首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ankyrins are spectrin-binding proteins that associate via ANK repeats with a variety of ion channels/pumps, calcium release channels and cell adhesion molecules. Recent studies in mice indicate that ankyrins have a physiological role in restricting voltage-gated sodium channels and members of the L1 CAM family of cell adhesion molecules to excitable membranes in the central nervous system and in targeting calcium-release channels to the calcium homeostasis compartment of striated muscle.  相似文献   

2.
This report describes initial characterization of the binding sites of ankyrin for spectrin and the anion exchanger using defined subfragments isolated from purified ankyrin domains. The spectrin-binding domain of ankyrin is comprised of two subdomains: an acidic, proline-rich region (pI = 4) involving the amino-terminal 80 residues from 828 to 908 and a basic region (pI = 8.8) that extends from 898 to 1386. The amino-terminal 70 amino acids of the spectrin-binding domain are critical for association with spectrin, since a subfragment missing this region is only 5% as active as the intact domain in displacing binding of spectrin to inside-out membrane vesicles, while deletion of the first 38 residues of the acidic domain results in a 10-fold reduction in activity. The anion exchanger-binding site is confined to an 89-kDa domain that was isolated and characterized as a globular molecule with approximately 30% alpha-helical configuration. A subfragment of the 89-kDa domain extending from residues 403 to 779 (or possibly 740) retains ability to associate with the anion exchanger. The 89-kDa domain is comprised of a series of tandem repeats of 33 amino acids that extend from residues 35 to 778 (Lux, S., John, K., and Bennett, V. (1990) Nature 344, 36-42). The activity of residues 403-779 demonstrates that the 33-amino acid repeats of the 89-kDa domain are responsible for association between ankyrin and the anion exchanger. The 33-amino acid repeating sequence of ankyrin represents an ancient motif also found in proteins of Drosophila, yeast, and Caenor habditis elegans. The finding that the 33-amino acid repeating sequence is involved in interaction with the anion exchanger implies that this motif may perform a role in molecular recognition in diverse proteins.  相似文献   

3.
This report demonstrates that the high affinity binding of ankyrin to two well characterized ankyrin-binding proteins, the erythrocyte anion exchanger and kidney Na+K(+)-ATPase, requires interaction of these proteins with unique sites on the ankyrin molecule. Binding of 125I-labeled erythrocyte ankyrin and ankyrin proteolytic domains was measured to the anion exchanger and Na+K(+)-ATPase incorporated into phosphatidylcholine liposomes. 125I-Labeled ankyrin associated with both anion exchanger and Na+K(+)-ATPase liposomes with a high affinity (KD ranging from 10 to 25 nM), and a capacity approaching 1 mol of ankyrin/2 mol of ATPase and 1 mol of ankyrin/8 mol of anion exchanger. The 43 kDa cytoplasmic domain of the erythrocyte anion exchanger inhibited binding of ankyrin to both the anion exchanger and Na+K(+)-ATPase liposomes with a 50% reduction at approximately 90 nM for both proteins. Further binding experiments using proteolytic domains derived from ankyrin demonstrated the following differences between the anion exchanger and Na+K(+)-ATPase in interactions with ankyrin: 1) 125I-Labeled Na+K(+)-ATPase associated with both the 89-kDa domain as well as the spectrin binding domain of ankyrin, while the anion exchanger only associated with the 89-kDa domain. 2) The 125I-labeled 89-kDa domain of ankyrin associated with Na+K(+)-ATPase liposomes with at least a 20-fold lower affinity compared with intact ankyrin while this domain associated with the anion exchanger with a 2-3-fold increase in affinity compared with intact ankyrin. 3) The 125I-labeled spectrin-binding domain of ankyrin associated with the Na+K(+)-ATPase liposomes to at least an 8-fold greater extent than to anion exchanger liposomes. The data are consistent with an independent acquisition of high affinity ankyrin binding activity for the anion exchanger and Na+K(+)-ATPase proteins through a convergent evolutionary process.  相似文献   

4.
Regulation of Cl/HCO3 exchange in gastric parietal cells.   总被引:2,自引:0,他引:2       下载免费PDF全文
Microspectrofluorimetry of the fluorescent indicators 2',7'-bis-(2-carboxyethyl)-5(and-6)carboxyfluorescein and 6-methoxy-N-(3-sulfopropyl)-quinolinium was used to measure intracellular pH (pHi), intracellular Cl (Cli), and transmembrane fluxes of HCO3 and Cl in single parietal cells (PC) in isolated rabbit gastric glands incubated in HCO3/CO2-buffered solutions. Steady-state pHi was 7.2 in both resting (50 microM cimetidine) and stimulated (100 microM histamine) PCs. Transmembrane anion (HCO3 or Cl) flux rates during Cl removal from or readdition to the perfusate were the same in resting and stimulated PCs. These rates increased at alkaline pHi, though this pHi dependence was small in the physiological range. Maximum velocity (Vmax) for Cl influx or HCO3 efflux was 80-110 mM/min at pHi 7.6-7.8, and the Km for extracellular concentrations of Cl (Clo) was 25 mM; in the physiological range (pHi 7.1-7.3), Vmax for anion fluxes was approximately 50 mM/min. Steady-state Cli in the unstimulated PC was 62 +/- 5 mM, but on histamine stimulation, Cli decreased rapidly to 25 mM and then increased back to a steady-state level of 44 mM. HCO3 fluxes due to Cl removal or readdition were completely blocked by 0.5 mM 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid (H2DIDS), but Cl fluxes were only inhibited by 80%. H2DIDS did not inhibit the decrease in Cli that occurred with histamine treatment. Diphenylamine carboxylate (0.5 mM) inhibited Cl flux by only 50% and caused no additional inhibition of Cl flux when used in conjunction with H2DIDS. Transmembrane anion fluxes during solution Cl removal or readdition occurred 80% through the anion exchanger at the basal membrane and 20% through other pathway(s), presumably the Cl channel in the apical membrane. We conclude that the increase in transport activity via the Cl/HCO3 exchanger that occurs during histamine-induced increases in HCl secretion is due mostly to the decrease in Cli. In the resting cell with Cli = 62 mM, Clo = 120 mM, pHi = 7.2, and extracellular pH = 7.4, the anion exchanger is poised near its thermodynamic equilibrium. During histamine stimulation Cli drops from 62 mM to 44 mM, the thermodynamic equilibrium of the anion exchanger at the basolateral membrane is disturbed, and the anion exchanger then exchanges cellular HCO3 for extracellular Cl. Cli serves a crucial regulatory role in stimulus-secretion coupling in the PC.  相似文献   

5.
PINCH is a widely expressed and evolutionarily conserved protein comprising primarily five LIM domains, which are cysteine-rich consensus sequences implicated in mediating protein-protein interactions. We report here that PINCH is a binding protein for integrin-linked kinase (ILK), an intracellular serine/threonine protein kinase that plays important roles in the cell adhesion, growth factor, and Wnt signaling pathways. The interaction between ILK and PINCH has been consistently observed under a variety of experimental conditions. They have interacted in yeast two-hybrid assays, in solution, and in solid-phase-based binding assays. Furthermore, ILK, but not vinculin or focal adhesion kinase, has been coisolated with PINCH from mammalian cells by immunoaffinity chromatography, indicating that PINCH and ILK associate with each other in vivo. The PINCH-ILK interaction is mediated by the N-terminal-most LIM domain (LIM1, residues 1 to 70) of PINCH and multiple ankyrin (ANK) repeats located within the N-terminal domain (residues 1 to 163) of ILK. Additionally, biochemical studies indicate that ILK, through the interaction with PINCH, is capable of forming a ternary complex with Nck-2, an SH2/SH3-containing adapter protein implicated in growth factor receptor kinase and small GTPase signaling pathways. Finally, we have found that PINCH is concentrated in peripheral ruffles of cells spreading on fibronectin and have detected clusters of PINCH that are colocalized with the alpha5beta1 integrins. These results demonstrate a specific protein recognition mechanism utilizing a specific LIM domain and multiple ANK repeats and suggest that PINCH functions as an adapter protein connecting ILK and the integrins with components of growth factor receptor kinase and small GTPase signaling pathways.  相似文献   

6.
7.
Cl(-) influx across the basolateral membrane is a limiting step in fluid production in exocrine cells and often involves functionally linked Cl(-)/HCO(3)(-) (Ae) and Na(+)/H(+) (Nhe) exchange mechanisms. The dependence of this major Cl(-) uptake pathway on Na(+)/H(+) exchanger expression was examined in the parotid acinar cells of Nhe1(-/-) and Nhe2(-/-) mice, both of which exhibited impaired fluid secretion. No change in Cl(-)/HCO(3)(-) exchanger activity was detected in Nhe2-deficient mice. Conversely, Cl(-)/HCO(3)(-) exchanger activity increased nearly 4-fold in Nhe1-deficient mice, despite only minimal or any change in mRNA and protein levels of the anion exchanger Ae2. Acetazolamide completely blocked the increase in Cl(-)/HCO(3)(-) exchanger activity in Nhe1-null mice suggesting that increased anion exchange required carbonic anhydrase activity. Indeed, the parotid glands of Nhe1(-/-) mice expressed higher levels of carbonic anhydrase 2 (Car2) polypeptide. Moreover, the enhanced Cl(-)/HCO(3)(-) exchange activity was accompanied by an increased abundance of Car2.Ae2 complexes in the parotid plasma membranes of Nhe1(-/-) mice. Anion exchanger activity was also significantly reduced in Car2-deficient mice, consistent with an important role of a putative Car2.Ae2 HCO(3)(-) transport metabolon in parotid exocrine cell function. Increased abundance of this HCO(3)(-) transport metabolon is likely one of the multiple compensatory changes in the exocrine parotid gland of Nhe1(-/-) mice that together attenuate the severity of in vivo electrolyte and acid-base balance perturbations.  相似文献   

8.
Conventional ankyrins are cortical cytoskeletal proteins that form an ankyrin-spectrin meshwork underlying the plasma membrane. We report here the unusual structure of a novel ankyrin (AO13 ankyrin, 775,369 Da, 6994 aa, pI = 4.45) that is required for proper axonal guidance in Caenorhabditis elegans. AO13 ankyrin contains the ANK repeat and spectrin-binding domains found in other ankyrins, but differs from all others in that the acidic carboxyl region contains six blocks of serine/threonine/glutamic acid/proline rich (STEP) repeats separated by seven hydrophobic domains. The STEP repeat blocks are composed primarily of sequences related to ETTTTTTVTREHFEPED(E/D)X(n)VVESEEYSASGSPVPSE (E/K)DVE(H/R)VI, and the hydrophobic domains contain sequences related to PESGEESDGEGFGSKVLGFAKK[AGMVAGGVVAAPVALAAVGA]KAAYDALKKDDDEE, which includes a potential transmembrane domain (in brackets). Recombinant protein fragments of AO13 ankyrin were used to prepare polyclonal antisera against the spectrin-binding domain (AO271 Ab), the conventional ankyrin regulatory domain (AO280 Ab), the AO13 ankyrin STEP domain (AO346 Ab), the AO13 ankyrin STEP + hydrophobic domain (AO289 Ab), and against two carboxyl terminal domain fragments (AO263 Ab and AO327 Ab). Western blot analysis with these Ab probes demonstrated multiple protein isoforms. By immunofluorescence microscopy, the antispectrin-binding and regulatory domain (AO271 and AO280) antibodies recognized many cell types, including neurons, and stained the junctions between cells. The AO13 ankyrin-specific (AO289 and AO346) antibodies showed a neurally restricted pattern, staining nerve processes and the periphery of neural cell bodies. These results are consistent with a role for AO13 ankyrin in neural development.  相似文献   

9.
In most HCO(3)(-)-secreting epithelial tissues, SLC26 Cl(-)/HCO(3)(-) transporters work in concert with the cystic fibrosis transmembrane conductance regulator (CFTR) to regulate the magnitude and composition of the secreted fluid, a process that is vital for normal tissue function. By contrast, CFTR is regarded as the only exit pathway for HCO(3)(-) in the airways. Here we show that Cl(-)/HCO(3)(-) anion exchange makes a major contribution to transcellular HCO(3)(-) transport in airway serous cells. Real-time measurement of intracellular pH from polarized cultures of human Calu-3 cells demonstrated cAMP/PKA-activated Cl(-)-dependent HCO(3)(-) transport across the luminal membrane via CFTR-dependent coupled Cl(-)/HCO(3)(-) anion exchange. The pharmacological and functional profile of the luminal anion exchanger was consistent with SLC26A4 (pendrin), which was shown to be expressed by quantitative RT-PCR, Western blot, and immunofluorescence. Pendrin-mediated anion exchange activity was confirmed by shRNA pendrin knockdown (KD), which markedly reduced cAMP-activated Cl(-)/HCO(3)(-) exchange. To establish the relative roles of CFTR and pendrin in net HCO(3)(-) secretion, transepithelial liquid secretion rate and liquid pH were measured in wild type, pendrin KD, and CFTR KD cells. cAMP/PKA increased the rate and pH of the secreted fluid. Inhibiting CFTR reduced the rate of liquid secretion but not the pH, whereas decreasing pendrin activity lowered pH with little effect on volume. These results establish that CFTR predominately controls the rate of liquid secretion, whereas pendrin regulates the composition of the secreted fluid and identifies a critical role for this anion exchanger in transcellular HCO(3)(-) secretion in airway serous cells.  相似文献   

10.
The nature of the intracellular pH-regulatory mechanism after imposition of an alkaline load was investigated in isolated human peripheral blood neutrophils. Cells were alkalinized by removal of a DMO prepulse. The major part of the recovery could be ascribed to a Cl-/HCO3- counter-transport system: specifically, a one-for-one exchange of external Cl- for internal HCO3-. This exchange mechanism was sensitive to competitive inhibition by the cinnamate derivative UK-5099 (Ki approximately 1 microM). The half-saturation constants for binding of HCO3- and Cl- to the external translocation site of the carrier were approximately 2.5 and approximately 5.0 mM. In addition, other halides and lyotropic anions could substitute for external Cl-. These ions interacted with the exchanger in a sequence of decreasing affinities: HCO3- greater than Cl approximately NO3- approximately Br greater than I- approximately SCN- greater than PAH-. Glucuronate and SO4(2-) lacked any appreciable affinity. This rank order is reminiscent of the selectivity sequence for the principal anion exchanger in resting cells. Cl- and HCO3- displayed competition kinetics at both the internal and external binding sites of the carrier. Finally, evidence compatible with the existence of an approximately fourfold asymmetry (Michaelis constants inside greater than outside) between inward- and outward-facing states is presented. These results imply that a Cl-/HCO3- exchange mechanism, which displays several properties in common with the classical inorganic anion exchanger of erythrocytes, is primarily responsible for restoring the pHi of human neutrophils to its normal resting value after alkalinization.  相似文献   

11.
Erythrocyte ankyrin contains an 89-kDa domain (residues 2-827) comprised almost entirely of 22 tandem repeats of 33 amino acids which are responsible for the high affinity interaction of ankyrin with the anion exchanger (Davis, L., and Bennett, V. (1990) J. Biol. Chem. 265, 10589-10596). The question of whether the repeats are equivalent with respect to binding to the anion exchanger was addressed using defined regions of erythrocyte and brain ankyrins expressed in bacteria. The conclusion is that the repeats are not interchangeable and that the 44 residues from 722 to 765 are essential for high affinity binding between erythrocyte ankyrin and the anion exchanger. Residues 348-765 were active whereas a polypeptide of the same size (residues 305-721) but missing the 44 residues was not active. The difference between the active and inactive polypeptides was not caused by the degree of folding based on circular dichroism spectra. The 44 residues from 722 to 765 were not sufficient for binding since deletions of residues from 348 to 568 resulted in a 10-fold loss of activity. However, the role of residues 348-568 may be at the level of folding rather than a direct contact since the deleted sequences were not active in the absence of 722-765 and since circular dichroism spectra revealed significant loss of structure in the smaller polypeptides. Further evidence that the 33-residue repeats are not equivalent in ability to bind to the anion exchanger is that a region of human brain ankyrin containing 18 33-residue repeats with 67% overall sequence identity to erythrocyte ankyrin was 8-fold less active than a region of erythrocyte ankyrin containing only 12 repeats. The fact that the anion exchanger binds to certain repeats suggests that the other 33-amino acid repeats could interact with proteins distinct from the anion exchanger and provide ankyrin with the potential for considerable diversity in association with membrane proteins as well as cytoplasmic proteins. Tubulin was identified as one example of a protein that can interact with ankyrin repeats that are not recognized by the anion exchanger.  相似文献   

12.
Measurements of cytosolic pH (pHi) 36Cl fluxes and free cytosolic Ca2+ concentration ([Ca2+]i) were performed in the clonal osteosarcoma cell line UMR-106 to characterize the kinetic properties of Cl-/HCO3- (OH-) exchange and its regulation by pHi and [Ca2+]i. Suspending cells in Cl(-)-free medium resulted in rapid cytosolic alkalinization from pHi 7.05 to approximately 7.42. Subsequently, the cytosol acidified to pHi 7.31. Extracellular HCO3- increased the rate and extent of cytosolic alkalinization and prevented the secondary acidification. Suspending alkalinized and Cl(-)-depleted cells in Cl(-)-containing solutions resulted in cytosolic acidification. All these pHi changes were inhibited by 4',4',-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) and H2DIDS, and were not affected by manipulation of the membrane potential. The pattern of extracellular Cl- dependency of the exchange process suggests that Cl- ions interact with a single saturable external site and HCO3- (OH-) complete with Cl- for binding to this site. The dependencies of both net anion exchange and Cl- self-exchange fluxes on pHi did not follow simple saturation kinetics. These findings suggest that the anion exchanger is regulated by intracellular HCO3- (OH-). A rise in [Ca2+]i, whether induced by stimulation of protein kinase C-activated Ca2+ channels, Ca2+ ionophore, or depolarization of the plasma membrane, resulted in cytosolic acidification with subsequent recovery from acidification. The Ca2+-activated acidification required the presence of Cl- in the medium, could be blocked by DIDS, and H2DIDS and was independent of the membrane potential. The subsequent recovery from acidification was absolutely dependent on the initial acidification, required the presence of Na+ in the medium, and was blocked by amiloride. Activation of protein kinase C without a change in [Ca2+]i did not alter pHi. Likewise, in H2DIDS-treated cells and in the absence of Cl-, an increase in [Ca2+]i did not activate the Na+/H+ exchanger in UMR-106 cells. These findings indicate that an increase in [Ca2+]i was sufficient to activate the Cl-/HCO3- exchanger, which results in the acidification of the cytosol. The accumulated H+ in the cytosol activated the Na+/H+ exchanger. Kinetic analysis of the anion exchange showed that at saturating intracellular OH-, a [Ca2+]i increase did not modify the properties of the extracellular site. A rise in [Ca2+]i increased the apparent affinity for intracellular OH- (or HCO3-) of both net anion and Cl- self exchange. These results indicate that [Ca2+]i modifies the interaction of intracellular OH- (or HCO3-) with the proposed regulatory site of the anion exchanger in UMR-106 cells.  相似文献   

13.
The electroneutral Na(+)-driven Cl-HCO3 exchanger is a key mechanism for regulating intracellular pH (pH(i)) in neurons, glia, and other cells. Here we report the cloning, tissue distribution, chromosomal location, and functional characterization of the cDNA of such a transporter (NDCBE1) from human brain (GenBank accession number AF069512). NDCBE1, which encodes 1044 amino acids, is 34% identical to the mammalian anion exchanger (AE2); approximately 50% to the electrogenic Na/HCO3 cotransporter (NBCe1) from salamander, rat, and humans; approximately 73% to mammalian electroneutral Na/HCO3 cotransporters (NBCn1); 71% to mouse NCBE; and 47% to a Na(+)-driven anion exchanger (NDAE1) from Drosophila. Northern blot analysis of NDCBE1 shows a robust approximately 12-kilobase signal in all major regions of human brain and in testis, and weaker signals in kidney and ovary. This human gene (SLC4A8) maps to chromosome 12q13. When expressed in Xenopus oocytes and running in the forward direction, NDCBE1 is electroneutral and mediates increases in both pH(i) and [Na(+)](i) (monitored with microelectrodes) that require HCO3(-) and are blocked by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). The pH(i) increase also requires extracellular Na(+). The Na(+):HCO3(-) stoichiometry is 1:2. Forward-running NDCBE1 mediates a 36Cl efflux that requires extracellular Na(+) and HCO3(-) and is blocked by DIDS. Running in reverse, NDCBE1 requires extracellular Cl(-). Thus, NDCBE1 encodes a human, electroneutral Na(+)-driven Cl-HCO3 exchanger.  相似文献   

14.
Basal HCO(3)(-) secretion across the duodenum has been shown in several species to principally involve the activity of apical membrane Cl(-)/HCO(3)(-) exchanger(s). To investigate the identity of relevant anion exchanger(s), experiments were performed using wild-type (WT) mice and mice with gene-targeted deletion of the following Cl(-)/HCO(3)(-) exchangers localized to the apical membrane of murine duodenal villi: Slc26a3 [down-regulated in adenoma (DRA)], Slc26a6 [putative anion transporter 1 (PAT-1)], and Slc4a9 [anion exchanger 4 (AE4)]. RT-PCR of the isolated villous epithelium demonstrated PAT-1, DRA, and AE4 mRNA expression. Using the pH-sensitive dye BCECF, anion exchange rates were measured across the apical membrane of epithelial cells in the upper villus of the intact duodenal mucosa. Under basal conditions, Cl(-)/HCO(3)(-) exchange activity was reduced by 65-80% in the PAT-1(-) duodenum, 30-40% in the DRA(-) duodenum, and <5% in the AE4(-) duodenum compared with the WT duodenum. SO(4)(2-)/HCO(3)(-) exchange was eliminated in the PAT-1(-) duodenum but was not affected in the DRA(-) and AE4(-) duodenum relative to the WT duodenum. Intracellular pH (pH(i)) was reduced in the PAT-1(-) villous epithelium but increased to WT levels in the absence of CO(2)/HCO(3)(-) or during methazolamide treatment. Further experiments under physiological conditions indicated active pH(i) compensation in the PAT-1(-) villous epithelium by combined activities of Na(+)/H(+) exchanger 1 and Cl(-)-dependent transport processes at the basolateral membrane. We conclude that 1) PAT-1 is the major contributor to basal Cl(-)/HCO(3)(-) and SO(4)(2-)/HCO(3)(-) exchange across the apical membrane and 2) PAT-1 plays a role in pH(i) regulation in the upper villous epithelium of the murine duodenum.  相似文献   

15.
Regulation of intra- and extracellular ion activities (e.g. H(+), Cl(-), Na(+)) is key to normal function of the central nervous system, digestive tract, respiratory tract, and urinary system. With our cloning of an electrogenic Na(+)/HCO(3)(-) cotransporter (NBC), we found that NBC and the anion exchangers form a bicarbonate transporter superfamily. Functionally three other HCO(3)(-) transporters are known: a neutral Na(+)/ HCO(3)(-) cotransporter, a K(+)/ HCO(3)(-) cotransporter, and a Na(+)-dependent Cl(-)-HCO(3)(-) exchanger. We report the cloning and characterization of a Na(+)-coupled Cl(-)-HCO(3)(-) exchanger and a physiologically unique bicarbonate transporter superfamily member. This Drosophila cDNA encodes a 1030-amino acid membrane protein with both sequence homology and predicted topology similar to the anion exchangers and NBCs. The mRNA is expressed throughout Drosophila development and is prominent in the central nervous system. When expressed in Xenopus oocytes, this membrane protein mediates the transport of Cl(-), Na(+), H(+), and HCO(3)(-) but does not require HCO(3)(-). Transport is blocked by the stilbene 4,4'-diisothiocyanodihydrostilbene- 2, 2'-disulfonates and may not be strictly electroneutral. Our functional data suggest this Na(+) driven anion exchanger (NDAE1) is responsible for the Na(+)-dependent Cl(-)-HCO(3)(-) exchange activity characterized in neurons, kidney, and fibroblasts. NDAE1 may be generally important for fly development, because disruption of this gene is apparently lethal to the Drosophila larva.  相似文献   

16.
Brain membranes contain an actin-binding protein closely related in structure and function to erythrocyte spectrin. The proteins that attach brain spectrin to membranes are not established, but, by analogy with the erythrocyte membrane, may include ankyrin and protein 4.1. In support of this idea, proteins closely related to ankyrin and 4.1 have been purified from brain and have been demonstrated to associate with brain spectrin. Brain ankyrin binds with high affinity to the spectrin beta subunit at the midregion of spectrin tetramers. Brain ankyrin also has binding sites for the cytoplasmic domain of the erythrocyte anion channel (band 3), as well as for tubulin. Ankyrins from brain and erythrocytes have a similar domain structure with protease-resistant domains of Mr = 72,000 that contain spectrin-binding activity, and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel. Brain ankyrin is present at about 100 pmol/mg membrane protein, or about twice the number of copies of spectrum beta chains. Brain ankyrin thus is present in sufficient amounts to attach spectrin to membranes, and it has the potential to attach microtubules to membranes as well as to interconnect microtubules with spectrin-associated actin filaments. Another spectrin-binding protein has been purified from brain membranes, and this protein cross-reacts with erythrocyte 4.1. Brain 4.1 is identical to the membrane protein synapsin, which is one of the brain's major substrates for cAMP-dependent and Ca/calmodulin-dependent protein kinases with equivalent physical properties, immunological cross-reaction, and peptide maps. Synapsin (4.1) is present at about 60 pmol/mg membrane protein, and thus is a logical candidate to regulate certain protein linkages involving spectrin.  相似文献   

17.
Anion exchanger 1 (AE1) is the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes. Carbonic anhydrases (CA) provide substrate for AE1 by catalyzing the reaction, H(2)O + CO(2) ? HCO(3)(-) + H(+). The physical complex of CAII with AE1 has been proposed to maximize anion exchange activity. To examine the effect of CAII catalysis on AE1 transport rate, we fused either CAII-wild type or catalytically inactive CAII-V143Y to the cytoplasmic COOH terminus of AE1 to form AE1.CAII and AE1.CAII-V143Y, respectively. When expressed in transfected human embryonic kidney 293 cells, AE1.CAII had a similar Cl(-)/HCO(3)(-) exchange activity to AE1 alone, as assessed by the flux of H(+) equivalents (87 ± 4% vs. AE1) or rate of change of intracellular Cl(-) concentration (93 ± 4% vs. AE1), suggesting that CAII does not activate AE1. In contrast, AE1.CAII-V143Y displayed transport rates for H(+) equivalents and Cl(-) of 55 ± 2% and of 40 ± 2%, versus AE1. Fusion of CAII to AE1 therefore reduces anion transport activity, but this reduction is compensated for during Cl(-)/HCO(3)(-) exchange by the presence of catalytically active CAII. Overexpression of free CAII-V143Y acts in a dominant negative manner to reduce AE1-mediated HCO(3)(-) transport by displacement of endogenous CAII-wild type from its binding site on AE1. To examine whether AE1.CAII bound endogenous CAII, we coexpressed CAII-V143Y along with AE1 or AE1.CAII. The bicarbonate transport activity of AE1 was inhibited by CAII-V143Y, whereas the activity of AE1.CAII was unaffected by CAII-V143Y, suggesting impaired transport activity upon displacement of functional CAII from AE1 but not AE1.CAII. Taken together, these data suggest that association of functional CAII with AE1 increases Cl(-)/HCO(3)(-) exchange activity, consistent with the HCO(3)(-) transport metabolon model.  相似文献   

18.
19.
胰管细胞以至少6倍浓度差逆向分泌HCO3^-(人体浓度约140mmol/L)。HCO3^-跨顶膜转运的可能机制包括SLC26阴离子转运体的Cl-HCO3^-交换和囊性纤维化跨膜电导调节体(cystic fibrosis transmembrane conductance regulator,cFrR)对HCO3^-的传导扩散。SLC26家族成员介导上皮顶膜Cl^--HCO3^-交换,胰管中检测到SLC26A6和SLC26A3。共表达研究揭示,鼠类slc26a6和slc26a3通过slc26的STAS结构域与CFTR的R结构域相互作用,导致活性互相增强。研究显示这些交换体是产电的:slc26a6介导1Cl^--2HCO3^-交换,slc26a3介导2Cl^--1HCO3^-交换。近期slc26a6^-/-小鼠离体胰管研究显示,slc26a6介导大部分Cl^-依赖的HCO3^-跨顶膜分泌,与slc26a6的产电性一致。然而,因为人体能分泌非常高浓度的HCO3^-,SLC26A6在胰管HCO3^-分泌中的作用并不十分清楚。SLC26A6的作用只能在与人类似能分泌约140mmol/LHCO3^-的物种,如豚鼠中研究。现有的豚鼠研究数据显示,像slc26a6介导的1Cl^--2HCO3^-交换不可能完成这种高浓度差的HCO3^-分泌。另一方面,CFTR的HCO3^-电导性可以在理论上支持HCO3^-逆向分泌。所以,在豚鼠和人胰腺HCO3^-的分泌中,CFTR可能比SLC26A6发挥更大作用。  相似文献   

20.
Both carcinoembryonic antigen (CEA) and neural cell adhesion molecule (NCAM) belong to the immunoglobulin supergene family and have been demonstrated to function as homotypic Ca(++)-independent intercellular adhesion molecules. CEA and NCAM cannot associate heterotypically indicating that they have different binding specificities. To define the domains of CEA involved in homotypic interaction, hybrid cDNAs consisting of various domains from CEA and NCAM were constructed and were transfected into a CHO-derived cell line; stable transfectant clones showing cell surface expression of CEA/NCAM chimeric-proteins were assessed for their adhesive properties by homotypic and heterotypic aggregation assays. The results indicate that all five of the Ig(C)-like domains of NCAM are required for intercellular adhesion while the COOH-terminal domain containing the fibronectin-like repeats is dispensable. The results also show that adhesion mediated by CEA involves binding between the Ig(V)-like amino-terminal domain and one of the Ig(C)-like internal repeat domains: thus while transfectants expressing constructs containing either the N domain or the internal domains alone were incapable of homotypic adhesion, they formed heterotypic aggregates when mixed. Furthermore, peptides consisting of both the N domain and the third internal repeat domain of CEA blocked CEA-mediated cell aggregation, thus providing direct evidence for the involvement of the two domains in adhesion. We therefore propose a novel model for interactions between immunoglobulin supergene family members in which especially strong binding is effected by double reciprocal interactions between the V-like domains and C-like domains of antiparallel CEA molecules on apposing cell surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号