首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian canonical transient receptor channels (TRPCs) are considered to be candidates for store-operated calcium channels (SOCCs). Many studies have addressed how TRPC3 channels are affected by depletion of intracellular calcium stores. Conflicting results have been shown for TRPC3 regarding its function, and this has been linked to its level of expression in various systems. In the present study, we have investigated how overexpression of TRPC3 interferes with the regulation of intracellular calcium stores. We demonstrate that overexpression of TRPC3 reduces the mobilization of calcium in response to stimulation of the cells with thapsigargin (TG) or the G-protein coupled receptor agonist sphingosine-1-phosphate (S1P). Our results indicate that this is the result of the expression of TRPC3 channels in the endoplasmic reticulum (ER), thus depleting ER calcium stores. OAG evoked calcium entry in cells overexpressing TRPC3, indicating that functional TRPC3 channels were also expressed in the plasma membrane. Taken together, our results show that overexpression of the putative SOCC, TRPC3, actually reduces the calcium content of intracellular stores, but does not enhance agonist-evoked or store-dependent calcium entry. Our results may, in part, explain the conflicting results obtained in previous studies on the actions of TRPC3 channels.  相似文献   

2.
T-type calcium channels and tumor proliferation   总被引:10,自引:0,他引:10  
Panner A  Wurster RD 《Cell calcium》2006,40(2):253-259
The role of T-type Ca2+ channels in proliferation of tumor cells is reviewed. Intracellular Ca2+ is important in controlling proliferation as evidenced by pulses, or oscillations, of intracellular Ca2+ which occur in a cell cycle-dependent manner in many tumor cells. Voltage-gated calcium channels, such as the T-type Ca2+ channel, are well suited to participate in such oscillations due to their unique activation/inactivation properties. Expression of the T-type Ca2+ channels has been reported in numerous types of tumors, and has been shown to be cell cycle-dependent. Overexpression of the alpha1 subunit of T-type Ca2+ channels in human astrocytoma, neuroblastoma and renal tumor cell lines enhanced proliferation of these cells. In contrast, targeting of the alpha1 subunit of the T-type calcium channel via siRNA decreased proliferation of these cells. A Ca2+ oscillatory model is proposed involving potassium channels, Ca2+ stores and Ca2+ exchangers/transporters. A review of T-type channel blockers is presented, with a focus on mibefradil-induced inhibition of proliferation. The development of newer blockers with higher selectivity and less potential side effects are discussed. The conclusion reached is that calcium channel blockers serve as a potential therapeutic approach for tumors whose proliferation depends on T-type calcium channel expression.  相似文献   

3.
Lory P  Bidaud I  Chemin J 《Cell calcium》2006,40(2):135-146
Low-voltage activated, T-type calcium channels (T-channels) are expressed in many developing tissues and may be important in regulating important cellular phenotype transitions leading to cell proliferation, differentiation, growth and death. The purpose of this review is to relate and delineate the current data on the involvement of T-channels in differentiation and proliferation. Owing to the recent cloning of the CaV3.1, CaV3.2 and CaV3.3 subunits coding for T-channels, classical electrophysiological and pharmacological approaches are now being supported by molecular investigations. As T-channels are expressed in early development as well as re-expressed in several disease-states, our goal is to provide a comprehensive scheme of the current hypothesis connecting the activity of T-channels to cell differentiation and proliferation, as well as the potential physiological and pathophysiological implications.  相似文献   

4.
TRPC6 are plasma membrane cation channels. By means of live-cell imaging and spectroscopic methods, we found that HEK cells expressing TRPC6 channels (HEK-TRPC6) are enriched in zinc and sulphur and have a reduced copper content when compared to HEK cells and HEK cells expressing TRPC3 channels (HEK-TRPC3). Hence, HEK-TRPC6 cells have larger pools of mobilizable Zn2+ and are more sensitive to an oxidative stress. Synchrotron X-ray fluorescence experiments showed a higher zinc content in the nuclear region indicating that the intracellular distribution of this metal was influenced by the over-expression of TRPC6 channels. Their properties were investigated with the diacylglycerol analogue SAG and the plant extract hyperforin. Electrophysiological recordings and imaging experiments with the fluorescent Zn2+ probe FluoZin-3 demonstrated that TRPC6 channels form Zn2+-conducting channels. In cortical neurons, hyperforin-sensitive channels co-exist with voltage-gated channels, AMPA and NMDA receptors, which are known to transport Zn2+. The ability of these channels to regulate the size of the mobilizable pools of Zn2+ was compared. The data collected indicate that the entry of Zn2+ through TRPC6 channels can up-regulate the size of the DTDP-sensitive pool of Zn2+. By showing that TRPC6 channels constitute a Zn2+ entry pathway, our study suggests that they could play a role in zinc homeostasis.  相似文献   

5.
Background information. TrxR (thioredoxin reductase), in addition to protecting against oxidative stress, plays a role in the redox regulation of intracellular signalling pathways controlling, among others, cell proliferation and apoptosis. The aim of the present study was to determine whether TrxR1 is involved in the regulation of cell migration. Results. Stably transfected HEK‐293 (human embryonic kidney) cells which overexpress cytosolic TrxR1 (HEK‐TrxR15 and HEK‐TrxR11 cells) were used in the present study. We found that the stimulation of cell motility induced by PKC (protein kinase C) activators, PMA and DPhT (diphenyltin), was inhibited significantly in the HEK‐TrxR15 and HEK‐TrxR11 cells compared with control cells. The overexpression of TrxR1 also inhibited characteristic morphological changes and reorganization of the F‐actin cytoskeleton induced by PMA and DPhT. In addition, the selective activation of PKCδ by DPhT was inhibited in cells that overexpressed cytosolic TrxR1. Furthermore, rottlerin, a selective inhibitor of PKCδ, and PKCδ siRNA (small interfering RNA), suppressed the morphological changes induced by DPhT in the control cells. Conclusions. The overexpression of TrxR1 inhibits migration of HEK‐293 cells stimulated with PMA and DPhT. Moreover, our observations suggest that this effect is mediated by the inhibition of PKCδ activation.  相似文献   

6.
Increasing hypoxia tolerance in mammalian cells is potentially of major importance, but it has not been feasible thus far. The disaccharide trehalose, which accumulates dramatically during heat shock, enhances thermotolerance and reduces aggregation of denatured proteins. Previous studies from our laboratory showed that over-expression of Drosophila trehalose-phosphate synthase (dtps1) increases the trehalose level and anoxia tolerance in flies. To determine whether trehalose can protect against anoxic injury in mammalian cells, we transfected the dtps1 gene into human HEK-293 cells using the recombinant plasmid pcDNA3.1(-)-dtps1 and obtained more than 20 stable cell strains. Glucose starvation in culture showed that HEK-293 cells transfected with pcDNA3.1(-)-dtps1 (HEK-dtps1) do not metabolize intracellular trehalose, and, interestingly, these cells accumulated intracellular trehalose during hypoxic exposure. In contrast to HEK-293 cells transfected with pcDNA3.1(-) (HEK-v), cells with trehalose were more resistant to low oxygen stress (1% O2). To elucidate how trehalose protects cells from anoxic injury, we assayed protein solubility and the amount of ubiquitinated proteins. There was three times more insoluble protein in HEK-v than in HEK-dtps1 after 3 days of exposure to low O2. The amount of Na+-K+ ATPase present in the insoluble proteins dramatically increased in HEK-v cells after 2 and 3 days of exposure, whereas there was no significant change in HEK-dtps1 cells. Ubiquitinated proteins increased dramatically in HEK-v cells after 2 and 3 days of exposure but not in HEK-dtps1 cells over the same period. Our results indicate that increased trehalose in mammalian cells following transfection by the Drosophila tps1 gene protects cells from hypoxic injury. The mechanism of this protection is likely related to a decrease in protein denaturation, through protein-trehalose interactions, resulting in enhanced cellular recovery from hypoxic stress.  相似文献   

7.
Malignant tumors are characterized by dysregulated cell growth and the metastasis of secondary tumors. Numerous studies have documented that osteopontin (OPN) plays a key role in regulating tumor progression and metastasis. Here, we show that the overexpression of OPN in human embryo kidney-293 cells significantly increases both the level of cell proliferation, by provoking the G1/S transition, and the level of cell migration in vitro. These findings suggest that augmented OPN contributes to cell growth and motility. Inhibiting OPN or the pathway it stimulates may therefore represent a novel approach for the treatment of primary tumors and associated metastases.  相似文献   

8.
Agonist-sensitive intracellular Ca2+ stores may be heterogeneous and exhibit distinct functional features. We have studied the properties of intracellular Ca2+ stores using targeted aequorins for selective measurements in different subcellular compartments. Both, HEK-293T [HEK (human embryonic kidney)-293 cells expressing the large T-antigen of SV40 (simian virus 40)] and HeLa cells accumulated Ca2+ into the ER (endoplasmic reticulum) to near millimolar concentrations and the IP3-generating agonists, carbachol and ATP, mobilized this Ca2+ pool. We find in HEK-293T, but not in HeLa cells, a distinct agonist-releasable Ca2+ pool insensitive to the SERCA (sarco/endoplasmic reticulum Ca2+ ATPase) inhibitor TBH [2,5-di-(t-butyl)-benzohydroquinone]. TG (thapsigargin) and CPA (cyclopiazonic acid) completely emptied this pool, whereas lysosomal disruption or manoeuvres collapsing endomembrane pH gradients did not. Our results indicate that SERCA3d is important for filling the TBH-resistant store as: (i) SERCA3d is more abundant in HEK-293T than in HeLa cells; (ii) the SERCA 3 ATPase activity of HEK-293T cells is not fully blocked by TBH; and (iii) the expression of SERCA3d in HeLa cells generated a TBH-resistant agonist-mobilizable compartment in the ER. Therefore the distribution of SERCA isoforms may originate the heterogeneity of the ER Ca2+ stores and this may be the basis for store specialization in diverse functions. This adds to recent evidence indicating that SERCA3 isoforms may subserve important physiological and pathophysiological mechanisms.  相似文献   

9.
The activity of native L-type Ca channels can be facilitated by strong depolarizations. The cardiac Ca channel alpha(1C)-subunit was transiently expressed in human embryonic kidney (HEK-293) cells, but these channels did not exhibit voltage-dependent facilitation. Coexpression of the Ca channel beta(1a)- or beta(2a)-subunit with the alpha(1C)-subunit enabled voltage-dependent facilitation in 40% of cells tested. The onset of facilitation in alpha(1C) + beta(1a)-expressing HEK-293 cells was rapid after a depolarization to +100 mV (tau = 7.0 ms). The kinetic features of the facilitated currents were comparable to those observed for voltage-dependent relief of G protein inhibition demonstrated for many neuronal Ca channels; however, intracellular dialysis with guanosine 5'-O-(2-thiodiphosphate) and guanosine 5'-O-(3-thiotriphosphate) in the patch pipette had no effect on facilitation. Stimulation of G protein-coupled receptors, either endogenous (somatostatin receptors) or coexpressed (adenosine A(1) receptors), did not affect voltage-dependent facilitation. These results indicate that the cardiac Ca channel alpha(1C)-subunit can exhibit voltage-dependent facilitation in HEK-293 cells only when coexpressed with an auxiliary beta-subunit and that this facilitation is independent of G protein pathways.  相似文献   

10.
The role of T-type calcium currents is rarely considered in the extensive literature covering the mechanisms of long-term synaptic plasticity. This situation reflects the lack of suitable T-type channel antagonists that till recently has hampered investigations of the functional roles of these channels. However, with the development of new pharmacological and genetic tools, a clear involvement of T-type channels in synaptic plasticity is starting to emerge. Here, we review a number of studies showing that T-type channels participate to numerous homo- and hetero-synaptic plasticity mechanisms that involve different molecular partners and both pre- and post-synaptic modifications. The existence of T-channel dependent and independent plasticity at the same synapse strongly suggests a subcellular localization of these channels and their partners that allows specific interactions. Moreover, we illustrate the functional importance of T-channel dependent synaptic plasticity in neocortex and thalamus.  相似文献   

11.
To investigate the effect of cell-to-cell variation in store-operated calcium entry (SOCE) on the evaluation of data from stable cell clones selected following gene transfection, we measured SOCE in 2700 individual HEK-293 cells from the parent population and in 1900 individual cells from a clonal subpopulation of HEK-293 cells. We applied statistical resampling techniques to model conditions where one would compare the average SOCE in n control clones to the average SOCE in n experimental clones (n = 1-200). For an overexpression experiment with n = 1, there is a 27% chance of observing a 100% or higher difference in SOCE between clones, with n = 10 there is a 34% probability of observing a 20% or greater difference in SOCE, and with n = 100, there is less than a 10% chance of seeing a 10% or greater difference in SOCE, based solely on random selection of clones from the parent HEK-293 cell population. To assure that the degree of cell-to-cell variation was predictive of the degree of clone-to-clone variation, we measured SOCE in 270 clones, each arising from a single cell, and found the variation to be very similar to that observed for individual cells.  相似文献   

12.
Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer’s disease. However, its physiological function remains elusive. Cu2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu2+ reduction and 64Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu2+ ions. Moreover, wild-type cells exposed to both Cu2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu2+ reductase activity and increased 64Cu uptake. We conclude that Cu2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.  相似文献   

13.
Molecular characterization of T-type calcium channels   总被引:6,自引:0,他引:6  
Molecular cloning of the low voltage-gated, T-type, calcium channel family opened new avenues of research into their structure-function, distribution, pharmacology, and regulation. Cloning of mammalian cDNAs led to the identification of three T-channel genes: CACNA1G, encoding Cav3.1; CACNA1H, encoding Cav3.2; and CACNA1I, encoding Cav3.3. This allowed sequencing of these genes in absence epilepsy patients, and the identification of single nucleotide polymorphisms (SNPs) that alter channel activity. Their distribution in thalamic nuclei, coupled with the physiological role they play in thalamic oscillations, leads to the conclusion that SNPs in T-channel genes may contribute to neurological disorders characterized by thalamocortical dysrhythmia, such as generalized epilepsy. This section reviews the structure of T-channels, how splicing affects structure and function, how SNPs alter channel activity, and how high voltage-activated auxiliary subunits affect T-channels.  相似文献   

14.
Aldosterone regulation of T-type calcium channels   总被引:1,自引:0,他引:1  
Voltage-operated calcium channels play a crucial role in signal transduction in many excitable and non-excitable cell types. While a rapid modulation of their activity by hormone-activated kinases and/or G proteins has been recognized for a long time, a sustained control of their expression level has been only recently demonstrated. In adrenal H295R cells, for example, aldosterone treatment selectively increased low threshold T-type calcium current density without affecting L-type currents. Antagonizing the mineralocorticoid receptor (MR) with spironolactone prevented aldosterone action on T-type currents. By RT-PCR, we detected in these cells the presence of two different isoforms of L-type channels, alpha(1)C and alpha(1)D, and one isoform of T channel, alpha(1)H. A second T channel isoform (alpha(1)G) was also observed under particular culture conditions. Quantification of the specific messenger RNA by real time RT-PCR allowed us to show a 40% increase of the alpha1H messenger levels upon aldosterone treatment (alpha(1)G was insensitive), a response that was also completely prevented by spironolactone. Because T-type, but not L-type channel activity is linked to steroidogenesis, this modulation represents a positive, intracrine feed back mechanism exerted by aldosterone on its own production.Aldosterone has been also implicated in the pathogenesis and progression of ventricular hypertrophy and heart failure independently of its action on arterial blood pressure. We have observed that, in rat neonatal cardiomyocytes, aldosterone increases (by two-fold) L-type calcium current amplitude in ventricular but not in atrial cells. No significant effect of aldosterone could be detected on T-type currents, that were much smaller than L-type currents in these cells. However, aldosterone exerted opposite effects on T channel isoform expression, increasing alpha(1)H and decreasing alpha(1)G. Although the functional role of T channels is still poorly defined in ventricular cardiomyocytes, an overexpression of alpha(1)H could be partially responsible for the arrhythmias linked to hyperaldosteronism.Finally, T channels also appear to be involved in the neuroendocrine differentiation of prostate epithelial cells, a poor prognosis in prostate cancer. We have shown that the only calcium channel expressed in the prostatic LNCaP cells is the alpha(1)H isoform and that induction of cell differentiation with cAMP leads to a concomitant increase in both T-type current and alpha(1)H mRNA. In spite of the presence of MR in these cells, aldosterone only modestly increased alpha(1)H mRNA levels. A functional role for these channels was suggested by the observation that low nickel concentrations prevent neuritic process outgrowth.In conclusion, it appears that T-type calcium channel expression vary in different patho-physiological conditions and that aldosterone, in several cell types, is able to modulate this expression.  相似文献   

15.
16.
A humanized clone containing the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase (otsA/B) has been constructed. Using the Gateway Cloning System (Invitrogen, Inc.), the otsA/B genes have been placed under the control of the CMV promoter (pEXPcmv-otsA/B) or the CMV promoter and the tet operator (pEXP cmv TetO-otsA/B). The pEXPcmv-otsA/B clone has been introduced into 293H cells using LIPOFECTAMINE 2000 and the intracellular concentration of trehalose has been evaluated. The 293H cells accumulate 4-5 microg trehalose/mg dry weight and this concentration increases to 7-10 microg trehalose/mg dry weight if trehalose is included in the growth medium. The pEXPcmv TetO-otsA/B clone has been transfected into 293FTetR:Hyg cells which contain the tet repressor integrated into the genome. When these transfected cells are grown in the absence of tetracycline, no intracellular trehalose is detected. Inclusion of 0.3 microg/ml tetracycline in the growth medium results in the accumulation of 11-14 microg trehalose/mg dry weight, a value which increases to 19-20 microg trehalose/mg dry weight if trehalose is included in the growth medium. The data for the 293FTetR:Hyg cells indicate that intracellular trehalose accumulates in response to the addition of tetracycline. This system will allow us to manipulate the intracellular concentration of trehalose and to evaluate the desiccation tolerance of these cells as a function of intracellular trehalose concentration.  相似文献   

17.
18.
Mechanism of gating of T-type calcium channels   总被引:10,自引:2,他引:10       下载免费PDF全文
We have analyzed the gating kinetics of T-type Ca channels in 3T3 fibroblasts. Our results show that channel closing, inactivation, and recovery from inactivation each include a voltage-independent step which becomes rate limiting at extreme potentials. The data require a cyclic model with a minimum of two closed, one open, and two inactivated states. Such a model can produce good fits to our data even if the transitions between closed states are the only voltage-dependent steps in the activating pathway leading from closed to inactivated states. Our analysis suggests that the channel inactivation step, as well as the direct opening and closing transitions, are not intrinsically voltage sensitive. Single-channel recordings are consistent with this scheme. As expected, each channel produces a single burst per opening and then inactivates. Comparison of the kinetics of T-type Ca current in fibroblasts and neuronal cells reveals significant differences which suggest that different subtypes of T-type Ca channels are expressed differentially in a tissue specific manner.  相似文献   

19.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P Ca/P Na ∼ 21) than Cav3.1 and Cav3.2 (P Ca/P Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations. Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006.  相似文献   

20.
There is an imperative need for expression systems allowing the efficient and robust manufacturing of high quality glycoproteins. In the present work, HEK-293 cells stably expressing interferon-α2b were further engineered with the insertion of the yeast pyruvate carboxylase 2 gene. In batch cultures, marked reductions in lactate and ammonia production were observed compared to the parental cell clone. Although the maximum specific growth rate remained unchanged, the altered metabolism led to a 2-fold increase in maximum cell density and 33% increase in the integral of viable cell concentration and interferon production yield. The underlying metabolic changes were further investigated using various 13C-labeled substrates and measuring the resulting lactate mass isotopomer distributions. Simultaneous metabolite and isotopomer balancing allowed the accurate determination of key intracellular fluxes. Such detailed and quantitative knowledge about the central carbon metabolism of the cells is instrumental to further support the development of high-yield fed-batch processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号