首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It was studied in rats, if chronic morphine treatment induces a supersensitivity of dopamine receptors in brain. The rats were treated twice daily for 8–11 days with single doses of morphine, increasing from 10 to 20 mg/kg i.p. The experiments were carried out 16–20 hours after the last injection of morphine. After chronic morphine treatment, the potency of apomorphine in lowering the striatal dopamine turnover was increased. On the other hand, apomorphine was not more potent in inducing stereotypies (sniffing, licking, gnawing) after chronic morphine administration than in saline controls. Finally, dopamine activated the adenylate cyclase in striatal homogenates of rats after chronic morphine treatment to a similar extent as in homogenates of control rats. The results suggest that a supersensitivity of dopamine receptors in brain is not necessarily involved in symptoms of an increased dopaminergic activity after chronic morphine application.  相似文献   

2.
The effect of simultaneous injections of apomorphine and l-DOPA on stereotypy, aggressiveness, on the exploratory motor activity, the threshold of emotional reactivity and aggressiveness elicited by painful electrical stimulation was studied in experiments on male albino rats. When injected separately, in control experiments, both compounds had similar effects on the exploratory-motor activity and the emotional behaviour, but when injected simultaneously in various doses a distinct antagonism between l-DOPA and apomorphine, according to all the behaviour tests, was noted (a decrease of sterotypy, aggressiveness and emotional reactivity). Against the background of l-DOPA apomorphine (5 mg/kg) increased the dopamine content in the forebrain and in the diencephalon even more. It is suggested that the increased level of the functionally active mediator suppressed the activity of postsynaptic receptors sensitive to it.  相似文献   

3.
The purpose of our study was to examine the effects of D1-and D2-dopamine receptors blockade on the changes in the ventricular content of catecholamines in rats withdrawn from morphine. Rats were given morphine by subcutaneous (s.c.) implantation of morphine pellets for 5 days. On the eighth day, morphine withdrawal was induced by s.c. administration of naloxone (1 mg/kg), and rats were killed 30 min later. Pretreatment with SCH 23390 (dopamine D1, D5 receptor antagonist) 15 min prior to naloxone administration suppressed some the behavioural signs of morphine withdrawal, whereas eticlopride (dopamine D2, D3, D4 receptor antagonist) did not. In addition, biochemical analysis indicate that SCH 23390 completely abolished the withdrawal-induced increase in noradrenaline and dopamine turnover in the right ventricle. By contrast, eticlopride did not block the hyperactivity of catecholaminergic neurons in the heart during morphine withdrawal. These data suggest that the hyperactivity of catecholaminergic neurons in the heart during morphine withdrawal is dependent upon D1 dopamine receptor activation. In addition, our results exclude the involvement of D2 dopamine receptors.  相似文献   

4.
The effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on pain sensitivity, on morphine analgesia, on morphine tolerance and withdrawal were investigated in mice. The heat-radiant tail-flick test was used to assess antinociceptive threshold. Intracerebroventricular (i.c.v.) administration of PACAP alone had no effect on pain sensitivity but in a dose of 500 ng, it significantly diminished the analgesic effect of a single dose of morphine (2.25 mg/kg, s.c.). PACAP (500 ng, i.c.v.) significantly increased the chronic tolerance to morphine and enhanced the naloxone (1 mg/kg, s.c.)-precipitated withdrawal jumping. Theophylline (1 mg/kg, i.p.) pretreatment significantly enhanced the effect of PACAP on morphine analgesia but the effects of PACAP on tolerance and withdrawal were unaffected upon theophylline administration. On the grounds of our previous studies with vasoactive intestinal polypeptide (VIP), it appears that different receptors are involved in the effects of PACAP in acute and chronic morphine actions. Our results indicate that PACAP-induced actions likely participate in acute and chronic effects of morphine and suggest a potential role of PACAP in opioid analgesia, tolerance and withdrawal.  相似文献   

5.
Chronic administration for 16 days of haloperidol (in increasing doses up to 20 mg/kg/day) results in a supersensitivity of dopamine receptors. This supersensitivity is manifested by an enhanced stereotypy and aggression in response to small, otherwise ineffective, doses of apomorphine. Maximum aggression is observed 7 days after the last dose of haloperidol when 2.5 mg/Kg of apomorphine is administered. In addition, “wet shakes”, reminiscent of withdrawal from morphine, are observed in these animals after the cessation of the haloperidol administration. These shakes are blocked by morphine. These results may be interpreted to mean that “wet shakes” and drug induced aggression are the results of hyperactivity of the dopaminergic system.  相似文献   

6.
In control rats small doses of apomorphine (25 to 100 μg/kg) decreased motor activity and reduced DOPAC content in the caudate nucleus. A larger dose (500 μg/kg) increased motor activity and elicited stereotypy. Chronic treatment with imipramine, amitryptiline and mianserine (10, 10 and 2.5 mg/kg twice daily for 10 days respectively) counteracted or reversed the effect of small doses of apomorphine on motor activity, left DOPAC content unchanged and potentiated the central stimulant response to the larger dose of apomorphine. Changes in apomorphine responses were observed after ten but not after two days of imipramine treatment and persisted unaltered up to 4 days after imipramine withdrawal. It is suggested that chronic treatment with antidepressants induces persistent subsensitivity in presynaptic dopamine receptors. The relevance of the findings in the therapeutic effect of these drugs is discussed.  相似文献   

7.
Ozek M  Uresin Y  Güngör M 《Life sciences》2003,72(17):1943-1951
The effects of L-Canavanine, a selective inducible nitric oxide synthase (NOS) inhibitor and N(G)-nitro-L-arginine methyl ester (L-NAME), a nonselective NOS inhibitor, on pain threshold and morphine induced analgesia, tolerance and dependence in mice were investigated and compared. Morphine was administered by subcutaneous implantation of a pellet containing 40 mg free base and withdrawal was precipitated by intraperitoneal (i.p.) injection of naloxone (2 mg/kg). L-Canavanine (200 mg/kg, i.p.) did not affect the pain threshold, morphine-induced analgesia and the induction and expression phases of morphine tolerance and dependence. L-NAME (20 mg/kg, i.p.) significantly (p < 0.05) enhanced the pain threshold, potentiated morphine-induced analgesia and attenuated the expression phase of morphine dependence which has been characterized by withdrawal signs and body weight loss, but did not modify the induction phase of morphine tolerance and dependence. It is concluded that constitutive NOS isoforms which were inhibited by L-NAME may be involved specifically in the mechanisms of morphine induced analgesia, tolerance and dependence.  相似文献   

8.
A simple procedure for the simultaneous determination of morphine and monoamine transmitters was developed. The procedure consisted of (1) n-butanol extraction and (2) separation and quantitative determination by means of high-performance liquid chromatography combined with electrochemical detection. The maximum intracerebral concentration (210 ± 35 ng/g wet tissue) of morphine was detected 30 min after intramuscular injection (10 mg/kg), which agreed with previous research. Noradrenaline was significantly decreased by morphine injection, while dopamine and 5-hydroxytryptamine were unchanged. However, 3-methoxytyramine, a metabolite of dopamine, was increased, suggesting that the drug increased the turnover rate of dopamine. The procedure used revealed a direct correlation between pharmacokinetics (e.g., distribution of morphine) and pharmacodynamics (e.g. changes of monoamine concentrations) of the drug in vivo.  相似文献   

9.
Quipazine and pirenperone , the drugs interacting with serotonin2 -receptors, more readily displaced 3H-spiroperidol from its binding sites in the frontal cortex than in the striatum. Pirenperone (0,07-0,3 mg/kg), antagonist of serotonin2 -receptors, selectively decreased the intensity of apomorphine aggressiveness. The antiaggressive action of haloperidol (0,01-0,2 mg/kg) was in correlation with its antistereotypic activity. Long-term administration of naloxone (0,5; 15,0 mg/kg), together with apomorphine (0,5 mg/kg) reduced the number of head-twitches caused by quipazine (2,5 mg/kg). The administration of quipazine 48 hours after the last injection of naloxone and apomorphine caused spontaneous aggressiveness that did not differ from apomorphine aggressiveness. Intracerebroventricular injection of cholecystokinin tetrapeptide (CCK-4) markedly enhanced the foot-shock aggression. The same dose of CCK-4 also decreased the intensity of quipazine (2,5 mg/kg) head-twitches. Compared to haloperidol, pirenperone was a more selective antagonist of CCK-4. After long-term apomorphine treatment (0,5 mg/kg during 10 days, twice daily), the effect of CCK-4 on aggressive behaviour was markedly enhanced. It is possible that two subtypes of serotonin2 -receptors exist in the brain and have opposite action on the aggressive behaviour. CCK-4 may play the role of an endogenous modulator of sensitivity of serotonin2 -receptors involved in the control of aggressiveness.  相似文献   

10.
Stress induces the release of the peptide corticotropin-releasing factor (CRF) into the ventral tegmental area (VTA), and also increases dopamine (DA) levels in brain regions receiving dense VTA input. Since the role of stress in drug addiction is well established, the present study examined the possible involvement of CRF1 receptor in the interaction between morphine withdrawal and catecholaminergic pathways in the reward system. The effects of naloxone-precipitated morphine withdrawal on signs of withdrawal, hypothalamo-pituitary-adrenocortical (HPA) axis activity, dopamine (DA) and noradrenaline (NA) turnover in the nucleus accumbens (NAc) and activation of VTA dopaminergic neurons, were investigated in rats pretreated with vehicle or CP-154,526 (selective CRF1R antagonist). CP-154,526 attenuated the increases in body weight loss and suppressed some of withdrawal signs. Pretreatment with CRF1 receptor antagonist resulted in no significant modification of the increased NA turnover at NAc or plasma corticosterone levels that were seen during morphine withdrawal. However, blockade of CRF1 receptor significantly reduced morphine withdrawal-induced increases in plasma adrenocorticotropin (ACTH) levels, DA turnover and TH phosphorylation at Ser40 in the NAc. In addition, CP-154,526 reduced the number of TH containing neurons expressing c-Fos in the VTA after naloxone-precipitated morphine withdrawal. Altogether, these results support the idea that VTA dopaminergic neurons are activated in response to naloxone-precipitated morphine withdrawal and suggest that CRF1 receptors are involved in the activation of dopaminergic pathways which project to NAc.  相似文献   

11.
Amphetamine facilitates the release of dopamine from nerve terminals, but the mechanisms underlying this effect have not been fully delineated. The present experiments were designed to test the extent to which amphetamine-induced dopamine release is dependent on impulse flow and autoreceptor function in dopaminergic neurons. Rats were pretreated with a low dose of apomorphine (0.05 mg/kg) to inhibit dopamine neuronal activity, and the striatal dopaminergic response to amphetamine (0.5 mg/kg) was assessed by in vivo dialysis in freely moving animals. Consistent with previous results, apomorphine alone substantially decreased, whereas amphetamine increased, striatal dialysate dopamine concentrations. However, whereas apomorphine pretreatment decreased the locomotor response to amphetamine, the amphetamine-induced increase in dialysate dopamine was unaffected. These results indicate that amphetamine-facilitated dopamine release is independent of neuronal firing and autoreceptor regulation, consistent with the putative accelerative exchange-diffusion mechanism of amphetamine-induced dopamine release. Other possible mechanisms underlying the inhibitory effects of apomorphine on amphetamine locomotor activation are discussed.  相似文献   

12.
《Life sciences》1995,57(17):PL247-PL252
The effect of pretreatment with a δ opioid receptor antagonist, naltrindole (NTI), on the development of physical dependence on morphine was investigated in mice. Several withdrawal signs, an increase in cortical noradrenaline (NA) turnover and a decrease in dopamine (DA) turnover in the limbic forebrain were observed following naloxone challenge in morphine-dependent mice. Pretreatment with NTI (0.3–5 mg/Kg, S.c.) during chronic morphine treatment dose-dependently suppressed the behavioral and biochemical changes after withdrawal. The blocking effects of NTI suggest that δ opioid receptors may play a significant role in modulating the development of physical dependence on morphine.  相似文献   

13.
Previous report from our laboratory showed that morphine produces a stimulatory effect of hypothalamic noradrenaline (NA) turnover concurrently with enhanced pituitary-adrenal response after its acute injection and during withdrawal. In the present work we have studied the effects of acute and chronic administration of the kappa agonist U-50,488H as well as the influence of U-50,488H withdrawal on the activity of hypothalamic NA and dopamine (DA) neurons and on the activity of hypothalamic-pituitary-adrenal (HPA) axis. A single dose of U-50,488H (15 mg/kg i.p.) significantly increased hypothalamic NA and decreased DA turnover at the time of an enhanced corticosterone release. Rats rendered tolerant to the kappa agonist by administration of U-50,488H twice a day for 4 days showed no changes in corticosterone secretion. Additionally, a decrease in both hypothalamic MHPG (the cerebral NA metabolite) production and NA turnover was observed, whereas DOPAC concentration and DA turnover were enhanced, which indicate the development of tolerance towards the neuronal and endocrine actions of U-50,488H. After naloxone (3 mg/kg s.c.) administration to U-50,488H-tolerant rats, we found neither behavioural signs of physical dependence nor changes in hypothalamic catecholaminergic neurotransmission. In addition, corticosterone secretion was not altered in U-50,488H withdrawn rats. Present data clearly indicate that tolerance develops towards the NA turnover accelerating and DA turnover decreasing effect of U-50,488H. Importantly and by contrast to mu agonists, present results demonstrate that U-50,488H withdrawal produce no changes in hypothalamic catecholamines turnover or in corticosterone release (an index of the hypothalamus-pituitary-adrenal activity), which indicate the absence of neuroendocrine dependence on the kappa agonist. As has been proposed, this would suggest that the mu and the kappa receptor be regulated through different cellular mechanisms, as kappa agonists have a lower proclivity to induce dependence.  相似文献   

14.
Hyperresponsiveness to noxious stimulation (hyperalgesia) is observed with naloxone-precipitated morphine withdrawal in several experimental models, and may be due to changes in central nervous system neurons. Previous studies have demonstrated that certain neurons in the rostral ventromedial medulla (on-cells) discharge just prior to nocifensive withdrawal reflexes and are inhibited by morphine. Because the tail flick latency (TFL) is shorter when on-cells are active, it has been proposed that on-cells facilitate nocifensive reflexes. The present study examined the hypothesis that the hyperalgesia observed following naloxone-precipitated withdrawal from morphine is caused by increased on-cell discharge. Rats were maintained in a lightly anesthetized state with chloral hydrate. Administration of saline (1.25 cc, i.v.) or morphine sulfate (1.25 mg/kg, i.v.) was followed by naloxone (1.0 mg/kg, i.v.). On- and off-cell activity was continuously recorded and was correlated with TFL and paw withdrawal threshold (PWT). As previously reported, morphine increased off-cell activity, blocked on-cell activity, and suppressed the tail flick and paw withdrawal reflexes. When naloxone was given after morphine, TFL and PWT were reduced to values significantly below baseline (hyperalgesia). Both spontaneous and reflex-related on-cell activity increased to levels greater than the premorphine baseline. Spontaneous off-cell activity decreased abruptly to near zero when morphine was followed by naloxone. Linear regression analysis during the hyperresponsive state revealed a significant correlation between increased on-cell activity and reduced TFL, but not between decreased off-cell activity and TFL. These findings are consistent with the hypothesis that on-cells facilitate spinal nocifensive reflexes, and that the naloxone-precipitated hyperalgesia is at least in part accounted for by increased on-cell activity. A neural model of opiate dependence, tolerance, and withdrawal is proposed.  相似文献   

15.
The effects of short and long-acting dopamine agonists on sensitized dopaminergic transmission in an animal model of Parkinson's disease were investigated. Rats with 6-hydroxydopamine (6-OHDA) lesions of the left nigrostriatal dopaminergic pathway were pre-exposed i.p. to 50 mg/kg methyl levodopa for 10 days. After a 7-day withdrawal period, these animals were treated with saline i.p., 0.05 mg/kg apomorphine s.c., or 0.5 mg/kg cabergoline i.p., once daily for 7 days. On the 8th day, rats in each treatment group received a challenge dose of 0.05 mg/kg apomorphine or saline s.c. The temporal changes in the number of rotations away from the 6-OHDA lesion side were evaluated after the challenge. The apomorphine challenge increased the number of rotations more markedly in the apomorphine pretreated rats than in the other pretreatment groups. In cabergoline pretreated rats, the number of rotations was significantly lower than that of saline-pretreated animals. Pretreatment with saline did not alter the apomorphine sensitivity of rotational behavior. These findings suggest that the repeated administration of long-acting dopamine agonists may reduce sensitized dopaminergic transmission in dopamine-depleted rats, whereas short-acting ones may further enhance sensitization of the transmission process.  相似文献   

16.
Hyperresponsiveness to noxious stimulation (hyperalgesia) is observed with naloxone-precipitated morphine withdrawal in several experimental models, and may be due to changes in central nervous system neurons. Previous studies have demonstrated that certain neurons in the rostral ventromedial medulla (on-cells) discharge just prior to nocifensive withdrawal reflexes and are inhibited by morphine. Because the tail flick latency (TFL) is shorter when on-cells are active, it has been proposed that on-cells facilitate nocifensive reflexes. The present study examined the hypothesis that the hyperalgesia observed following naloxone-precipitated withdrawal from morphine is caused by increased on-cell discharge.

Rats were maintained in a lightly anesthetized state with chloral hydrate. Administration of saline (1.25 cc, i.v.) or morphine sulfate (1.25 mg/kg, i.v.) was followed by naloxone (1.0 mg/kg, i.v.). On- and off-cell activity was continuously recorded and was correlated with TFL and paw withdrawal threshold (PWT). As previously reported, morphine increased off-cell activity, blocked on-cell activity, and suppressed the tail flick and paw withdrawal reflexes. When naloxone was given after morphine, TFL and PWT were reduced to values significantly below baseline (hyperalgesia). Both spontaneous and reflex-related on-cell activity increased to levels greater than the premorphine baseline. Spontaneous off-cell activity decreased abruptly to near zero when morphine was followed by naloxone. Linear regression analysis during the hyperresponsive state revealed a significant correlation between increased on-cell activity and reduced TFL, but not between decreased off-cell activity and TFL.

These findings are consistent with the hypothesis that on-cells facilitate spinal nocifensive reflexes, and that the naloxone-precipitated hyperalgesia is at least in part accounted for by increased on-cell activity. A neural model of opiate dependence, tolerance, and withdrawal is proposed.  相似文献   

17.
We compared two different methamphetamine dosing regimens and found distinct long-term behavioral and neurochemical changes. Adult rats were treated with 1-day methamphetamine injection (3x5 mg/kg s.c., 3 h apart) or 7-day methamphetamine minipump (20 mg/kg/day s.c.). The minipump regimen models the sustained methamphetamine plasma levels in some human bingers whereas the 1-day regimen models a naive user overdose. On withdrawal days 7 and 28, rats were acutely challenged with cocaine to test for behavioral sensitization and subsequently sacrificed for caudate and accumbens dopamine tissue content. Other rats were analyzed on withdrawal days 3, 7 or 28 using voltammetry in caudate slices. On withdrawal days 7 and 28, the methamphetamine injection but not the minipump rats showed behavioral cross-sensitization to cocaine. There was no change in baseline dopamine release, reuptake or sensitivity to quinpirole in any treatment group on either withdrawal day. However, consistent with the behavioral sensitization, cocaine had a greater effect in potentiating dopamine release and in blocking dopamine reuptake in methamphetamine injection versus saline irrespective of withdrawal day. The minipump group showed tolerance to the dopamine releasing effect of cocaine on withdrawal day 28 and had lower dopamine tissue content in the caudate versus the methamphetamine injection group. Dopamine turnover as measured by the DOPAC/dopamine ratio tended to be higher in the minipump-treated rats. These data suggest that the behavioral cross-sensitization seen in the methamphetamine injection rats could be in part due to the increased potency of cocaine in blocking dopamine reuptake and in increasing dopamine release. The decreased potency of cocaine in the caudate slices from the minipump-treated group may be related to decreased dopamine tissue content.  相似文献   

18.
Experiments were conducted on male Wistar rats. Intraperitoneal injection of 1-DOPA (.100 - 200 mg/kg increased the brain concentration of dopamine and homovanilinic acid and lowered the level of brain serotonin, with simultaneous elevation of its metabolite 5-HIAA. A decrease in serotonin level was accompanied by increased emotional reactivity and agressiveness in rats. L-DOPA (100 mg/kg) decreased the binding of serotonin formed from tryptophane (100 mg/kg), accelerating its catabolism in the brain; at the same time 1-DOPA eliminated the depressive action of tryptophane on the emotional reactivity and aggressiveness. It is supposed that increased emotional excitation elicited by 1-DOPA was partially mediated through the block of the serotoninergic system.  相似文献   

19.
When opiates are abruptly withdrawn after chronic treatment, increases in hippocampal noradre-nergic function are observed which are accompanied by decreases in striatal dopamine release. The latter effects have to shown to persist for several weeks following the onset of opiate withdrawal. We examined the long-term effects of opiate withdrawal on 4-aminopyridine and potassium stimulated release of striatal dopamine and hippocampal norepinephrine. Tissue samples were obtained either from rats that had been exposed to opiate withdrawal following a seven day morphine infusion or sham treated control subjects. At 48 hours after the onset of withdrawal (cessation of morphine infusions), slices were loaded with [3H] neurotransmitter, washed extensively, and exposed to different drug treatments. 4-aminopyridine induced concentration related increases in striatal dopamine release, which was 36% calcium independent. Similar values for fractional release of striatal dopamine were obtained in morphine withdrawn and control subjects, for both potassium and 4-aminopyridine induced release. In addition, thresholds for 4-aminopyridine or potassium induced release of striatal dopamine did not differ between control and morphine withdrawn subjects. Treatment with 1.0 M morphine sulfate potentiated potassium evoked release of norepinephrine to an equal extent in both morphine withdrawn and sham treated hippocampal tissue. Exposure to a threshold concentration of potassium (8.0 mM), stimulated increased release of hippocampal norepinephrine in a significantly greater fraction of tissue samples obtained from morphine withdrawn animals. Although these results do not support changes in striatal dopamine release following opiate withdrawal, opiate mechanisms appear to be important determinants of in vitro hippocampal norepinephrine release.  相似文献   

20.
Naloxone treatment at three days following implantation of pellets containing morphine base increased uptake of tritiated dopamine by the nucleus accumbens but did not alter efflux of tritiated dopamine by the nucleus accumbens or tritiated norepinephrine by the hippocampus. At six days following placement of pellets containing morphine base, withdrawal score was increased after treatment with either saline or naloxone, indicating that animals were undergoing spontaneous opiate withdrawal. Fractional efflux of tritiated dopamine was decreased at this time point following intermittent stimulation with 317 and 1000 M 4-aminopyridine, for striatal slices obtained from animals pretreated with either saline or naloxone. For the nucleus accumbens at six days after placement of morphine pellets, similar decreases in the efflux of tritiated dopamine were only observed in slices obtained from naloxone treated animals. Fractional dopamine efflux was also diminished after in vitro exposure to rising concentrations of 4-aminopyridine, amphetamine, or cocaine for tissue obtained from the nucleus accumbens, but not for slices from the striatum at six days following morphine pellet implantation. In conclusion, deficits in dopamine efflux by the nucleus accumbens occur at a time when animals are undergoing spontaneous opiate withdrawal at six days following morphine pellet implantation, but do not occur at an earlier time point when withdrawal is precipitated by naloxone treatment. These deficits are apparent for brain slices obtained from the striatum or nucleus accumbens after exposure to rising concentrations of different in vitro treatments, with tissue obtained from the nucleus accumbens being more sensitive than the striatum to dopamine efflux produced by a wider range of treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号