uptake in plants when the N supply is low and fluctuating.  相似文献   

17.
Characteristics of cation permeation through voltage-dependent delayed rectifier K channels in squid giant axons were examined. Axial wire voltage-clamp measurements and internal perfusion were used to determine conductance and permeability properties. These K channels exhibit conductance saturation and decline with increases in symmetrical K+ concentrations to 3 M. They also produce ion- and concentration-dependent current-voltage shapes. K channel permeability ratios obtained with substitutions of internal Rb+ or NH+4 for K+ are higher than for external substitution of these ions. Furthermore, conductance and permeability ratios of NH+4 or Rb+ to K+ are functions of ion concentration. Conductance measurements also reveal the presence of an anomalous mole fraction effect for NH+4, Rb+, or Tl+ to K+. Finally, internal Cs+ blocks these K channels in a voltage-dependent manner, with relief of block by elevations in external K+ but not external NH+4 or Cs+. Energy profiles for K+, NH+4, Rb+, Tl+, and Cs+ incorporating three barriers and two ion-binding sites are fitted to the data. The profiles are asymmetric with respect to the center of the electric field, have different binding energies and electrical positions for each ion, and (for K+) exhibit concentration-dependent barrier positions.  相似文献   

18.
Dual system for potassium transport in Saccharomyces cerevisiae.   总被引:17,自引:2,他引:15       下载免费PDF全文
In a newly formulated growth medium lacking Na+ and NH4+, Saccharomyces cerevisiae grew maximally at 5 microM K+. Cells grown under these conditions transported K+ with an apparent Km of 24 microM, whereas cells grown in customary high-K+ medium had a significantly higher Km (2 mM K+). The two types of transport also differed in carbonyl cyanide-m-chlorophenyl hydrazone sensitivity, response to ATP depletion, and temperature dependence. The results can be accounted for either by two transport systems or by one system operating in two different ways.  相似文献   

19.
Nitrate supply affects ammonium transport in canola roots   总被引:1,自引:0,他引:1  
Plants may suffer from ammonium (NH4+) toxicity when NH4+ is the sole nitrogen source. Nitrate (NO3-) is known to alleviate NH4+ toxicity, but the mechanisms are unknown. This study has evaluated possible mechanisms of NO3- alleviation of NH4+ toxicity in canola (Brassica napus L.). Dynamics of net fluxes of NH4+, H+, K+ and Ca2+ were assessed, using a non-invasive microelectrode (MIFE) technique, in plants having different NO3- supplies, after single or several subsequent increases in external NH4Cl concentration. After an increase in external NH4Cl without NO3-, NH4+ net fluxes demonstrated three distinct stages: release (tau1), return to uptake (tau2), and a decrease in uptake rate (tau3). The presence of NO3- in the bathing medium prevented the tau1 release and also resulted in slower activation of the tau3 stage. Net fluxes of Ca2+ were in the opposite direction to NH4+ net fluxes, regardless of NO3- supply. In contrast, H+ and K+ net fluxes and change in external pH were not correlated with NH4+ net fluxes. It is concluded that (i) NO3- primarily affects the NH4+ low-affinity influx system; and (ii) NH4+ transport is inversely linked to Ca2+ net flux.  相似文献   

20.
The equilibrium binding of sodium, potassium, and adenine nucleotides to dog kidney (Na,K)-ATPase was studied by measuring changes in the fluorescence of enzyme labeled with 5-iodoacetamidofluorescein (5-IAF). The intensity of the fluorescence emission at 520 nm of the bound fluorescein (excited at 490 nm) is increased by ATP, adenyl-5'-yl imidodiphosphate (AMP-PNP), ADP (but not AMP), and Na+, and decreased by K+, Rb+, NH+4, and LI+. Thus the fluorescence effects correlate with the ability of these groups of ligands to stabilize E1 and E2 conformations, respectively. The Na+-induced increase in fluorescence has two components: a slow, high-affinity increase of approximately 7% (K0.5 = 0.16 mM) with positive cooperativity; and a large (approximately 15%), rapid, low-affinity (K0.5 = 34 mM) increase that is not cooperative. The K0.5 for the high-affinity effect is decreased by oligomycin and increased by K+. ATP effects on the fluorescence follow Michaelis-Menten kinetics and are of high affinity (K0.5 = 0.12 microM); K+ increases the K0.5 for ATP, AMP-PNP, and ADP but does not induce cooperative behavior. K+ itself decreases the fluorescence signal by about 9%, with high affinity (K0.5 = 5 microM), showing Michaelis-menten behavior in the absence of other ligands, while with ATP, Na+, or Mg2+ present, K+ effects are cooperative and of lower affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号