首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of thyrotrophin-releasing hormone (TRH, 10(-7) M) on luteinizing hormone (LH) release from rat anterior pituitary cells was examined using organ and primary cell culture. The addition of TRH to the culture medium resulted in a slightly enhanced release of LH from the cultured pituitary tissues. However, the amount of LH release stimulated by TRH was not greater than that produced by luteinizing hormone-releasing hormone (LH-RH, 10(-7) M). Actinomycin D (2 X 10(-5) M) and cycloheximide (10(-4) M) had an inhibitory effect on the action of TRH on LH release. The inability of TRH to elicit gonadotrophin release from the anterior pituitary glands in vivo may partly be due to physiological inhibition of its action by other hypothalamic factor(s).  相似文献   

2.
3.
4.
5.
6.
J Bíró 《Endokrinologie》1978,72(3):285-290
Oestradiol-17beta caused a marked reduction of RNA content in the cortex, hippocampus, brain stem, hypothalamus and RNA synthesis in the pituitary. LH-RH had facilitatory effect on the cortical and inhibitory influence on the hypothalamic RNA synthesis in vitro, and suppressed the pituitary RNA synthesis both in vivo and in vitro. The possible regulatory role of the LH-RH in the nucleic acid metabolism in discussed.  相似文献   

7.
5, 8, 11, 14 eicosatetraynoic acid (“ETYA”, Roche 3-1428) is a competitive inhibitor of arachidonic acid metabolism. It effectively inhibits the action of both the lipoxygenases and the fatty acid cyclooxygenases both of which utilize arachidonic acid as a substrate. In the present work, we have shown that ETYA stimulates luteinizing hormone (LH) release from cultured pituitary cells (ED50 = 10 μg/ml). Stimulation is not due to contaminants present in the preparation, since highly purified ETYA (characterized by GC-MS) stimulates release, while contaminants removed by silicic acid chromatography do not. In addition, neither oxidized solutions of ETYA nor arachidonic acid itself stimulate LH release. ETYA stimulated release is dose dependent and is inhibited by ions which antagonize Ca2+ action. The observation that neither indomethecin (10, 100 μg/ml) nor meclofenamate (1.0, 10 μg/ml) stimulate LH release suggests that the effect of ETYA cannot be explained by an action on cyclooxygenase. The action of ETYA may be mediated either via an effect on lipoxygenase or through some nonspecific action (such as altered membrane fluidity).  相似文献   

8.
5, 8, 11, 14 eicosatetraynoic acid ("ETYA", Roche 3-1428) is a competitive inhibitor of arachidonic acid metabolism. It effectively inhibits the action of both the lipoxygenases and the fatty acid cyclooxygenases both of which utilize arachidonic acid as a substrate. In the present work, we have shown that ETYA stimulates luteinizing hormone (LH) release from cultured pituitary cells (ED50 = 10 micrograms/ml). Stimulation is not due to contaminants present in the preparation, since highly purified ETYA (characterized by GC-MS) stimulates release, while contaminants removed by silicic acid chromatography do not. In addition, neither oxidized solutions of ETYA nor arachidonic acid itself stimulate LH release. ETYA stimulated release is dose dependent and is inhibited by ions which antagonize Ca2+ action. The observation that neither indomethecin (10, 100 micrograms/ml) nor meclofenamate (1.0, 10 micrograms/ml) stimulate LH release suggests that the effect of ETYA cannot be explained by an action on cyclooxygenase. The action of ETYA may be mediated either via an effect on lipoxygenase or through some nonspecific action (such as altered membrane fluidity).  相似文献   

9.
10.
11.
12.
Five new analogs of luteinizing hormone releasing hormone (LH-RH), des-Gly10-[Ala6]-LH-RH-ethylamide, des-Gly10-[D-Ala6]-LH-RH-ethylamide, des-Gly10-[α-aminoisobutyric acid6]-LH-RH-ethylamide, des-Gly10-[Phe5, D-Ala6]-LH-RH-ethylamide and des-Gly10-[Ile5, D-Ala6]-LH-RH-ethylamide were synthesized and evaluated for the ovulation-inducing activity in the rat, and it was found that the analogs, des-Gly10-[D-Ala6]-LH-RH-ethylamide and des-Gly10-[Phe5, D-Ala6]-LH-RH-ethylamide, were 50 times or more active than the original molecule.  相似文献   

13.
Previous in vivo studies from our laboratory suggested that glucocorticoids antagonize estrogen-dependent actions on LH secretion. This study investigated whether corticosterone (B) may have similar actions on gonadotropin biosynthesis and secretion in vitro. Enzymatically dispersed anterior pituitary cells from adult female rats were cultured for 48 h in alpha-modified Eagle's medium containing 10% steroid-free horse serum with or without 0.5 nM estradiol (E2). The cells were then cultured for 24 h with or without B in the presence or absence of E2. To evaluate hormone release, 5 x 10(5) cells were incubated with varying doses of GnRH (0, 10(-11)-10(-7) M) or pulsatile GnRH (10(-9) M; 20 min/h) for 4 h. Cell and medium LH and FSH were measured by RIA. To evaluate LH biosynthesis, 5 x 10(6) cells were incubated for an additional 24 h with 10(-10) M GnRH, 60 microCi 3H-glucosamine (3H-Gln), 20 microCi 35S-methionine (35S-Met), and the appropriate steroid hormones. Radiolabeled precursor incorporation into LH subunits was determined by immunoprecipitation, followed by SDS-PAGE. Continuous exposure to GnRH stimulated LH release in a dose-dependent manner, and this response was enhanced by E2. B by itself had no effect on LH release, but inhibited LH secretion in E2-primed cells at low concentrations of GnRH (10(-10) M or less). Total LH content was not altered by GnRH or steroid treatment. Similar effects of B were observed in cells that were given a pulsatile GnRH stimulus. In contrast to LH, E2 or B enhanced GnRH-stimulated FSH release at the higher doses of GnRH, while the combination of E2 and B increased basal and further augmented GnRH-stimulated release. Total FSH content was also increased in the presence of B, but not E2 alone, and was further augmented in cells treated with both steroids. There were no effects of the steroids on the magnitude of FSH release in response to GnRH pulses, but the cumulative release of FSH was greater in the E2 + B group compared to controls, indicating an increased basal release. Independent of E2, B suppressed the incorporation of 3H-Gln into LH by more than 50% of control, with only subtle effects on the incorporation of 35S-Met.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
We studied whether fatty acids modify adrenocorticotropic hormone (ACTH) release induced by stimulation with corticotropin-releasing hormone (CRH) from rat anterior pituitary cells. Stimulation with CRH (0.01-100 nmol/l) significantly and concentration-dependently increased ACTH release, which was synergistically enhanced by the simultaneous stimulation with 1 nmol/l arginine-vasopressin. Addition of saturated fatty acids (butyrate, caprylate, laurate, palmitate and stearate) in a medium at 1 mmol/l, despite effects on the basal release, significantly reduced the ACTH release induced by CRH (1 nmol/l) stimulation. Caprylate suppressed ACTH release in a concentration-dependent manner. However, unsaturated C18 and C20 fatty acids (oleate, linolate, linolenate and arachidonate) at 1 mmol/l significantly increased the basal release, but none of them suppressed CRH (1 nmol/l)-induced ACTH release. In the presence of caprylate (1 mmol/l), CRH (1 nmol/l)-stimulated increase in cellular calcium ion concentration was diminished. From these results we conclude that saturated fatty acids have a suppressing effect on CRH-induced ACTH increase in primary cultured rat anterior pituitary cells.  相似文献   

15.
T Murata  S Y Ying 《Life sciences》1991,49(6):447-453
Interleukin-1 beta (IL-1 beta) at doses of 0.15 and 1.5 nM significantly inhibited FSH secretion and stimulated LH secretion by cultured rat pituitary cells after 24-72 hr incubation whereas 15 pM of IL-1 beta was not effective. Treatment with IL-1 beta for 12-48 hr did not affect intracellular content of FSH. However, treatment with 0.15 and 1.5 nM of IL-1 beta for 72 hr significantly suppressed intracellular content of FSH whereas various doses of IL-1 beta incubated with the cells for 12-72 hr showed no effect on the intracellular content of LH. Pretreatment with IL-1 beta for 48 hr inhibited both GnRH-mediated LH and FSH secretions by the pituitary. The secretion of FSH and LH mediated by an activator of protein kinase C, phorbol 12-myristate 13-acetate, was also significantly suppressed by pretreatment with IL-1 beta for 48 hr. These results suggest that (a) IL-1 beta has opposite effects on the secretion of LH and FSH and (b) pretreatment with IL-1 beta suppresses GnRH-mediated stimulation of LH and FSH by the pituitary and this suppressive effect of IL-1 beta may involve the suppression of a protein kinase C-dependent mechanism.  相似文献   

16.
The influence of LHRH, an analog of LHRH (hydroxy-PRO1) and inulin on prolactin (PRL) secretion was studied using a clonal strain of pituitary cells. At low concentrations, 0.08 ng to 8 ng/ml, LHRH stimulated PRL release while at higher concentrations the opposite effect was obtained. The analog of LHRH inhibited PRL secretion at all concentrations studied. No effect was measured with inulin.  相似文献   

17.
The role of insulin-like growth factor I (IGF-I) in the release of luteinizing hormone (LH) is unclear in ruminants. In the present study, the effects of IGF-I on the release of LH stimulated by gonadotropin-releasing hormone (GnRH) were examined in primary cultures of bovine anterior pituitary (AP) cells, and the interaction between estradiol-17beta (E(2)) and IGF-I was characterized. GnRH(100nM)-stimulated LH release from the cultured cells was increased (P<0.05) 12, 24 and 36h after addition of IGF-I (250ng/ml), with a maximum at 12h (48.4ng/ml media versus 35.4ng/ml media in controls). IGF-I at concentrations of 25, 250 and 500ng/ml increased the release by 18.7, 24.2 and 28.9%, respectively (P<0.05), when compared with controls (37.2ng/ml media). E(2) (10nM), IGF-I (250ng/ml) and combined treatment of E(2) plus IGF-I also induced significant increases in LH release (P<0.05). The amounts of LH release after treatment with E(2) alone was 37.3% greater than with IGF-I alone (39.0ng/ml media versus 28.4ng/ml media) (P<0.05). When E(2) and IGF-I were added together (45.6ng/ml media), the release of LH was significantly greater than with either E(2) alone or IGF-I alone (P<0.05). E(2) (10nM) significantly (P<0.05) increased the amount of GnRH bound to the cells by 51.6% when compared with controls, however, IGF-I (250ng/ml) failed to increase GnRH binding. These results show that IGF-I enhances GnRH-stimulated LH release without changing the number of GnRH receptors in cattle, and IGF-I interacts with E(2) to increase the response to GnRH.  相似文献   

18.
Basal serum LH and FSH values were found to be within normal limits in 9 homosexual men. The mean LH and FSH responses following the intravenous administration of 100 microgram of LRH were not significantly different from that of heterosexual controls. In addition, the mean basal plasma serum testosterone was similar in the two groups. There is thus no definite implication of endocrine factors in the genesis of male homosexuality.  相似文献   

19.
The effect of porcine gastrin releasing peptide (GRP), a heptacosapeptide with potent gastrin releasing activity which has recently been isolated from porcine non-antral gastric tissue, on pituitary function was investigated in the rat. Graded doses of synthetic porcine GRP were injected intravenously and the animals were killed at various intervals after injection. Growth hormones, LH, FSH, and TSH were measured in serum by specific radioimmunoassays. GRP had no significant effect on growth hormone or FSH serum concentrations at any dose or sampling time studied. In contrast, the heptacosapeptide significantly stimulated LH and suppressed TSH secretion in a dose-related fashion. Since there are striking structural similarities between GRP and bombesin, a tetradecapeptide from amphibian skin which shows amino acid homology with the C-terminal region of GRP, GRP may be the mammalian counterpart of bombesin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号