首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon-14 was incorporated into oxalate and CO2 from either citrate-1,5-14C, succinate-1,4-14C, or fumarate-1,4-14C by cultures of Aspergillus niger pregrown on a medium which contained glucose as the sole carbon source and which did not allow citrate accumulation. In cell-free extracts of mycelium forming oxalate and CO2 from added citrate the following enzymes of the tricarboxylic acid (TCA) cycle were identified: citrate synthase CE 4.1.3.7), aconitate hydratase (EC4.2.1.3), NAD and NADP-dependent isocitrate dehydrogenase (EC 1.1.1.41, 1.1.1.42), (alpha-oxoglutarate dehydrogenase (EC 1.2.4.2), succinate dehydrogenase (EC 1.3.99.1), fumarate hydratase (EC 4.2.1.2), and malate dehydrogenase (EC 1.1.1.37). The in vitro activity of aconitate hydratase and of NADP-dependent isocitrate dehydrogenase was shown to be almost identical to the rate of in vivo degradation of citrate or to exceed this rate. The degradation of citrate to oxalate was inhibited completely by 9 mM fluoroacetate. It is concluded that the TCA cycle is involved in the formation of oxalate from citrate.  相似文献   

2.
In the course of submerged cultivation of low-production and industrial production strains of Streptomyces aureofaciens, the activity of enzymes of the tricurboxylic acid cycle was studied. The activities of citrate synthase (EC 4.1.3.7), aconitate hydratase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.42), fumarate hydratase (EC 4.2.1.2), and malate dehydrogenase (EC 1.1.1.37) were estimated spectrophotometrically in cell-free preparations. In the growth phase, mainly the initial reactions of the cycle were active with both strains. In production-phase, the activities of enzymes in the low-production strain were 2–5 × higher than in the production strain. Benzylthioeyanate, at a concentration of 5 × l0?5M, stimulated chlortetracycline production of both strains with accompanying decrease in activity of the enzymes of the tricarboxylic acid cycle. The role of the tricarboxylic acid cycle in control of chlortetracycline biosynthesis is discussed.  相似文献   

3.
Citrate Cycle and Related Metabolism of Listeria monocytogenes   总被引:8,自引:1,他引:7       下载免费PDF全文
The growth response of Listeria monocytogenes strains A4413 and 9037-7 to carbohydrates was determined in a defined medium. Neither pyruvate, acetate, citrate, isocitrate, alpha-ketoglutarate, succinate, fumarate, nor malate supported growth. Furthermore, inclusion of any of these carbohydrates in the growth medium with glucose did not increase the growth of Listeria over that observed on glucose alone. Resting cell suspensions of strain A4413 oxidized pyruvate but not acetate, citrate, isocitrate, alpha-ketoglutarate, succinate, fumarate, or malate. Cell-free extracts of strain A4413 contained active citrate synthase, aconitate hydratase, isocitrate dehydrogenase, malate dehydrogenase, fumarate hydratase, fumarate reductase, pyruvate dehydrogenase system, and oxidases for reduced nicotinamide adenine dinucleotide and reduced nicotinamide adenine dinucleotide phosphate. The alpha-ketoglutarate oxidation system, succinate dehydrogenase, isocitrate lyase, and malate synthase were not detected. Cytochromes were not detected. The data suggest that strain A4413, under these conditions, utilizes a split noncyclic citrate pathway which has an oxidative portion (citrate synthase, aconitate hydratase, and isocitrate dehydrogenase) and a reductive portion (malate dehydrogenase, fumarate hydratase, and fumarate reductase). This pathway is probably important in biosynthesis but not for a net gain in energy.  相似文献   

4.
Mitochondria were isolated from tomato (Lycopersicon esculentum L.) fruit at the mature green, orange-green and red stages and from fruit artificially suspended in their ripening stage. The specific activities of citrate synthase (EC 4.1.3.7), malate dehydrogenase (EC 1.1.1.37), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41) and NAD-linked malic enzyme (EC 1.1.1.38) were determined. The specific activities of all these enzymes fell during ipening, although the mitochondria were fully functional as demonstrated by the uptake of oxygen. The fall in activity of mitochondrial malate dehydrogenase was accompanied by a similar fall in the activity of the cytosolic isoenzyme. Percoll-purified mitochondria isolated from mature green fruit remained intact for more than one week and at least one enzyme, citrate synthase, did not exhibit the fall in specific activity found in normal ripening fruit.  相似文献   

5.
The activities of the two unique enzymes of the glyoxylate cycle,isocitrate lyase (EC 4.1.3.1 [EC] ) and malate synthase (EC 4.1.3.2 [EC] ),were undetectable in petals of pumpkin (Cucurbita sp. AmakuriNankin) until the end of blooming, but they appeared duringsenescence. The activity of catalase (EC 1.11.1.6 [EC] ) increased,glycolate oxidase (EC 1.1.3.1 [EC] ) activity did not change, whilehydroxypyruvate reductase (EC 1.1.1.81 [EC] ) activity peaked at fullblooming stage and declined thereafter. After fractionationof cellular organelles on a sucrose density gradient, we detectedisocitrate lyase and malate synthase activities in peroxisomalfractions only from petals at the senescing stage. Northernblot analysis revealed that malate synthase mRNA increased duringpetal senescence. Citrate synthase (EC 4.1.3.7 [EC] ) and malate dehydrogenase(EC 1.1.1.37 [EC] ) activities were also present, while aconitase(EC 4.2.1.3 [EC] ) was not detectable in peroxisomal fractions. Moreoverthe presence of 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35 [EC] )and urate oxidase (EC 1.7.3.3 [EC] ) in the peroxisomal fractionsfrom senescing petals indicates that peroxisomes could be involvedboth in the ß-oxidation pathway and in the purinecatabolism during petal senescence. (Received May 25, 1991; Accepted September 25, 1991)  相似文献   

6.
The levels of Krebs cycle, glyoxylate cycle, and certain other enzymes were measured in a wild-type strain and in seven groups of acetate-nonutilizing (acu) mutants of Neurospora crassa, both after growth on a medium containing sucrose and after a subsequent 6-hr incubation in a similar medium, containing acetate as the sole source of carbon. In the wild strain, incubation in acetate medium caused a rise in the levels of isocitrate lyase, malate synthase, phosphoenolpyruvate carboxykinase, acetyl-coenzyme A synthetase, nicotinamide adenine dinucleotide phosphate-linked isocitrate dehydrogenase, citrate synthase, and fumarate hydratase. Isocitrate lyase activity was absent in acu-3 mutants; acu-5 mutants lacked acetyl-coenzyme A synthetase activity; and no oxoglutarate dehydrogenase activity (or only low levels) could be detected in acu-2 and acu-7 mutants. In acu-6 mutants, phosphoenolpyruvate carboxykinase activity was either very low or absent. No specific biochemical deficiencies could be attributed to the acu-1 and acu-4 mutations. The role of several of these enzymes during growth on acetate is discussed.  相似文献   

7.
No information is available about Tuber borchii Vittad. ammonium metabolism during its life cycle, which involves the succession of three distinct phases. In this direction, the levels of glutamine synthetase (GS; EC 6.3.1.2), glutamate synthase (GOGAT; EC 1.4.1.13-14) and glutamate dehydrogenase (GDH; EC 1.4.1.2-4) were evaluated in Tilia platyphyllos Scop.-Tuber borchii Vittad. ectomycorrhizae, free living mycelium and non-inoculated roots. In the plant roots, GS shows high specific activity and only NADH-GDH (EC 1.4.1.2) is detectable; on the other hand, in free living mycelium GS and NADPH-GDH (EC 1.4.1.4) can be detected. Ectomycorrhizal metabolism was found to be deeply influenced by the two symbiotic partners. In fact, GS and both forms of GDH are present and their specific activities are higher than those found in the plant root and in the mycelial cells.  相似文献   

8.
Mitochondria from Orobanche were analysed for the activities of aconitate hydratase, isocitrate dehydrogenase, succinate dehydro-genase, fumarate hydratase, malate dehydrogenase, NADH oxidase, substrate-cytochrome c oxidoreductases, glutamate dehydrogenase, aminotransferases, ATPase and “malic” enzyme. The specific activities of isocitrate dehydrogenase, NADH oxidase, substrate-cytochrome c oxidoreductases and glutamate dehydrogenase in the mitochondria) fraction from parasite tissue compared favourably with those reported for most of the mitochondria from growing and storage tissues. Succinate dehydrogenase, fumarate hydratase and aspartate aminotransferase were of intermediate activity, while aconitate hydratase and malate dehydrogenase had rather low activity, and “malic” enzyme had very low activity in comparison with other preparations. The relevance of these findings in relation to mitochondrial metabolism in the parasite is discussed. No evidence was obtained to suggest any basic abnormality in the biochemical properties of the mitochondria from Orobanche centua which may be correlated with its obligatorily parasitic existence.  相似文献   

9.
Pirog  T. P.  Kuz'minskaya  Yu. V. 《Microbiology》2003,72(4):408-413
Ethanol-grown cells of the mutant Acinetobacter sp. strain 1NG, incapable of producing exopolysaccharides, were analyzed for the activity of enzymes of the tricarboxylic acid (TCA) cycle and some biosynthetic pathways. In spite of the presence of both key enzymes (isocitrate lyase and malate synthase) of the glyoxylate cycle, these cells also contained all enzymes of the TCA cycle, which presumably serves biosynthetic functions. This was evident from the high activity of isocitrate dehydrogenase and glutamate dehydrogenase and the low activity of 2-oxoglutarate dehydrogenase. Pyruvate was formed in the reaction catalyzed by oxaloacetate decarboxylase, whereas phosphoenolpyruvate (PEP) was synthesized by the two key enzymes (PEP carboxykinase and PEP synthase) of gluconeogenesis. The ratio of these enzymes was different in the exponential and the stationary growth phases. The addition of the C4-dicarboxylic acid fumarate to the ethanol-containing growth medium led to a 1.5- to 2-fold increase in the activity of enzymes of the glyoxylate cycle, as well as of fumarate hydratase, malate dehydrogenase, PEP synthase, and PEP carboxykinase (the activity of the latter enzyme increased by more than 7.5 times). The data obtained can be used to improve the biotechnology of production of microbial exopolysaccharide ethapolan on C2-substrates.  相似文献   

10.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

11.
The degradation of Aluminum-citrate by Pseudomonas fluorescens necessitated a major restructuring of the various enzymatic activities involved in the TCA and glyoxylate cycles. While a six-fold increase in fumarase (FUM EC 4.2.1.2) activity was observed in cells subjected to Al-citrate compared to control cells, citrate synthase (CS EC 4.1.3.7) activity experienced a two-fold increase. On the other hand, in the Al-stressed cells malate synthase (MS EC 4.1.3.2) activity underwent a five-fold decrease in activity. This modulation of enzymatic activities appeared to be evoked by Al stress, as the incubation of Al-stressed cells in control media led to the complete reversal of these enzymatic profiles. These observations were further confirmed by 1H NMR and 13C NMR spectroscopy. No significant variations were observed in the activities of other glyoxylate and TCA cycle enzymes, like isocitrate lyase (ICL EC 4.1.3.1), malate dehydrogenase (MDH EC 1.1.1.37), and succinate dehydrogenase (SDH EC 1.3.99.1). This reconfiguration of the metabolic pathway appears to favour the production of a citrate-rich aluminophore that is involved in the sequestration of Al.  相似文献   

12.
Summary In submerged cultures of Claviceps sp. CP II, elymoclavine was synthesized only by the growing mycelium (phase P1), whereas cultures of C. purpurea strain 129 produced agroclavine after vegetative growth had also ceased (phase P2). In strain CP II, the peak of activity of malate dehydrogenase, glucose-6-phosphate dehydrogenase and phosphatases was related to the time of maximum growth rate and alkaloid production. Citrate synthase activity paralleled the course of alkaloid synthesis. Strain 129 exhibited a further activity peak of the same magnitude during phase P2. ATP levels in both cultures corresponded to the pattern of change in enzyme activities. Strain CP II contained roughly twice as much orthophosphate and ATP in its cells as strain 129 and exhibited higher average activity of glucose-6-phosphate dehydrogenase. It follows from these results that alkaloid synthesis requires the processes of primary metabolism, even when it occurs after active growth of the culture has ceased. Cultures producing alkaloids oxidized at C-8 exhibit higher glucose-6-phosphate dehydrogenase activity, probably because of a higher NADPH consumption.  相似文献   

13.
The mechanism of adaptation of the acrylamide producing strainRhodococcus rhodochrous M8 to changes in ammonium concentrations in the medium was studied. An increase in the content of ammonium in the medium changed the activity of glutamine synthetase (GS) (EC 6.3.1.2) and glutamine dehydrogenase (GD) (EC 1.4.1.4), the enzymes of ammonium assimilation, as well as the activities of enzymes responsible for nitrile utilization: nitrile hydratase (EC 4.2.1.84) and amidase (EC 3.5.1.4). This also inhibited the activation of GS induced by phosphodiesterase (EC 3.1.4.1 ). Increases in the activities of nitrile hydratase and amidase and resistance of these enzymes to ammonium were observed in mutant ofR. rhodichrous resistant to phosphotricine, an inhibitor of GS. An important role of GS in the mechanism of adaptation is suggested.  相似文献   

14.
Treatment of the 1 + strain of Phycomyces blakesleeanus Bgff. with various cytokinins resulted in a stimulation of growth. The magnitude of growth stimulation depended on both the structure of the hormone used and the carbon source in the culture medium. Most of the cytokinin derivatives were active effect in glucose and oleic acid cultures. Benzyladenine (BA) and benzyladenosine stimulated the fungal growth only when oleic acid was the sole carbon source, while they had no effect in glucose cultures within the tested range of concentrations. [14C]-BA was accumulated by the mycelium of oleic acid cultures. Therefore, differences in BA uptake between glucose and oleic acid cultures could account mainly for the specific growth-promoting effect of BA. In oleic acid cultures isocitrate lyase (EC 4.1.3.1) and malate synthase (EC 4.1.3.2) activities were enhanced by 40 and 34%, respectively, in the presence of BA. A time course of the hormone effect suggests that BA is not involved in induction, but in the regulation of the mentioned enzymes in Phycocmyces. In contrast, acetate when presented as the sole carbon source or after addition to a glucose culture medium, induced isocitrate lyase activity. This enzyme induction was prevented by simultaneous addition of cycloheximide.  相似文献   

15.
The ethanol-grown cells of the mutant Acinetobacter sp. strain 1NG, incapable of producing exopolysaccharides, were analyzed for the activity of enzymes of the tricarboxylic acid (TCA) cycle and some biosynthetic pathways. In spite of the presence of both key enzymes (isocitrate lyase and malate synthase) of the glyoxylate cycle, these cells also contained all enzymes of the TCA cycle, which presumably serves biosynthetic functions. This was evident from the high activity of isocitrate dehydrogenase and glutamate dehydrogenase and the low activity of 2-oxoglutarate dehydrogenase. Pyruvate was formed in the reaction catalyzed by oxaloacetate decarboxylase, whereas phosphoenolpyruvate (PEP) was synthesized by the two key enzymes (PEP carboxykinase and PEP synthase) of gluconeogenesis. The proportion between these enzymes was different in the exponential and the stationary growth phases. The addition of the C4-dicarboxylic acid fumarate to the ethanol-containing growth medium led to a 1.5- to 2-fold increase in the activity of enzymes of the glyoxylate cycle, as well as of fumarate hydratase, malate dehydrogenase, PEP synthase, and PEP carboxykinase (the activity of the latter enzyme increased by more than 7.5 times). The data obtained can be used to improve the biotechnology of production of the microbial exopolysaccharide ethapolan on C2-substrates.  相似文献   

16.
TCA循环中间产物对酿酒酵母胞内代谢关键酶活性的影响   总被引:1,自引:0,他引:1  
对酿酒酵母在添加苹果酸、柠檬酸和琥珀酸的混合培养基与其在YEPD培养基中胞内丙酮酸激酶、葡萄糖-6-磷酸脱氢酶、异柠檬酸脱氢酶、苹果酸脱氢酶、乙醇脱氢酶的酶活力差异进行了对比分析。结果表明:添加苹果酸使胞内丙酮酸激酶、异柠檬酸脱氢酶、苹果酸脱氢酶、乙醇脱氢酶的酶活分别下降34.82%、57.23%、39.15%、12.10%;添加柠檬酸使胞内丙酮酸激酶、异柠檬酸脱氢酶、苹果酸脱氢酶的酶活分别下降50.17%、42.20%、48.40%;添加琥珀酸使胞内丙酮酸激酶、葡萄糖-6-磷酸脱氢酶、异柠檬酸脱氢酶、苹果酸脱氢酶、乙醇脱氢酶的酶活分别下降34.16%、34.16%、50.87%、50.87%、12.37%。丙酮酸激酶、异柠檬酸脱氢酶和苹果酸脱氢酶对3种有机酸的耐受性较差,葡萄糖-6-磷酸脱氢酶、乙醇脱氢酶对3种有机酸的耐受具有选择性。  相似文献   

17.
A protein exhibiting only enoyl-CoA hydratase (EC 4.2.1.17) activity was purified from an n- alkane-grown yeast, Candida tropicalis. This enzyme had a homotetrameric form composed of subunits with a molecular mass of 36kDa. On the other hand, a bifunctional enzyme exhibiting enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) activities was obtained from the same yeast cells when purified in the presence of protease inhibitors, phenylmethylsulfonyl fluoride, antipain and chymostatin. The enzyme had a molecular mass of 105 kDa and was a monomeric form. Limited proteolysis of the bifunctional enzyme with α-chymotrypsin yielded a peptide mixture containing a 36 kDa fragment, the mixture showing about 76% of the original enoyl-CoA hydratase activity but no 3-hydroxyacyl-CoA dehydrogenase activity. Comparison of the peptide maps of the purified enoyl-CoA hydratase and the 36 kDa fragment obtained from the bifunctional enzyme showed the similarity of these proteins. These results strongly suggest that the domain of enoyl-CoA hydratase is separable from the bifunctional enzyme through the action of a certain protease.  相似文献   

18.
Summary New cytochemical method, based on biochemical experiments, was elaborated for the ultrastructural localization of phospho(enol)pyruvate carboxylase (EC 4.1.1.31). The procedure was used to study the saprophytic submerged mycelium of the ascomycetous fungusClaviceps purpurea Tul. producing clavine alkaloids. The pelleted mycelium was fixed in ice cold 3% glutaraldehyde in 50 mM cacodylate buffer pH 7.2 and washed repeatedly in the same cold buffer. The reaction mixture contained 100 mM Tris-HCl buffer pH 9.0, 10 mM phospho(enol)pyruvate, 30 mM sodium potassium tartrate, 3 mM Pb(NO3)2, 60 mM MgCl2 and 30 mM NaHCO3. Enzyme activity was localized in vacuoles, particularly inside lipid globules (spherosomes) and less frequently in membranous vesicles. Acetyl-CoA activated PEP-carboxylase both in cell free extracts and in the cytochemical staining. Aspartate inhibited the enzyme in the biochemical assay with coupled malate dehydrogenase system; the cytochemical reaction was not influenced, probably due to the interference of asparagine synthase (EC 6.3.1.1).  相似文献   

19.
DNA synthesis in nuclei and mitochondria purified from serum-supplemented rat glial cell cultures at different days after plating was studied. Furthermore in mitochondria, some enzymatic activities related to energy transduction (citrate synthase, malate dehydrogenase, total NADH-cytochromec reductase, cytochrome oxidase and glutamate dehydrogenase) were measured. For DNA labeling [methyl-3H]thymidine was added to the culture medium at different days after plating. During the culture times studied the specific activity of total, nuclear, and mitochondrial DNA decreased from 8 days in vitro (DIV) to 21 DIV and increased at 30 DIV. The specific activity of nuclear DNA was always higher than that of mitochondrial DNA. The specific activity of the above mentioned mitochondrial enzymes increased from 8 DIV up to 21 DIV and decreased at 30 DIV, suggesting a relationship between the energy metabolism and the differentiation of glial cells in culture.The AA. would like to dedicate this paper to the memory of Dr. Ida Serra, Associate Professor of Biochemistry at the Medical Faculty, University of Catania, who prematurely died, after this paper was submitted for publication.  相似文献   

20.
Tricarboyxlic acid cycle activity was examined in Neisseria gonorrhoeae CS-7. The catabolism of glucose in N. gonorrheae by a combination of the Entner-Doudoroff and pentose phosphate pathways resulted in the accumulation of acetate, which was not further catabolized until the glucose was depleted or growth became limiting. Radiorespirometric studies revealed that the label in the 1 position of acetate was converted to CO2 at twice the rate of the label in the 2 position, indicating the presence of a tricarboxylic acid cycle. Growth on glucose markedly reduced the levels of all tricarboxylic acid cycle enzymes except citrate synthase (EC 4.1.3.7). Extracts of glucose-grown cells contained detectable levels of all tricarboxylic acid cycle enzymes except aconitase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.42), and a pyridine nucleotide-dependent malate dehydrogenase (EC 1.1.1.37). Extracts of cells capable of oxidizing acetate lacked only the pyridine nucleotide-dependent malate dehydrogenase. In lieu of this enzyem, a particulate pyridine nucleotide-independent malate oxidase (EC 1.1.3.3) was present. This enzyme required flavin adenine dinucleotide for activity and appeared to be associated with the electron transport chain. Radiorespirometric studies utilizing labeled glutamate demonstrated that a portion of the tricarboxylic acid cycle functioned during glucose catabolism. In spite of the presence of all tricarboxylic acid cycle enzymes, N. gonorrhoeae CS-7 was unable to grow in medium supplemented with cycle intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号