首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial pathogens deliver type III effector proteins into the plant cell during infection. On susceptible (r) hosts, type III effectors can contribute to virulence. Some trigger the action of specific disease resistance (R) gene products. The activation of R proteins can occur indirectly via modification of a host target. Thus, at least some type III effectors are recognized at site(s) where they may act as virulence factors. These data indicate that a type III effector's host target might be required for both initiation of R function in resistant plants and pathogen virulence in susceptible plants. In Arabidopsis thaliana, RPM1-interacting protein 4 (RIN4) associates with both the Resistance to Pseudomonas syringae pv maculicola 1 (RPM1) and Resistance to P. syringae 2 (RPS2) disease resistance proteins. RIN4 is posttranslationally modified after delivery of the P. syringae type III effectors AvrRpm1, AvrB, or AvrRpt2 to plant cells. Thus, RIN4 may be a target for virulence functions of these type III effectors. We demonstrate that RIN4 is not the only host target for AvrRpm1 and AvrRpt2 in susceptible plants because its elimination does not diminish their virulence functions. In fact, RIN4 negatively regulates AvrRpt2 virulence function. RIN4 also negatively regulates inappropriate activation of both RPM1 and RPS2. Inappropriate activation of RPS2 is nonspecific disease resistance 1 (NDR1) independent, in contrast with the established requirement for NDR1 during AvrRpt2-dependent RPS2 activation. Thus, RIN4 acts either cooperatively, downstream, or independently of NDR1 to negatively regulate RPS2 in the absence of pathogen. We propose that many P. syringae type III effectors have more than one target in the host cell. We suggest that a limited set of these targets, perhaps only one, are associated with R proteins. Thus, whereas any pathogen virulence factor may have multiple targets, the perturbation of only one is necessary and sufficient for R activation.  相似文献   

2.
Plant cells have two defense systems that detect bacterial pathogens. One is a basal defense system that recognizes complex pathogen-associated molecular patterns (PAMPs). A second system uses disease-resistance (R) proteins to recognize type lll effector proteins that are delivered into the plant cell by the pathogen's type III secretion system. Here we show that these two pathways are linked. We find that two Pseudomonas syringae type III effectors, AvrRpt2 and AvrRpm1, inhibit PAMP-induced signaling and thus compromise the host's basal defense system. RIN4 is an Arabidopsis protein targeted by AvrRpt2 and AvrRpm1 for degradation and phosphorylation, respectively. We find that RIN4 is itself a regulator of PAMP signaling. The R proteins, RPS2 and RPM1, sense type III effector-induced perturbations of RIN4. Thus, R proteins guard the plant against type III effectors that inhibit PAMP signaling and provide a mechanistic link between the two plant defense systems.  相似文献   

3.
Axtell MJ  Staskawicz BJ 《Cell》2003,112(3):369-377
Plants have evolved a sophisticated innate immune system to recognize invading pathogens and to induce a set of host defense mechanisms resulting in disease resistance. Pathogen recognition is often mediated by plant disease resistance (R) proteins that respond specifically to one or a few pathogen-derived molecules. This specificity has led to suggestions of a receptor-ligand mode of R protein function. Delivery of the bacterial effector protein AvrRpt2 by Pseudomonas syringae specifically induces disease resistance in Arabidopsis plants expressing the RPS2 R protein. We demonstrate that RPS2 physically interacts with Arabidopsis RIN4 and that AvrRpt2 causes the elimination of RIN4 during activation of the RPS2 pathway. AvrRpt2-mediated RIN4 elimination also occurs in the rps2, ndr1, and Atrar1 mutant backgrounds, demonstrating that this activity can be achieved independent of an RPS2-mediated signaling pathway. Therefore, we suggest that RPS2 initiates signaling based upon perception of RIN4 disappearance rather than direct recognition of AvrRpt2.  相似文献   

4.
AvrRpt2, an effector protein from Pseudomonas syringae pv. tomato (Pst), behaves as an avirulence factor that activates resistance in Arabidopsis thaliana lines expressing the resistance gene RPS2. AvrRpt2 can also enhance pathogen fitness by promoting the ability of the bacteria to grow and to cause disease on susceptible lines of A. thaliana that lack functional RPS2. The activation of RPS2 is coupled to the AvrRpt2-induced disappearance of the A. thaliana RIN4 protein. However, the significance of this RIN4 elimination to AvrRpt2 virulence function is unresolved. To clarify our understanding of the contribution of RIN4 disappearance to AvrRpt2 virulence function, we generated new avrRpt2 alleles by random mutagenesis. We show that the ability of six novel AvrRpt2 mutants to induce RIN4 disappearance correlated well with their avirulence activities but not with their virulence activities. Moreover, the virulence activity of wild-type AvrRpt2 was detectable in an A. thaliana line lacking RIN4. Collectively, these results indicate that the virulence activity of AvrRpt2 in A. thaliana is likely to rely on the modification of host susceptibility factors other than, or in addition to, RIN4.  相似文献   

5.
Arabidopsis RIN4 is a key bacterial virulence target that is guarded by the resistance (R) protein RPM1. Two recent studies suggest that another R protein, RPS2, also guards RIN4. Bacterial avirulence (Avr) effectors AvrB, AvrRpm1, and AvrRpt2 alter this key protein. R proteins RPM1 and RPS2 recognize the altered status and initiate a defense-signaling response. The guard hypothesis is in!  相似文献   

6.
Upon delivery to the plant cell during infection, the Pseudomonas syringae effector protein AvrRpt2 undergoes proteolytic processing, enhances pathogen virulence and causes the elimination of the Arabidopsis RIN4 protein. A structure-prediction method was employed in order to investigate possible biochemical functions of AvrRpt2. Results of a secondary structure prediction algorithm suggest that the functional C-terminal portion of AvrRpt2 is a cysteine protease. Mutation of predicted catalytic residues within this portion of AvrRpt2 abolished in planta processing, elimination of Arabidopsis RIN4, and the ability to trigger an RPS2-specific resistance response. These data indicate that AvrRpt2 is most likely a sequence divergent cysteine protease whose activity is required for elimination of RIN4 during infection.  相似文献   

7.
The Arabidopsis RIN4 protein mediates interaction between the Pseudomonas syringae type III effector proteins AvrB, AvrRpm1, and AvrRpt2 and the Arabidopsis disease-resistance proteins RPM1 and RPS2. Confocal laser-scanning fluorescence microscopy following particle bombardment of tobacco leaf epidermal cells was used to examine the subcellular localization of fusions between GFP and RIN4 or several of its homologs and to examine the effects of cobombardment with AvrRpt2 or AvrRpml. This study showed that RIN4 was attached to the plasma membrane at its carboxyl terminus and that a carboxyl-terminal CCCFxFxxx prenylation or acylation (typically palmitoylation) motif, or both, was essential for this attachment. RIN4 was cleaved by AvrRpt2 at two PxFGxW motifs, one releasing a large portion of RIN4 from the plasma membrane and both exposing amino-terminal residues that destabilized the carboxyl-terminal cleavage products by targeting them for N-end ubiquitylation and proteasomal degradation. Plasma-membrane localization of RIN4 was not affected by AvrRpml. RIN4 was found to be part of a protein family comprising two full-length homologs and at least 11 short carboxyl-terminal homologs. Representatives of this family, comprising a full-length RIN4 homolog and two short carboxyl-terminal RIN4 homologs, were also attached to the plasma membrane and cleaved near their amino termini by AvrRpt2, but in contrast to RIN4, the major portions of these proteins remained on the plasma membrane. N-end degradation may play a minor role in RIN4 degradation but probably plays a major role in the degradation of RIN4 homologs and is, therefore, a major pathogenic consequence of AvrRpt2 cleavage.  相似文献   

8.
AvrRpt2, a Pseudomonas syringae type III effector protein, functions from inside plant cells to promote the virulence of P. syringae pv. tomato strain DC3000 (PstDC3000) on Arabidopsis thaliana plants lacking a functional copy of the corresponding RPS2 resistance gene. In this study, we extended our understanding of AvrRpt2 virulence activity by exploring the hypothesis that AvrRpt2 promotes PstDC3000 virulence by suppressing plant defenses. When delivered by PstDC3000, AvrRpt2 suppresses pathogen-related (PR) gene expression during infection, suggesting that AvrRpt2 suppresses defenses mediated by salicylic acid (SA). However, AvrRpt2 promotes PstDC3000 growth on transgenic plants expressing the SA-degrading enzyme NahG, indicating that AvrRpt2 does not promote bacterial virulence by modulating SA levels during infection. AvrRpt2 general virulence activity does not depend on the RPM1 resistance gene, as mutations in RPM1 had no effect on AvrRpt2-induced phenotypes. Transgenic plants expressing AvrRpt2 displayed enhanced susceptibility to PstDC3000 strains defective in type III secretion, indicating that enhanced susceptibility of these plants is not because of suppression of defense responses elicited by other type III effectors. Additionally, avrRpt2 transgenic plants did not exhibit increased susceptibility to Peronospora parasitica and Erysiphe cichoracearum, suggesting that AvrRpt2 virulence activity is specific to P. syringae.  相似文献   

9.
10.
Day B  Dahlbeck D  Staskawicz BJ 《The Plant cell》2006,18(10):2782-2791
Recognition of pathogens by plants involves the coordinated efforts of molecular chaperones, disease resistance (R) proteins, and components of disease resistance signaling pathways. Characterization of events associated with pathogen perception in Arabidopsis thaliana has advanced understanding of molecular genetic mechanisms associated with disease resistance and protein interactions critical for the activation of resistance signaling. Regulation of R protein-mediated signaling in response to the bacterial pathogen Pseudomonas syringae in Arabidopsis involves the physical association of at least two R proteins with the negative regulator RPM1 INTERACTING PROTEIN4 (RIN4). While the RIN4-RPS2 (for RESISTANCE TO P. SYRINGAE2) and RIN4-RPM1 (for RESISTANCE TO P. SYRINGAE PV MACULICOLA1) signaling pathways exhibit differential mechanisms of activation in terms of effector action, the requirement for NON-RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1) is shared. Using a yeast two-hybrid screen, followed by a series of coimmunoprecipitation experiments, we demonstrate that the RIN4-NDR1 interaction occurs on the cytoplasmically localized N-terminal portion of NDR1 and that this interaction is required for the activation of resistance signaling following infection by P. syringae expressing the Cys protease Type III effector protein AvrRpt2. We demonstrate that like RPS2 and RPM1, NDR1 also associates with RIN4 in planta. We suggest that this interaction serves to further regulate activation of disease resistance signaling following recognition of P. syringae DC3000-AvrRpt2 by Arabidopsis.  相似文献   

11.
The avrRpt2 gene from Pseudomonas syringae pv. tomato exhibits avirulence activity on Arabidopsis expressing the resistance gene RPS2 but promotes bacterial virulence on susceptible rps2 Arabidopsis. To understand the functional relationship between the avirulence and virulence activities of avrRpt2, we analyzed a series of six avrRpt2 mutants deficient in eliciting the RPS2-dependent hypersensitive response. We show that the mutants are also severely impaired in triggering RSP2-dependent resistance. Four of these mutants are severely impaired in their virulence activity, whereas two alleles, encoding C-terminal deletions of AvrRpt2, retain significant but slightly reduced virulence activity. Thus, the avirulence and virulence activities of avrRpt2 can be genetically uncoupled. We tested the ability of the two C-terminal deletion mutants to trigger AvrRpt2-induced elimination of the Arabidopsis RIN4 protein and show that they retain this activity but are less efficient than wild-type AvrRpt2. Thus, reduced AvrRpt2 virulence activity is correlated with reduced efficiency in the induction of RIN4 disappearance. This suggests that an alteration in kinetics of RIN4 disappearance triggered by the C-terminal deletion mutants may provide the mechanistic basis for the uncoupling of the avirulence and virulence activities of avrRpt2.  相似文献   

12.
Gram-negative phytopathogenic bacteria require a type III secretion apparatus for pathogenesis, presumably to deliver Avr effector proteins directly into plant cells. To extend previous studies of Avr effectors that employed plasmids encoding Avr proteins, we developed a system that permits the integration of any gene into the Pseudomonas syringae genome in single copy. With this system, we confirmed earlier findings showing that P. syringae pv. maculicola strain PsmES4326 expressing the AvrRpt2 effector induces a resistance response in plants with the cognate R gene, RPS2. Chromosomally located avrRpt2, however, provoked a stronger resistance response than that observed with plasmid-expressed AvrRpt2 in RPS2+ plants. Additionally, chromosomal expression of AvrRpt2 conferred a fitness advantage on P. syringae grown in rps2- plants, aiding in growth within leaves and escape to leaf surfaces that was difficult to detect with plasmid-borne avrRpt2. Finally, with the use of the genomic integration system, we found that a chimeric protein composed of the N terminus of the heterologous AvrRpml effector and the C-terminal effector region of AvrRpt2 was delivered to plant cells. Because the C terminus of AvrRpt2 cannot translocate into plant cells on its own, this indicates that the N-terminal region can direct secretion and translocation during an infection, which supports the view that Avr proteins have a modular design. This work establishes a readily manipulatable system to study type III effectors in a biologically realistic context.  相似文献   

13.
Recent studies have demonstrated that RPS2, a plasma membrane-localized nucleotide binding site/leucine-rich repeat protein from Arabidopsis thaliana, associates with RPM1 Interacting Protein 4 (RIN4) and that this association functions to modulate the RPS2-mediated defense pathway in response to the bacterial effector protein AvrRpt2. In addition to negatively regulating RPS2 activity, RIN4 is also a target of AvrRpt2, a Cys protease and cognate bacterial effector protein of RPS2. Nicotiana benthamiana has been employed as a heterologous expression system to characterize the RPS2-RIN4 association, defining the domains in RIN4 required for the negative regulation of RPS2 activity. Upon inoculation of N. benthamiana leaves with Agrobacterium tumefaciens expressing RPS2, a rapid hypersensitive response (HR) is detected with 22 h of infiltration. The HR can be blocked by infiltrating the leaf with A. tumefaciens expressing RPS2 in the presence of RIN4, recapitulating the ability of RIN4 to interfere with RPS2-mediated resistance in Arabidopsis. Moreover, in the presence of RIN4, the RPS2-mediated HR can be restored by the delivery of AvrRpt2 via A. tumefaciens. This assay has been developed as a phenotypic marker for (1) the HR-inducing phenotype associated with RPS2, (2) negative regulation of RPS2 by RIN4, and (3) the AvrRpt2-mediated disappearance of RIN4. Here, we present a series of deletion and site-directed mutation analyses to identify amino acids in RIN4 required for the RPS2-RIN4 association and to distinguish these from residues in RIN4 that serve as a target sequence for AvrRpt2. In addition to characterizing the RPS2-RIN4 association in N. benthamiana, we have moved forward to show that the biological relevance of these amino acid changes is applicable in Arabidopsis as well. To this end, we have identified specific amino acids within the C-terminal half of RIN4 that are required for RPS2 regulation and association.  相似文献   

14.
Jin P  Wood MD  Wu Y  Xie Z  Katagiri F 《Plant physiology》2003,133(3):1072-1082
Many phytopathogenic bacteria use a type III secretion system to deliver type III effector proteins into the host plant cell. The Pseudomonas syringae type III effector AvrRpt2 is cleaved at a specific site when translocated into the host cell. In this study, we first demonstrate that the factor(s) required for AvrRpt2 cleavage is present in extracts from animal and yeast cells, as well as plant cells. The cleavage factor in animal and plant cell extracts was heat labile but relatively insensitive to protease inhibitors. Second, mutational analysis of AvrRpt2 was applied to identify features important for its cleavage. In addition to two of the amino acid residues in the immediate vicinity of the cleavage site, a large part of the region C-terminal to the cleavage site was required when AvrRpt2 was cleaved in animal cell extract. Most of these features were also important when AvrRpt2 was cleaved in plant cells. Third, we investigated the effect of cleavage in interactions of AvrRpt2 with plant cells. Cleavage of AvrRpt2 appeared to be important for proper interactions with Arabidopsis cells that lack the resistance gene product corresponding to AvrRpt2, RPS2. In addition, removal of the region N-terminal to the cleavage site was important for the correct localization of the C-terminal effector region of the protein in the host cell. We speculate that the virulence function of AvrRpt2 requires removal of the N-terminal region to redirect the effector protein to a specific subcellular location in the host cell after translocation of the protein.  相似文献   

15.
The Arabidopsis RPM1 protein confers resistance to disease caused by Pseudomonas syringae strains delivering either the AvrRpm1 or AvrB type III effector proteins into host cells. We characterized two closely related RPM1-interacting proteins, RIN2 and RIN3. RIN2 and RIN3 encode RING-finger type ubiquitin ligases with six apparent transmembrane domains and an ubiquitin-binding CUE domain. RIN2 and RIN3 are orthologs of the mammalian autocrine motility factor receptor, a cytokine receptor localized in both plasma membrane caveolae and the endoplasmic reticulum. RIN2 is predominantly localized to the plasma membrane, as are RPM1 and RPS2. The C-terminal regions of RIN2 and RIN3, including the CUE domain, interact strongly with an RPM1 N-terminal fragment and weakly with a similar domain from the Arabidopsis RPS2 protein. RIN2 and RIN3 can dimerize through their C-terminal regions. The RING-finger domains of RIN2 and RIN3 encode ubiquitin ligases. Inoculation with P. syringae DC3000(avrRpm1) or P. syringae DC3000(avrRpt2) induces differential decreases of RIN2 mobility in SDS-PAGE and disappearance of the majority of RIN2. A rin2 rin3 double mutant expresses diminished RPM1- and RPS2-dependent hypersensitive response (HR), but no alteration of pathogen growth. Thus, the RIN2/RIN3 RING E3 ligases apparently act on a substrate that regulates RPM1- and RPS2-dependent HR.  相似文献   

16.
Effector proteins injected by the pathogenic bacteria Pseudomonas syringae into plants can have profound effects on the pathogen-host interaction due to their efficient recognition by plants and the subsequent triggering of defenses. The AvrRpt2 effector triggers strong local and systemic defense (called systemic acquired resistance [SAR]) responses in Arabidopsis thaliana plants that harbor a functional RPS2 gene that encodes an R protein in the coiled-coil, nucleotide-binding domain, leucine-rich repeat class. The newly identified win3-T mutant shows greatly reduced resistance to P syringae carrying avrRpt2. In win3-T plants, RIN4 cleavage, an early AvrRpt2-induced event, is normal. However, salicylic acid accumulation is compromised, as is SAR induction and the local hypersensitive cell death response after infection by P syringae carrying avrRpt2. WIN3 encodes a member of the firefly luciferase protein superfamily. Expression of WIN3 at an infection site partially requires PAD4, a protein known to play a quantitative role in RPS2-mediated signaling. WIN3 expression in tissue distal to an infection site requires multiple salicylic acid regulatory genes. Finally, win3-T plants show modestly increased susceptibility to virulent P syringae and modestly reduced SAR in response to P. syringae carrying avrRpm1. Thus, WIN3 is a key element of the RPS2 defense response pathway and a basal and systemic defense component.  相似文献   

17.
Afzal AJ  da Cunha L  Mackey D 《The Plant cell》2011,23(10):3798-3811
RPM1-interacting protein 4 (RIN4) is a multifunctional Arabidopsis thaliana protein that regulates plant immune responses to pathogen-associated molecular patterns (PAMPs) and bacterial type III effector proteins (T3Es). RIN4, which is targeted by multiple defense-suppressing T3Es, provides a mechanistic link between PAMP-triggered immunity (PTI) and effector-triggered immunity and effector suppression of plant defense. Here we report on a structure-function analysis of RIN4-mediated suppression of PTI. Separable fragments of RIN4, including those produced when the T3E AvrRpt2 cleaves RIN4 and each containing a plant-specific nitrate-induced (NOI) domain, suppress PTI. The N-terminal and C-terminal NOIs each contribute to PTI suppression and are evolutionarily conserved. Native RIN4 is anchored to the plasma membrane by C-terminal acylation. Nonmembrane-tethered derivatives of RIN4 activate a cell death response in wild-type Arabidopsis and are hyperactive PTI suppressors in a mutant background that lacks the cell death response. Our results indicate that RIN4 is a multifunctional suppressor of PTI and that a virulence function of AvrRpt2 may include cleaving RIN4 into active defense-suppressing fragments.  相似文献   

18.
The plant pathogen Pseudomonas syringae causes disease by secreting a potentially large set of virulence proteins called effectors directly into host cells, their environment, or both, using a type III secretion system (T3SS). Most P. syringae effectors have a common upstream element called the hrp box, and their N-terminal regions have amino acids biases, features that permit their bioinformatic prediction. One of the most prominent biases is a positive serine bias. We previously used the truncated AvrRpt2(81-255) effector containing a serine-rich stretch from amino acids 81 to 100 as a T3SS reporter. Region 81 to 100 of this reporter does not contribute to the secretion or translocation of AvrRpt2 or to putative effector protein chimeras. Rather, the serine-rich region from the N-terminus of AvrRpt2 is important for protein accumulation in bacteria. Most of the N-terminal region (amino acids 15 to 100) is not essential for secretion in culture or delivery to plants. However, portions of this sequence may increase the efficiency of AvrRpt2 secretion, delivery to plants, or both. Two effectors previously identified with the AvrRpt2(81-255) reporter were secreted in culture independently of AvrRpt2, validating the use of the C terminus of AvrRpt2 as a T3SS reporter. Finally, using the reduced AvrRpt2(101-255) reporter, we confirmed seven predicted effectors from P. syringae pv. tomato DC3000, four from P. syringae pv. syringae B728a, and two from P. fluorescens SBW25.  相似文献   

19.
20.
The enterobacterium Erwinia amylovora is a devastating plant pathogen causing necrotrophic fire blight disease of apple, pear, and other rosaceous plants. In an attempt to identify genes induced during infection of host plants, we identified and cloned a putative effector gene, avrRpt2EA. The deduced amino-acid sequence of the translated AvrRpt2EA protein is homologous to the effector protein AvrRpt2 previously reported in Pseudomonas syringae pv. tomato. These two proteins share 58% identity (70% similarity) in the functional domain; however, the secretion and translocation signal domain varied. The avrRpt2EA promoter region contains a typical 'hrp box,' which suggests that avrRpt2EA is regulated by the alternative sigma factor, HrpL. avrRpt2EA was detected in all E. amylovora strains tested but not in other closely related Erwinia species. An avrRpt2EA deletion mutant was reduced in its ability to cause systemic infection on immature pear fruits as compared with the wild-type strain, indicating that avrRpt2EA acts as a virulence factor on its native host. Growth of P. syringae pv. tomato DC3000 expressing avrRpt2EA was 10-fold higher than that of P. syringae pv. tomato DC3000 in an Arabidopsis rps2 mutant, indicating that avrRpt2EA promotes virulence of P. syringae pv. tomato DC3000 on Arabidopsis similar to P. syringae pv. tomato avrRpt2. When avrRpt2EA was expressed in P. syringae pv. tomato DC3000 in its native form, a weak hypersensitive response (HR) was induced in Arabidopsis; however, a hybrid protein containing the P. syringae pv. tomato avrRpt2 signal sequence, when expressed from the P syringae pv. tomato avrRpt2 promoter, caused a strong HR. Thus, the signal sequence and promoter of avrRpt2EA may affect its expression, secretion, or translocation, singly or in combination, in P. syringae pv. tomato DC3000. These results indicated that avrRpt2EA is genetically recognized by the RPS2 disease resistance gene in Arabidopsis when expressed in P. syringae pv. tomato DC3000. The results also suggested that although distinct pathogens such as E. amylovora and P. syringae may contain similar effector genes, expression and secretion of these effectors can be under specific regulation by the native pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号