首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix metalloproteinase-2 (MMP-2) functions in diverse biological processes through the degradation of extracellular and non-extracellular matrix molecules. Because of its potential for tissue damage, there are several ways to regulate MMP-2 activity, including gene expression, compartmentalization, zymogen activation, and enzyme inactivation by extracellular inhibitors. Enzyme regulation through zymogen activation is important for the regulation of MMP-2 activity. In our previous studies, we showed that thrombin directly cleaved the propeptide of MMP-2 at specific sites for enzyme activation. We also demonstrated that heparan sulfate was required for thrombin-mediated activation of pro-MMP-2 by binding to thrombin, presumably through conformational changes at the active site of the enzyme. This suggests a regulatory mechanism for thrombin-mediated activation of pro-MMP-2. In this study, we found that MMP-2 formed a reduction-sensitive homodimer in a controlled manner and that Ca(2+) ion was essential for homodimerization of MMP-2. Homodimerization was not associated with protein kinase C-mediated phosphorylation of MMP-2. MMP-2 formed a homodimer through an intermolecular disulfide bond between Cys(102) and the neighboring Cys(102). Homodimerization of MMP-2 enhanced thrombin-mediated activation of pro-MMP-2. Moreover, the MMP-2 homodimer could cleave a small peptide substrate without removal of the propeptide. Taken together, our experimental data suggest a novel regulatory mechanism for pro-MMP-2 activation that is modulated through homodimerization of MMP-2.  相似文献   

2.
3.
Matrix metalloproteinase-9 has recently emerged as an important molecule in control of extracellular proteolysis in the synaptic plasticity. However, no synaptic targets for its enzymatic activity had been identified before. In this report, we show that beta-dystroglycan comprises such a neuronal activity-driven target for matrix metalloproteinase-9. This notion is based on the following observations. (i) Recombinant, autoactivating matrix metalloproteinase-9 produces limited proteolytic cleavage of beta-dystroglycan. (ii) In neuronal cultures, beta-dystroglycan proteolysis occurs in response to stimulation with either glutamate or bicuculline and is blocked by tissue inhibitor of metalloproteinases-1, a metalloproteinase inhibitor. (iii) Beta-dystroglycan degradation is also observed in the hippocampus in vivo in response to seizures but not in the matrix metalloproteinase-9 knock-out mice. (iv) Beta-dystroglycan cleavage correlates in time with increased matrix metalloproteinase-9 activity. (v) Finally, beta-dystroglycan and matrix metalloproteinase-9 colocalize in postsynaptic elements in the hippocampus. In conclusion, our data identify the beta-dystroglycan as a first matrix metalloproteinase-9 substrate digested in response to enhanced synaptic activity. This demonstration may help to understand the possible role of both proteins in neuronal functions, especially in synaptic plasticity, learning, and memory.  相似文献   

4.
基质金属蛋白酶是一类可降解细胞外基质的蛋白酶,基质金属蛋白酶-2和-9为明胶酶,可降解细胞外基质中的胶原蛋白及弹性蛋白,其动态平衡对维持细胞外基质的稳定具有重要意义。主动脉的细胞外基质是主动脉中层重要的组成部分,细胞外基质成分的改变可导致主动脉中层结构的损伤,在主动脉疾病的发生、发展过程中起着重要作用。主动脉基质金属蛋白酶-2和-9的表达失衡可引起主动脉中层细胞外基质的降解,导致主动脉中层结构的损伤,从而促进主动脉疾病的发生。同时,主动脉疾病也可导致血浆中MMP-2、MMP-9浓度的升高。本文对近年来基质金属蛋白酶与主动脉疾病相关性的研究及进展作一综述,为心血管疾病发生机制的研究和治疗提供文献依据。  相似文献   

5.
Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-α-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.  相似文献   

6.
Osteopontin (OPN) is a multifunctional protein that has been linked to various intractable inflammatory diseases. One way by which OPN induces inflammation is the production of various functional fragments by enzyme cleavage. It has been well appreciated that OPN is cleaved by thrombin, and/or matrix metalloproteinase-3 and -7 (MMP-3/7). Although the function of thrombin-cleaved OPN is well characterized, little is known about the function of MMP-3/7-cleaved OPN. In this study, we found a novel motif, LRSKSRSFQVSDEQY, in the C-terminal fragment of MMP-3/7-cleaved mouse OPN binds to α9β1 integrin. Importantly, this novel motif is involved in the development of anti-type II collagen antibody-induced arthritis (CAIA). This study provides the first in vitro and in vivo evidence that OPN cleavage by MMP-3/7 is an important regulatory mechanism for CAIA.  相似文献   

7.
Activation of furin requires autoproteolytic cleavage of its 83-amino acid propeptide at the consensus furin site, Arg-Thr-Lys-Arg107/. This RER-localized cleavage is necessary, but not sufficient, for enzyme activation. Rather, full activation of furin requires exposure to, and correct routing within, the TGN/endosomal system. Here, we identify the steps in addition to the initial propeptide cleavage necessary for activation of furin. Exposure of membrane preparations containing an inactive RER-localized soluble furin construct to either: (i) an acidic and calcium-containing environment characteristic of the TGN; or (ii) mild trypsinization at neutral pH, resulted in the activation of the endoprotease. Taken together, these results suggest that the pH drop facilitates the removal of a furin inhibitor. Consistent with these findings, following cleavage in the RER, the furin propeptide remains associated with the enzyme and functions as a potent inhibitor of the endoprotease. Co-immunoprecipitation studies coupled with analysis by mass spectrometry show that release of the propeptide at acidic pH, and hence activation of furin, requires a second cleavage within the autoinhibitory domain at a site containing a P6 arginine (-Arg70-Gly-Val-Thr-Lys-Arg75/-). The significance of this cleavage in regulating the compartment-specific activation of furin, and the relationship of the furin activation pathway to those of other serine endoproteases are discussed.  相似文献   

8.
Expression of gelatinase B (matrix metalloprotease 9) in human placenta is developmentally regulated, presumably to fulfill a proteolytic function. Here we demonstrate that gelatinolytic activity in situ, in tissue sections of term placenta, is co-localized with gelatinase B. Judging by molecular mass, however, all the enzyme extracted from this tissue was found in a proform. To address this apparent incongruity, we examined the activity of gelatinase B bound to either gelatin- or type IV collagen-coated surfaces. Surprisingly, we found that upon binding, the purified proenzyme acquired activity against both the fluorogenic peptide (7-methoxycoumarin-4-yl)-acetic acid (MCA)-Pro-Leu-Gly-Leu-3-(2,4-dinitrophenyl)-l-2,3-diaminopropionyl-Ala-Arg-NH(2) and gelatin substrates, whereas its propeptide remained intact. These results suggest that although activation of all known matrix metalloproteases in vitro is accomplished by proteolytic processing of the propeptide, other mechanisms, such as binding to a ligand or to a substrate, may lead to a disengagement of the propeptide from the active center of the enzyme, causing its activation.  相似文献   

9.
The aim of this study was to combine matrix metalloproteinase-9 (MMP-9) protein (enzyme-linked immunosorbent assay [ELISA]) and MMP-9 activity (fluorescence resonance energy transfer [FRET] assay) data to generate units of specific activity in endogenous and p-aminophenylmercuric acetate (APMA)-activated lithium heparin plasma. The results indicate that specific activity is constant in APMA-activated plasma (mean value = 1359.4 pmol/min/μg) and approximately 12% plasma MMP-9 is endogenously active. Exogenous tissue inhibitor of metalloproteinase-1 (TIMP-1) has a greater inhibitory effect on endogenously active MMP-9 than on APMA-activated MMP-9. In conclusion, specific activity can be used as a tool to monitor MMP-9 inhibition. APMA activation affects natural enzyme inhibition, possibly by chemical modification of the C-terminal portion of the enzyme containing the TIMP-1 binding site.  相似文献   

10.
In joint diseases of both the inflammatory (rheumatoid arthritis, or RA) or the degenerative variety (osteoarthritis, or OA), matrix metalloproteinases (MMPs) are essential mediators of irreversible tissue destruction. MMP-9 is secreted as a stable, inactive zymogen and is proteolytically converted to the active enzyme. To understand the activation mechanism of MMP-9 in joint diseases, the process was investigated in serum-free cocultures of human articular chondrocytes and macrophages. Macrophages extensively expressed and secreted pro-MMP-9 whereas chondrocytes failed to produce the enzyme. However, efficient activation of pro-MMP-9 required soluble and membrane-associated chondrocyte proteinases. Two alternative activation pathways mainly involved MMPs and, marginally, serine or cysteine proteinases. MT1-MMP (MMP-14), the only MT-MMP expressed in chondrocytes, converted pro-MMP-13 which, in turn, cleaved pro-MMP-9. Alternatively, pro-MMP-9 was activated less efficiently by MMP-3, which was converted by autocatalysis or by serine or cysteine proteinases. Both pathways were triggered by chondrocytes from OA, but not normal joints. Therefore, articular chondrocytes are not innocent bystanders in joint diseases. They not only produce destructive enzymes guided by environmental cues but also they can instruct inflammatory cells or cells from surrounding tissues to do so by converting in several ways zymogens produced but not activated by these cells themselves.  相似文献   

11.
ADAM28, a member of a disintegrin and metalloproteinase (ADAM) family, has two isoforms, membrane-type form (ADAM28m) and secreted form (ADAM28s). Although ADAM28 is expressed and synthesized in a precursor form (proADAM28) by lymphocytes and some cancer cells, its activation mechanism and substrates remain unclear. Here, we report that proADAM28s of 65kDa is processed with active matrix metalloproteinase-7 (MMP-7) to 42- and 40-kDa forms which corresponds to active ADAM28s without propeptide. Processed ADAM28s digested insulin-like growth factor binding protein-3 (IGFBP-3) in both free and complex forms with IGF-I or IGF-II, and the digestion was prevented with EDTA, 1,10-phenanthroline, KB-R7785, tissue inhibitor of metalloproteinases-3 (TIMP-3), and TIMP-4. These data provide the first evidence that proADAM28s is activated by MMP-7 and ADAM28 digests IGFBP-3.  相似文献   

12.
Myeloperoxidase uses hydrogen peroxide (H2O2) to generate hypochlorous acid (HOCl), a potent cytotoxic oxidant. We demonstrate that HOCl regulates the activity of matrix metalloproteinase-7 (MMP-7, matrilysin) in vitro, suggesting that this oxidant activates MMPs in the artery wall. Indeed, both MMP-7 and myeloperoxidase were colocalized to lipid-laden macrophages in human atherosclerotic lesions. A highly conserved domain called the cysteine switch has been proposed to regulate MMP activity. When we exposed a synthetic peptide that mimicked the cysteine switch to HOCl, HPLC analysis showed that the thiol residue reacted rapidly, generating a near-quantitative yield of products. Tandem mass spectrometric analysis identified the products as sulfinic acid, sulfonic acid, and a dimer containing a disulfide bridge. In contrast, the peptide reacted slowly with H2O2, and the only product was the disulfide. Moreover, HOCl markedly activated pro-MMP-7, an MMP expressed at high levels in lipid-laden macrophages in vivo. Tandem mass spectrometric analysis of trypsin digests revealed that the thiol residue of the enzyme's cysteine switch domain had been converted to sulfinic acid. Thiol oxidation was associated with autolytic cleavage of pro-MMP-7, strongly suggesting that oxygenation activates the latent enzyme. In contrast, H2O2 failed to oxidize the thiol residue of the protein or activate the enzyme. Thus, HOCl activates pro-MMP-7 by converting the thiol residue of the cysteine switch to sulfinic acid. This activation mechanism is distinct from the well-studied proteolytic cleavage of MMP pro-enzymes. Our observations raise the possibility that HOCl generated by myeloperoxidase contributes to MMP activation, and therefore to plaque rupture, in the artery wall. HOCl and other oxidants might regulate MMP activity by the same mechanism in a variety of inflammatory conditions.  相似文献   

13.
Proprotein convertases play an important role in tumorigenesis and invasiveness. Here, we report that a dibasic amino acid convertase, furin, directly cleaves proMMP-2 within the trans-Golgi network leading to an inactive form of matrix metalloproteinase-2 (MMP-2). Co-transfection of COS-1 cells with both proMMP-2 and furin cDNAs resulted in the cleavage of the N-terminal propeptide of proMMP-2. The molecular mass of cleaved MMP-2 (63 kDa), detected in both cell lysates and conditioned medium, is between the intermediate and fully activated forms of MMP-2 induced by membrane type 1-MMP. Furin-cleaved MMP-2 does not possess proteolytic activity as examined in a cell-free assay. Treatment of transfected cells with a furin inhibitor resulted in a dose-dependent inhibition of proMMP-2 cleavage; recombinant tissue inhibitor of metalloproteinase-2, which binds to the active site of membrane type 1-MMP, had no inhibitory effect. Site-directed mutagenesis of amino acids in the furin consensus recognition motif of proMMP-2(R69KPR72) prevented propeptide cleavage, thereby identifying the scissile bond and characterizing the basic amino acids required for cleavage. Other experimental observations were consistent with intracellular furin cleavage of proMMP-2 in the trans-Golgi network. The furin cleavage site in other proMMPs was examined. MMP-3, which contains the RXXR furin consensus sequence, was cleaved in furin co-transfected cells, whereas MMP-1, which lacks an RXXR consensus sequence, was not cleaved. In conclusion, we report the novel observation that furin can directly cleave the RXXR amino acid sequence in the propeptide domain of proMMP-2 leading to inactivation of the enzyme.  相似文献   

14.
Like most metalloproteases, matrix metalloprotease 2 (MMP-2) is synthesized as a zymogen. MMP-2 propeptide plays a role in inhibition of catalytic activity through a cysteine-zinc ion pairing, disruption of which results in full enzyme activation. A variety of proteases have been shown to be involved in the activation of pro-MMP-2, including metalloproteases and serine proteases. In the previous study we showed that MMP-2 activation occurred via specific cleavages of the propeptide by thrombin followed by intermolecular autoproteolytic processing for full enzymatic activity. Thrombin also degraded MMP-2, but this degradation was reduced greatly under cell-associated conditions with a concomitant increase in activation, prompting us to elucidate the molecular mechanisms underlying thrombin-mediated MMP-2 activation. In the present study we demonstrate that heparan sulfate is essential for thrombin-mediated activation of pro-MMP-2. Binding of heparan sulfate to thrombin is primarily responsible for this activation process, presumably through conformational changes at the active site. Furthermore, interaction of MMP-2 with exosites 1 and 2 of thrombin is crucial for thrombin-mediated MMP-2 degradation, and inhibition of this interaction by heparan sulfate or hirudin fragment results in a decrease in MMP-2 degradation. Finally, we demonstrated interaction between exosite 1 and hemopexin-like domain of MMP-2, suggesting a regulatory role of hemopexin-like domain in MMP-2 degradation. Taken together, our experimental data suggest a novel regulatory mechanism of thrombin-dependent MMP-2 enzymatic activity by heparan sulfate proteoglycans.  相似文献   

15.
LPS induces an up-regulation of promatrix metalloproteinase-9 (proMMP9) gene expression in cells of the monocyte/macrophage lineage. We demonstrate here that LPS preparations are also able to activate proMMP9 made by human macrophages or THP-1 cells via LPS-associated proteinases, which cleave the N-terminal propeptide at a site or sites close to the one cleaved upon activation with organomercurial compounds. LPS-associated proteinases are serine proteinases that are able to cleave denatured collagens (gelatin) and the mammalian serine proteinase inhibitor, alpha(1)-proteinase inhibitor, thereby pushing the balance of extracellular matrix turnover even further toward degradation. A low molecular mass, low affinity inhibitor of MMP9, possibly derived from the propeptide, is generated during proMMP9 activation. However, inhibition of the LPS-associated proteinases had no effect on proMMP9 synthesis, indicating that their proteolytic activity was not required for signaling the up-regulation of the proMMP9 gene.  相似文献   

16.
17.
18.
The mechanism of human polymorphonuclear leucocyte (PMNL) procollagenase activation by HgCl2 was investigated by kinetic and sequence analysis of the reaction products. HgCl2 activated PMNL procollagenase by intramolecular autoproteolytic cleavage of the Asn53-Val54 peptide bond to generate a collagenase species of Mr 65000, which was immediately converted into a second intermediate collagenase form by further autoproteolytic cleavage of the Asp64-Met65 peptide bond within the propeptide domain. This intermediate form (Met65 N-terminus) reached maximum concentrations after 45 min and displayed only about 40% of the maximum available enzymatic activity. Final activation was obtained after autoproteolytic cleavage of either Phe79-Met80 or Met80-Leu81 peptide bonds. Furthermore, activation in the presence of TIMP-1 did not suppress the intramolecular autoproteolytic cleavage of the Asn53-Val54 peptide bond. Complete inhibition of further autoproteolytic decay of the enzyme or generated peptides was observed, which was obviously due to complex formation between the intermediate collagenase form (Val54 N-terminus) and inhibitor, which was visualized using the Western blot technique. Thus PMNL procollagenase activation by HgCl2 followed a three-step activation mechanism which is entirely different from the known activation mechanisms of the fibroblast matrix metalloproteinases.  相似文献   

19.
Hyperhomocysteinemia (HHcy) is associated with atherosclerosis, stroke, and dementia. Hcy causes extracellular matrix remodeling by the activation of matrix metalloproteinase-9 (MMP-9), in part, by inducing redox signaling and modulating the intracellular calcium dynamics. Calpains are the calcium-dependent cysteine proteases that are implicated in mitochondrial damage via oxidative burst. Mitochondrial abnormalities have been identified in HHcy. The mechanism of Hcy-induced extracellular matrix remodeling by MMP-9 activation via mitochondrial pathway is largely unknown. We report a novel role of calpains in mitochondrial-mediated MMP-9 activation by Hcy in cultured rat heart microvascular endothelial cells. Our observations suggested that calpain regulates Hcy-induced MMP-9 expression and activity. We showed that Hcy activates calpain-1, but not calpain-2, in a calcium-dependent manner. Interestingly, the enhanced calpain activity was not mirrored by the decreased levels of its endogenous inhibitor calpastatin. We presented evidence that Hcy induces the translocation of active calpain from cytosol to mitochondria, leading to MMP-9 activation, in part, by causing intramitochondrial oxidative burst. Furthermore, studies with pharmacological inhibitors of calpain (calpeptin and calpain-1 inhibitor), ERK (PD-98059) and the mitochondrial uncoupler FCCP suggested that calpain and ERK-1/2 are the major events within the Hcy/MMP-9 signal axis and that intramitochondrial oxidative stress regulates MMP-9 via ERK-1/2 signal cascade. Taken together, these findings determine the novel role of mitochondrial translocation of calpain-1 in MMP-9 activation during HHcy, in part, by increasing mitochondrial oxidative stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号