首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Importance of over-dominance as the genetic basis of heterosis in rice   总被引:3,自引:0,他引:3  
In populations derived from commercial hybrid rice combination Shanyou 10, F1 hetero-sis and F2 inbreeding depression were observed on grain yield (GYD) and number of panicles (NP). Using marker loci evenly distributed on the linkage map as fixing factors, the F2 population was divided into sub-populations. In a large number of sub-populations, significant correlations were observed between heterozygosity and GYD, and between heterozygosity and NP. This was especially true in type III sub-populations in which the genotype of a fixing factor was heterozy-gotes. In type III sub-populations, 15 QTL for GYD and 13 QTL for NP were detected, of which the majority exhibited over-dominance effects for increasing the trait values. This study showed that over-dominance played an important role in the genetic control of heterosis in rice.  相似文献   

2.
杂交水稻中超显性效应的分析   总被引:7,自引:1,他引:7  
本文提出亚群体分析法,在二个衍生于杂交稻推广组合的F2群体中,挑选均匀分布于连锁图谱的DNA标记作为固定因子,分别根据每个固定因子的基因型将F2群体分成三类亚群体:母本型(I型)、父本型(II型)和杂合型(III型)。在大量III型亚群体中,杂合度与产量和穗数呈显著正相关。在表现这种相关性的III型亚群体内分析产量QTL和穗数QTL,发现超显性作用是研究组合杂种优势的主要遗传基础。 Abstract:Two F2 populations were each derived from a commercial hybrid and used for identification of genetic factors contributing to heterosis of rice.DNA markers distributing evenly in the linkage maps were selected as fixing factors.The F2 populations were divided into three types of sub-populations based on the genotypes of each fixing factor:maternal type (Type I),paternal type (Type II) and heterozygous type (Type III).In a large number of Type III sub-populations,significant correlations were observed between heterozygosity and grain yield,and between heterozygosity and number of panicle.QTL analysis in Type III sub-populations showing such correlations indicated that over-dominance was the major genetic basis of heterosis in the two crosses.  相似文献   

3.
Using differential display analysis, we assessed the patterns of differential gene expression in hybrids relative to their parents in a diallel cross involving 8 elite rice lines. The analysis revealed several patterns of differential expression including: (1) bands present in one parent and F1 but absent in the other parent, (2) bands observed in both parents but not in the F1, (3) bands occurring in only one parent but not in the F1 or the other parent, and, (4) bands detected only in the F1 but in neither of the parents. Relationships between differential gene expression and heterosis and marker heterozygosity were evaluated using data for RFLPs, SSRs and a number of agronomic characters. The analysis showed that there was very little correlation between patterns of differential expression and the F1 means for all six agronomic traits. Differentially expressed fragments that occurred only in one parent but not in the other parent or in F1 in each of the respective crosses were positively correlated with heterosis and heterozygosity. And conversely, fragments that were detected in F1s but in neither of the respective parents were negatively correlated with heterosis and heterozygosity. The remaining patterns of differential expression were not correlated with heterosis or heterozygosity. The relationships between the patterns of differential expression and heterosis observed in this study were not consistent with expectations based on dominance or overdominance hypotheses.  相似文献   

4.
5.
Hybrid rice has contributed significantly to the dramatic increase of rice production in the world. Despite this, little attention has been given to studying the genetic basis of heterosis in rice. In this paper, we report a diallel analysis of heterosis using two classes of molecular markers: restriction fragment length polymorphisms, (RFLPs) and microsatellites. Eight lines, which represent a significant portion of hybrid rice germ plasm, were crossed in all possible pairs, and the F1s were evaluated for yield and yield component traits in a replicated field trial. The parental lines were surveyed for polymorphisms with 117 RFLP probes and ten microsatellites, resulting in a total of 76 polymorphic markers well-spaced in the rice RFLP map. The results indicated that high level heterosis is common among these crosses: more than 100% midparent and 40% better-parent heterosis were observed in many F1s, including some crosses between maintainer lines. Heterosis was found to be much higher for yield than for yield component traits, which fits a multiplicative model almost perfectly. Between 16 and 30 marker loci (positive markers) detected highly significant effects on yield or its component traits. Heterozygosity was significantly correlated with several attributes of performance and heterosis. Correlations based on positive markers (specific heterozygosity) were large for midparent heterosis of yield and seeds/panicle and also for F1 kernel weight. These large correlations may have practical utility for predicting heterosis.  相似文献   

6.
Molecular divergence and hybrid performance in rice   总被引:42,自引:0,他引:42  
This study was undertaken to determine the relationship between genetic distance of the parents based on molecular markers and F1 performance in a set of diallel crosses involving eight commonly used parental lines in hybrid rice production. The F1s and their parents were measured for five traits including heading date, plant height, straw weight, grain yield and biomass. The parental lines were assayed for DNA polymorphisms using two classes of markers: 140 probes for restriction fragment length polymorphisms (RFLPs) and 12 simple sequence repeats (SSRs), resulting in a total of 105 polymorphic markers well spaced along the 12 rice chromosomes. SSRs detected more polymorphism than RFLPs among the eight lines. A cluster analysis based on marker genotypes separated these eight lines into three groups which agree essentially with the available pedigree information. Correlations were mostly low between general heterozygosity based on all the markers and F1 performance and heterosis. In contrast, very high correlations were detected between midparent heterosis and specific heterozygosity based on the markers that detected significant effects for all the five traits; these correlations may have practical utility in predicting heterosis. The analyses also suggest the existence of two likely heterotic groups in the rice germplasm represented by these eight lines.  相似文献   

7.
Garcia AA  Wang S  Melchinger AE  Zeng ZB 《Genetics》2008,180(3):1707-1724
Despite its importance to agriculture, the genetic basis of heterosis is still not well understood. The main competing hypotheses include dominance, overdominance, and epistasis. NC design III is an experimental design that has been used for estimating the average degree of dominance of quantitative trait loci (QTL) and also for studying heterosis. In this study, we first develop a multiple-interval mapping (MIM) model for design III that provides a platform to estimate the number, genomic positions, augmented additive and dominance effects, and epistatic interactions of QTL. The model can be used for parents with any generation of selfing. We apply the method to two data sets, one for maize and one for rice. Our results show that heterosis in maize is mainly due to dominant gene action, although overdominance of individual QTL could not completely be ruled out due to the mapping resolution and limitations of NC design III. For rice, the estimated QTL dominant effects could not explain the observed heterosis. There is evidence that additive × additive epistatic effects of QTL could be the main cause for the heterosis in rice. The difference in the genetic basis of heterosis seems to be related to open or self pollination of the two species. The MIM model for NC design III is implemented in Windows QTL Cartographer, a freely distributed software.  相似文献   

8.
An essential assumption underlying markerbased prediction of hybrid performance is a strong linear correlation between molecular marker heterozygosity and hybrid performance or heterosis. This study was intended to investigate the extent of the correlations between molecular marker heterozygosity and hybrid performance in crosses involving two sets of rice materials, 9 indica and 11 japonica varieties. These materials represent a broad spectrum of the cultivated rice gene pool including landraces, primitive cultivars, historically important cultivars, modern elite cultivars and parents of superior hybrids. Varieties within each set were intermated in all possible nonreciprocal pairs resulting in 36 crosses in the indica set and 55 in the japonica set. The F1s and their parents, 111 entries in total, were examined for performance of seven traits in a replicated field trial. The parents were surveyed for polymorphisms using 96 RFLP and ten SSR markers selected at regular intervals from a published molecular marker linkage map. Molecular marker genotypes of the F1 hybrids were deduced from the parental genotypes. The analysis showed that, with very few exceptions, correlations in the indica dataset were higher than in that of their japonica counterparts. Among the seven traits analyzed, plant height showed the highest correlation between heterozygosity and hybrid performance and heteorsis in both indica and japonica datasets. Correlations were low to intermediate between hybrid performance and heterozygosity (both general and specific) in yield and yield component traits in both indica and japonica sets, and also low to intermediate between specific heterozygosity and heterosis in the indica set, whereas very little correlation was detected between heterosis and heterozygosity (either general or specific) in the japonica set. In comparison to the results from our previous studies, we concluded that the relationship between molecular marker heterozygosity and heterosis is variable, depending on the genetic materials used in the study, the diversity of rice germplasms and the complexity of the genetic basis of heterosis.  相似文献   

9.
The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F 1 hybrid exhibited 44% heterosis for biomass. Mid-parent heterosis in the RILs ranged from ?31 to 99% for dry weight and from ?58 to 143% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross.  相似文献   

10.
In order to identify quantitative trait loci (QTLs) for leaf senescence and related traits in rice (Oryza sativa L.), we developed two backcross populations, indica/japonica// japonica and indica/japonica//indica, using IR36 as the indica parent and Nekken-2 as the japonica parent. The QTLs were mapped using a set of simple sequence-repeat markers (SSRs) in the BC1F1 population. Senescence was characterized in these plants by measuring the leaf chlorophyll content 25 days after flowering (DAF), the reduction in chlorophyll content (the difference between the chlorophyll content at flowering and at 25 DAF), and the number of late-discoloring leaves per panicle at 25 DAF in five plants from each BC1F2 line. These plants were moved into a temperature-controlled growth cabinet at the time of flowering and allowed to mature under identical conditions. Eleven QTLs were detected in the two populations. The major of QTLs for senescence were found on the short arm of chromosome 6 and on the long arm of chromosome 9. Of these, one QTL on chromosome 6 and two on chromosome 9 were verified by confirming the effects of the genotypes on the phenotypes of the BC1F3 lines. The japonica parent was found to contribute to late senescence at all but one QTL. Based on a comparison of the effects of heterozygotes and homozygotes on the phenotypic values of each QTL genotype, we concluded that the differential senescence observed in the indica-japonica hybrid was not due to over-dominance; rather, it was the result of partial-dominance genes that were donated from either of the parents.  相似文献   

11.
The utilization of heterosis in rice, maize and rapeseed has revolutionized crop production. Although elite hybrid cultivars are mainly derived from the F1 crosses between two groups of parents, named NCII mating design, little has been known about the methodology of how interacted effects influence quantitative trait performance in the population. To bridge genetic analysis with hybrid breeding, here we integrated an interacted QTL mapping approach with breeding by design in partial NCII mating design. All the potential main and interacted effects were included in one full model. If the number of the effects is huge, bulked segregant analysis were used to test which effects were associated with the trait. All the selected effects were further shrunk by empirical Bayesian, so significant effects could be identified. A series of Monte Carlo simulations was performed to validate the new method. Furthermore, all the significant effects were used to calculate genotypic values of all the missing F1 hybrids, and all these F1 phenotypic or genotypic values were used to predict elite parents and parental combinations. Finally, the new method was adopted to dissect the genetic foundation of oil content in 441 rapeseed parents and 284 F1 hybrids. As a result, 8 main-effect QTL and 37 interacted QTL were found and used to predict 10 elite restorer lines, 10 elite sterile lines and 10 elite parental crosses. Similar results across various methods and in previous studies and a high correlation coefficient (0.76) between the predicted and observed phenotypes validated the proposed method in this study.  相似文献   

12.
Mixed linear model approach was proposed for mapping QTLs with the digenic epistasis and QTL by environment (QE) interaction as well as additive and dominant effects. Monte Carlo simulations indicated that the proposed method could provide unbiased estimations for both positions and genetic main effects of QTLs, as well as unbiased predictions for QE interaction effects. A method was suggested for predicting heterosis based on individual QTL effects. The immortalized F2 (IF2) population constructed by random mating among RI or DH lines is appropriate for mapping QTLs with epistasis and their QE interaction. Based on the models and methodology proposed, we developed a QTL mapping software, QTLMapper 2.0 on the basis of QTLmapper 1.0, which is suitable for analyzing populations of DH, RIL, F2 and IF2. Data of thousand grain weight of IF2 population with 240 lines derived from elite hybrid rice Shanyou 63 were analyzed as a worked example.  相似文献   

13.

Key message

A minor QTL for heading date located on the long arm of rice chromosome 1 was delimitated to a 95.0-kb region using near isogenic lines with sequential segregating regions.

Abstract

Heading date and grain yield are two key factors determining the commercial potential of a rice variety. In this study, rice populations with sequential segregating regions were developed and used for mapping a minor QTL for heading date, qHd1. A total of 18 populations in six advanced generations through BC2F6 to BC2F11 were derived from a single BC2F3 plant of the indica rice cross Zhenshan 97 (ZS97)///ZS97//ZS97/Milyang 46. The QTL was delimitated to a 95.0-kb region flanked by RM12102 and RM12108 in the terminal region of the long arm of chromosome 1. Results also showed that qHd1 was not involved in the photoperiodic response, having an additive effect ranging from 2.4 d to 2.9 d observed in near isogenic lines grown in the paddy field and under the controlled conditions of either short day or long day. The QTL had pleiotropic effects on yield traits, with the ZS97 allele delaying heading and increasing the number of spikelets per panicle, the number of grains per panicle and grain yield per plant. The candidate region contains ten annotated genes including two genes with functional information related to the control of heading date. These results lay a foundation for the cloning of qHd1. In addition, this kind of minor QTLs could be of great significance in rice breeding for allowing minor adjustment of heading date and yield traits.  相似文献   

14.
The variation of the parental genome contribution (PGC) and its relationship with the genetic architecture of heterosis have received little attention. Our objectives were to (1) derive formulas for the variance of PGC in selfing, backcross (BC) or intermated generations produced from biparental crosses of homozygous parents, (2) investigate the correlation r(Z2 ,\UppsiM ) r(Z_{2} ,\Uppsi_{M} ) of the PGC (\UppsiM ) (\Uppsi_{M} ) estimated by a set M of markers, with Z 2 (half the trait difference between each pair of BC progenies) in the Design III, and (3) interpret experimental results on this correlation with regard to the genetic basis of heterosis. Under all mating systems, the variance of PGC is smaller in species with a larger number and more uniform length of chromosomes. It decreases with intermating and backcrossing but increases under selfing. The ratio of variances of PGC in F1DH (double haploids), F2 and BC1 populations is 4:2:1, but it is smaller in advanced selfing generations than expected for quantitative traits. Thus, altering the PGC by marker-assisted selection for the genetic background is more promising (i) in species with a smaller number and/or shorter chromosomes and (ii) in F2 than in progenies of later selfing generations. The correlation r(Z2 ,\UppsiM ) r(Z_{2} ,\Uppsi_{M} ) depends on the linkage relationships between M and the QTL influencing Z2 as well as the augmented dominance effects di* d_{i}^{*} of the QTL, which include dominance and additive × additive effects with the genetic background, and sum up to mid-parent heterosis. From estimates of r(Z2 ,\UppsiM ) r(Z_{2} ,\Uppsi_{M} ) as well as QTL studies, we conclude that heterosis for grain yield in maize is caused by the action of numerous QTL distributed across the entire genome with positive di* d_{i}^{*} effects.  相似文献   

15.
 An F2 and two equivalent F3 populations of an indica-indica cross of rice, Tesanai 2/CB, were constructed and grown in different environments. The identification of quantitative trait loci (QTL) for yield components and plant height and an analysis of QTL×environment interaction were conducted for three trials. Interval mapping of QTL for eight traits was employed with a threshold of LOD=2 using the computer package MAPMAKER/QTL. A total of 44 QTL were detected in 18 intervals of nine chromosomes, including 3 for the number of panicles (NP), 5 for the number of filled grains (NFG), 6 for total number of spikelets (TNS), 3 for spikelet fertility (SF), 7 for 1000-grain weight (TGWT), 5 for grain weight per plant (GWT), 8 for plant height (PH) and 7 for panicle length (PL). The numbers of QTL detected in two or three trials were 1 for NP, 1 for NFG, 1 for TNS, none for SF, 4 for TGWT, 3 for GWT, 2 for PH and 5 for PL, making a total of 17. When a QTL was detected in more than one trial the direction and magnitude of its additive effect, the dominance effect and the degree of dominance were generally in good agreement. In all three trials, QTL were frequently detected for related traits in the same intervals. The directions of additive effect of QTL for related traits in a given interval were in agreement with few exceptions, no matter whether they were detected in the same trial or not. This result suggested that pleiotropism rather than close linkage of different QTL was the major reason why QTL for different traits were frequently detected in the same intervals. When gene pleiotropism was considered, 23 of the 29 QTL for yield and its components and 9 of the 15 QTL for plant stature were detected in more than one trial. This indicated that the detection of chromosomal segments harboring QTL was hardly affected by environmental factors. Received: 30 January 1997 / Accepted: 21 March 1997  相似文献   

16.
Summary In this paper we have studied the linear correlation between a genetic distance index between two parent lines (based on marker loci information) and the heterosis observed in the F1 hybrid from the two lines, for a quantitative character (determined by several loci, or QTL). Theoretical computations of the correlation coefficient () between the distance index and the heterosis were made, assuming the biallelic model (defined by Fisher). When the alleles at both marker loci and QTL are equally distributed among the whole population of considered lines, the coefficient is a function of the squares of linkage disequilibria between alleles at marker loci and alleles at QTL. The QTL that are not marked by marker loci and marker loci that do not mark any QTL play symmetrical roles and can decrease greatly. We conclude that the prediction of F1 hybrid heterosis based on marker loci would be more efficient if these markers were selected for their relationship to the alleles implicated in the heterotic traits considered.  相似文献   

17.
Summary The relationship between heterozygosity and the expression of heterosis at two different nutrition levels was investigated using Drosophila melanogaster. Average daily egg production and egg hatchability were measured in two parental strains and in F1, F2 and reciprocal backcross generations. Heterosis was more pronounced in the poor nutritional conditions. Two electrophoretic markers used to estimate the level of heterozygosity in F2 and backcrosses revealed an excess of heterozygous genotypes. Quantitative genetic effects (an additive line effect and individual and maternal heterosis) were estimated for both traits in the two environments. Although this model gave a reasonable fit in most cases, some epistatic interaction would have to be invoked in order to explain fully the results.  相似文献   

18.
Three different races of lepidopteron silk moth Bombyx mori were used in reciprocal and inter se crosses to determine heterosis effects at F1 and recombination loss at the F2 generation for three fitness traits (fecundity, larval duration, survival rate) and four productivity traits (larval weight, cocoon weight, shell weight, filament length). Eleven mating types were represented in the present study, including three pure breeds and a variety of F1 and F2 populations arising from regular and reciprocal crosses, respectively. Equations were derived to evaluate heterosis, maternal and overdominance effects for the above traits. Estimates of heterosis and overdominance effects revealed significant heterosis effects for all the traits, but overdominance was only seen for larval duration (favorable effect) and survival rate (unfavorable effect). Maternal effects were significant for the majority of the traits under study. The results revealed significant reduction for all the quantitative traits from F1 to F2, except for larval duration. The most obvious explanation for the reduction of fitness parameters and productive traits is the reduction in heterozygosity from F1 to F2 (it is expected that one half of the heterozygosity of F1 is lost in F2). For larval duration this explanation seems insufficient and breakdown of epistatic gene effects (i.e. recombination loss) has been suggested.  相似文献   

19.
Heterosis is the phenomenon in which hybrid progeny exhibits superior traits in comparison with those of their parents. Genomic variations between the two parental genomes may generate epistasis interactions, which is one of the genetic hypotheses explaining heterosis. We postulate that protein?protein interactions specific to F1 hybrids (F1‐specific PPIs) may occur when two parental genomes combine, as the proteome of each parent may supply novel interacting partners. To test our assumption, an inter‐subspecies hybrid interactome was simulated by in silico PPI prediction between rice japonica (cultivar Nipponbare) and indica (cultivar 9311). Four‐thousand, six‐hundred and twelve F1‐specific PPIs accounting for 20.5% of total PPIs in the hybrid interactome were found. Genes participating in F1‐specific PPIs tend to encode metabolic enzymes and are generally localized in genomic regions harboring metabolic gene clusters. To test the genetic effect of F1‐specific PPIs in heterosis, genomic selection analysis was performed for trait prediction with additive, dominant and epistatic effects separately considered in the model. We found that the removal of single nucleotide polymorphisms associated with F1‐specific PPIs reduced prediction accuracy when epistatic effects were considered in the model, but no significant changes were observed when additive or dominant effects were considered. In summary, genomic divergence widely dispersed between japonica and indica rice may generate F1‐specific PPIs, part of which may accumulatively contribute to heterosis according to our computational analysis. These candidate F1‐specific PPIs, especially for those involved in metabolic biosynthesis pathways, are worthy of experimental validation when large‐scale protein interactome datasets are generated in hybrid rice in the future.  相似文献   

20.
农田土壤镉(Cd)污染日益严重,导致稻米Cd含量超标事件频繁出现,使粮食安全问题备受关注。因此,合理利用Cd污染农田、降低水稻籽粒Cd含量成为亟待解决的问题。籽粒Cd低积累水稻雅恢2816的地上部具有较强的Cd积累能力,研究旨在弄清其地上部Cd积累能力的遗传稳定性,进一步揭示控制该性状的遗传基础,为利用分子标记辅助选育地上部Cd富集能力强、籽粒Cd安全的水稻提供途径。以水稻雅恢2816和3个不同品种水稻分别组配获得的F1为研究对象,分析地上部Cd积累相关性状的杂种优势。进一步以优势组合C268A/雅恢2816构建F2作图群体,对地上部Cd积累相关性状进行QTL定位分析。结果表明:(1) F1地上部Cd积累相关性状杂种优势明显,遗传稳定性强。地上部Cd积累相关性状属数量性状,F2中/超亲分离现象明显。(2)在第4、6号染色体上共挖掘到1个控制水稻地上部生物量和3个控制地上部Cd积累量的QTL位点,分别为qSB-6、qSCdA-4、qSCdA-6-1和qSCdA-6-2,表型贡献率为10.6%—14.4%,且增效等位基因均来自雅恢2816。(3)地上部Cd积累量与地上部生物量、Cd含量,根、糙米的生物量、Cd积累量,根-地上部转移系数均呈极显著正相关,与地上部-籽粒转移系数呈极显著负相关,存在4个QTL集簇区Cl-4-1、Cl-6-1、Cl-6-2和Cl-6-3。(4)区间marker 04171-marker 04197控制着地上部生物量和Cd积累量,与控制糙米Cd含量的QTL不重叠。研究表明:籽粒Cd低积累水稻雅恢2816携带控制地上部Cd高积累的等位基因,可在世代间稳定遗传,QTL位点qSCdA-4、qSCdA-6-1、qSCdA-6-2是控制该性状的重要遗传基础,可为分子标记辅助选育地上部Cd高积累、籽粒Cd低积累水稻提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号