首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guerrero et al (1994) promote Tauti's equation, rate = a exp(b temp), as simple to fit by log conversion (which may be formallyinappropriate), empirically adequate, and having ‘appropriatebiological characteristics’. No function is justifiablefrom reductionist theories, but Belehrádek's, rate =a (temp – T0)b, with b fixed for the taxon of interest,fits equally well, and singularly distinguishes differencesattributable to temperature adaptation (T0, often misunderstoodas ‘biological zero’), and to size or other species-dependentproperties (a).  相似文献   

2.
Daphnia can suppress ciliates and rotifers through predationand interference competition, but it is not known whether thisproduces any direct benefit to Daphnia. We conducted survivorshipand cohort lifetable experiments to determine whether Daphniacan utilize ciliates and rotifers as food. Three species ofoligotrich ciliates (Halteria grandinella, Strobilidium gyransand Strobilidiumvelox) and one rotifer (Keratella cochlearis)were used. Lifetable experiments were conducted with a basallevel of algae (Cryptomonas sp.), plus either ciliates or rotifers,while survivorship experiments had only the rotifers or ciliates.Densities of 30 H.grandinella ml–1, 50 S.gyrans ml–1and 15 S.velox ml–1 enhanced Daphnia pulex's populationgrowth rate 35–50% over controls with only algae. TenS.gyrans ml–1 did not produce a significant change inDaphnia's growth rate. Densities of 100 and 300 K.cochlearis–1 increased Daphnia population growth rates by II and10%, respectively. Both 10 and 50 S.gyrans ml–1 enhancedDaphnia's survivorship compared to starved controls, but neither100 nor 300 K.cochlearis l–1 enhanced its survivorship.The amount of enhancement of Daphnia growth rates by rotifersand ciliates is roughly proportional to the death rates imposedby Daphnia. The death rate imposed by Daphnia on rotifers isa function of both algal density and Daphnia size. Per unitbiomass, neither ciliates nor Keratella appear to be as nutritiousfor Daphnia as is Cryptomonas.  相似文献   

3.
The calanoid copepod, Eudiaplomus graciloides, was reared fromegg to adult on uni-algal diets (0.1. 0.5 and 2.5 mg dry wt1–1) using the green alga, Chlamydomonas reinhardtii,as food, or on a mixed diet consisting of Lake Esrom water filteredthrough a plankton net with pore size 45 µm and supplementedwith C. reinhardtii (2.5 mg dry wt 1–1). On the mixeddiet at 21.0°C growth in body dry wt (W, µg dry wt)was exponential, and the growth constants were 0.21 day–1in the early to mid juvenile stage (N1 - C4) and 0.11 day–1in the late juvenile to early adult stage (C4-A). At 14.5°Cthe corresponding growth rate constants were 0.10 and 0.08 day–1.Similar growth rates were found at uni-algal concentrationsof 0.5 and 2.5 mg dry wt I–1, and it was argued that thethreshold concentration for growth in Eudiaptomus was closeto 0.1 mg dry wt I–1. The clearance (C, ml h–1)of copepodites was measured on the uni-algal diets. The constantsof the regression (C = aWb) were: a = 0.125, b = 0.858 (2000C. reinhardtii ml–1), a = 0.068, b = 0.849 (10 000), a= 0.028, b = 0.875 (50 000). Ingestion rates were calculatedfrom the clearances and the average algal concentrations. Atthe three food levels the average daily rations were 30, 67and 125% of body dry wt. The respiration rate (R, nl O2 h–1)was measured in individuals reared on the mixed diet. The constantsof the regression (R = aWb) were: a = 4.82, b = 1.07 (nauplii,14.5°C), a = 4.17, b = 0.904 (copepodites and adults, 14.5°C),a = 6.87, b = 0.757 (copepodites and adults, 21.0°C). Nosignificant difference in the respiration rate of copepoditesreared on uni-algal diets and the mixed diet could be demonstrated.Energy budgets were calculated. The assimilation efficiencyand the gross growth efficiency of copepodites decreased markedlywith increasing food concentration, the net growth efficiencyvaried from an average of 0.44 at the lowest algal concentrationto 0.60 on the mixed diet. The results are discussed in relationto previous findings with both freshwater and marine copepods.  相似文献   

4.
Cellular chlorophyll a, protein, carbohydrate and lipid contentwas determined for eleven clones of centric marine diatoms (volume89–1.47 x 107 µ3) and eight species of marine dinoflagellates(597–4.45 x 104 µ3) cultured under continuous illuminationat 18°C and 20°C, respectively. In both groups the logof cellular concentrations of each constituent was directlyrelated to the log of cell volume; diatoms generally had lowercellular concentrations than dinoflagellates of an equivalentvolume. Diatom chlorophyll a, protein and lipid concentrationsnormalized to a unit cell volume (pg µ–3) decreasedexponentially with increasing cell size; this decrease is aconsequence of the diatoms' unique morphology restricting cellcytoplasm to a thin parietal layer within the frustule. Althoughdinoflagellates yield a wide range of cytoplasm concentrations,small dinoflagellates contained up to 3-fold higher cytoplasmconcentrations of all constituents than diatoms of equal volume.The log of cellular caloric values, summed from the caloricequivalents of cellular protein, carbohydrate and lipid, wasa linear function of log volume. Diatoms contained ca. halfthe caloric value of dinoflagellates of an equivalent volume.Although the evaluation of caloric content provides a basisfor comparing the "nutritional value" of phytoplankton groups,evidence from the literature suggests subjective factors suchas taste and digestibility are equally important in determiningnutritional values of individual species.  相似文献   

5.
The chrysophyte Olisthodiscus luteus is not ingested by Synchaetacecilia. It inhibits the feeding on other, acceptable food atO. luteus densities as low as 50 cells ml–1 and reducessurvival and reproduction at O. luteus densities > 103 cellsml–1. The possible mechanisms and implications of thisphenomenon for the distribution and abundance of S. ceciliaare discussed.  相似文献   

6.
Three marine phytoplankton species (Skeletonema costatum, Olisthodiscusluteus andGonyaulax tamarensis) were grown in batch culturesat 15°C and a 14:10 L:D cycle at irradiance levels rangingfrom 5 to 450 µEinst m–2 s–1. At each irradiance,during exponential growth, concurrent measurements were madeof cell division, carbon-specific growth rate, photosyntheticperformance (both O2 and POC production), dark respiration,and cellular composition in terms of C, N and chlorophyll a.The results indicate that the three species were similar withrespect to chemical composition, C:N (atomic) = 6.9 ±0.4, photo-synthetic quotient, 1.43 ± 0.09, and photosyntheticefficiency, 2.3 ±0.1 x 10–3 µmol O2 (µgChl a)–1 h–1 (µEinst m–2 s–1)–1.Differences in maximum growth rate varied as the –0.24power of cell carbon. Differences in growth efficiency, werebest explained by a power function of Chl a:C at µ = 0.Compensation intensities, ranged from 1.1 µEinst m–2s–1 for S. costatum to 35 forG. tamarensis and were foundto be a linear function of the maintenance respiration rate.The results indicate that interspecific differences in the µ–Irelationship can be adequately explained in terms of just threeparameters: cell carbon at maximum growth rate, the C:Chl aratio (at the limit as growth approaches zero) and the respirationrate at zero growth rate. A light-limited algal growth modelbased on these results gave an excellent fit to the experimentalµ–I curves and explained 97% of the observed interspecificvariability. 1Present address: Lamont-Doherty Geological Observatory Columbiaof University, Palisades, NY 10964, USA  相似文献   

7.
In situ light measurements were used to obtain information oninherent and apparent optical properties. The average verticalattenuation coefficient Kd(ave) varied from 1.1 to 4.6 In unitsm–1 During three periods the variation in Kd(ave) correlatedwith changes in chlorophyll a concentration and specific attenuationcoefficients Ks, of 0.013, 0.014 and 0.022 m2 mg Chl a–1were calculated. Chlorophyll-specific diffuse absorption coefficients(A,) for these periods were 0.012. 0.013 and 0.017 m2 mg Chla–1 and only varied significantly from estimates of Ksin the period when scattering was intense. Absorption coefficientsa(zmid) and scattering coefficients b(zmid) calculated for themid-point of the euphotic zone ranged between 0.45 and 2.9 mand 3.5–52.0 m respectively. Chlorophyll-specific absorptioncoefficients Ka, of 0.005, 0.006 and 0.007 m2 mg Chl a–1and scattering coefficients Kb of 0.05. 0.09 and 0.191 m2 mgChl a–1 were measured during the three periods. The highKb value occurred when gas-vacuolate cyanobactena were dominant.Algal photosynthesis and light absorption were related throughthe maximum quantum yield m which varied between 0.019 and 0.11mol C Einstein–1 while average quantum yields a, variedbetween 0.006 and 0.024 with a mean of 0.013 mol C Einstein–1A comparison of changes in the mean irradiance of the mixedzone and chlorophyll concentration indicated that growth waslight limited below 0.04–0.05 Einsteins absorbed mg Chla–1 day–1.  相似文献   

8.
WATKINSON  A. R. 《Annals of botany》1984,53(4):469-482
Monocultures of Vulpia fasciculata were grown over a wide rangeof densities to investigate the influence of crowding and nutrientsupply on growth and self-thinning. For a given time and densityseries the relationship between mean yield per plant (w) andthe density of survivors (N) could be described by the equation w= wm (1+aN)–b. where wm is the yield of an isolated plant, a is the area requiredto achieve a yield of wm and b describes the effectiveness withwhich resources are taken up from the area. All three parametersincreased with time. Adding nutrients changed not only the rate at which the effectsof crowding occurred but also the intensity of crowding since wm = C(ab)D. where C and D are constants. The addition of nutrients resultedin an increase in the value of C. Such an increase means thata larger weight can be supported by a given area because theresources within that area are greater. During the early phases of growth, populations of V. fasciculataconformed to the –3/2 power law, w = cN–3/2, butonly at very high densities with a plentiful supply of nutrients.However, once the maximum standing crop had been reached thetrajectory of the thinning line switched to a slope of justless than –1 when weight was ploted against density onlogarithmic scales. The intercept of the –3/2 thinningline was considerably higher (log c = 5.74) than those for mosttrees and forbs but was similar to those of a number of othergrasses. Vulpia fasciculata, dune fescue, yield-density models, self-thinning, density-dependence, nutrient supply  相似文献   

9.
Seasonal and vertical fluctuations of zooplankton species composition,biomass, and production were monitored by weekly sampling duringa two year period in one eutrophic pond in Central Finland.The study was one part of a more comprehensive study programto investigate the effects of warm water effluents from onesmall thermal power plant (35 MW) on the pond ecosystem. Becauseof the circulation of the pond water through the pumps in thepower plant the crustacean populations were very sparse in planktonduring the seasons the power plant was in operation (late Augustto May). During that time rotifers were dominant and some speciesreached very high densities (e.g., Keratella cochlearis s.l.ca. 15 000 ind. l–1 in sping). In summer months Asplanchnapriodonta, Ceriodaphnia quadrangula, Bosmina longirostris, Mesocyclopsleuckarti and Thermocyclops oithonoides were dominant. A totalof 96 planktonic and meroplanktonic taxa were identified (26ciliates, 46 rotifers, 21 cladocerans and 3 copepods). The dryweight biomass of total zooplankton was 10 mg m–3 in wintermonths, 10–100 mg m–3 in spring and 300–1000mg m–3 in summer. The total yearly production of zooplanktonwas 8552 mg dry wt m–3 a–1 in 1979 and 8440 mg drywt m–3 a–1 in 1980, from which the proportion ofrotifers was 33–39%, cladocerans 52–58% and copepods8.6 –9.4%. The winter production was 0.2–0.5% ofthe total yearly production, that of spring and autumn togetherwas 8.1–10.4% and the remainder (89–91%) was summerproduction.  相似文献   

10.
The seasonal variability of phytoplankton in the EquatorialAtlantic was analysed using Sea-viewing Wide Field-of-view Sensor(SeaWiFS)-derived chlorophyll a (Chl a) concentration data from1998 to 2001, together with in situ Chl a and primary productiondata obtained during seven cruises carried out between 1995and 2000. Monthly averaged SeaWiFS Chl a distributions werein agreement with previous observations in the Equatorial Atlantic,showing marked differences between 10° W in the EasternTropical Atlantic (ETRA) and 25° W in the Western TropicalAtlantic (WTRA) provinces (Longhurst et al. 1995. J. PlanktonRes., 17, 1245–1271). The seasonal cycle of SeaWiFS-derivedChl a concentration calculated for 0–10° S, 0–20°W (ETRA) is consistent with in situ Chl a measurements, withvalues ranging from 0.16 mg m–3, from February to April,to 0.52 mg m–3 in August. Lower variability was observedin 10° N–10° S, 20–30° W (WTRA) whereminimum and maximum concentrations occurred in April (0.15 mgm–3) and in August (0.24 mg m–3), respectively.A significant empirical relationship between depth-integratedprimary production and in situ measured sea surface Chl a wasfound for ETRA, allowing us to estimate the seasonal cycle ofdepth-integrated primary production from SeaWiFS-derived Chla. As for Chl a, this model was verified in a small area ofthe Eastern Equatorial Atlantic (0–10° S, 0–20°W), although in this instance it was not completely able todescribe the magnitude and temporal variability of in situ primaryproduction measurements. The annual euphotic depth-integratedprimary production rate estimated for ETRA by our empiricalmodel was 1.4 Gt C year–1, which represents 16% of theopen ocean primary production estimated for the whole AtlanticOcean.  相似文献   

11.
BOKHARI  U. G. 《Annals of botany》1976,40(5):969-979
The influence of various treatments and temperature regimeson total chlorophylls and on the chlorophyll a:b ratio of westernwheatgrass and blue grama plants was investigated at differenttime intervals during the 120-day growth period. Western wheatgrass,a C3 species, accumulated greater amounts of chlorophyll thandid blue grama plants, a C4 species. Maximum concentrations(mg gd wt–1) of chlorophylls in western wheatgrass andin blue grama were recorded at the lower (13/7°C) and higher(30/18°C) temperature regimes. Nitrogen fertilizer alonedecreased the chlorophyll content in both species. The chlorophylla:b ratio in blue grama ranged from an average of 2·00under irrigated plus fertilized conditions to 3·00 undercontrol and fertilized conditions. On the other hand, the chlorophylla:b ratio in western wheatgrass remained constant at 3·00throughout the growing season under various treatments and temperatureregimes.  相似文献   

12.
Time (t) to loss of seed viability (e.g. log t or log ) is modelledin the literature as the sum of a moisture term and a quadratictemperature term, f(T,T2). The coefficients inf(T,T2) have beenshown to be ‘identical’ in orthodox seeds. I postulatethat this identity is due to a parameter common to all seedsand, consistent with that hypothesis, report a close correlation(R2=0.9998) between f(T,T2) and the Gibbs free energy of watervapour, G, over the temperature range 0–90 °C. Thehypothesis has the statistical advantage of reducing the numberof independent variables from two to one, without changing thefit. This is demonstrated from analysis of data for lettuceand barley. An explanation for this correlation of time to seeddeath with G is that water vapour is the proximate source ofenergy leading to decomposition of individual molecules, withthe ultimate result of seed death. Copyright 1999 Annals ofBotany Company Seed longevity, temperature effect, Gibbs free energy of water vapour, moisture-temperature interactions, Hordeum vulgare L., barley, Lactuca sativa L., lettuce.  相似文献   

13.
The causes of interspecific differences in the µ-l relationshipare examined in the context of a mechanistic model which relatesµ to irradiance in terms of six factors:, kc photosyntheticquotient (PQ), Chl a:C, respiration and excretion. The effectof cell size on the light saturated growth rate is also considered.It is shown that photosynthetic efficiency and PQ exhibit remarkablylittle interspecific variability, and average 0.024 ±0.005 µg C(µg Chl a)–1 h–1 (µEm–2 s–1)–1 and 1.5 ± 0.2 mol 02 molC–1 (when NO3 is the nitrogen source) respectively.Two useful relationships were derived: (i) between growth efficiency,g and Chl a:C at µ. = 0; (ii) between the compensationintensity, Ic and the Chl a-specific maintenance respirationrate. Both relationships were independent of temperature anddaylength. Species best adapted to growth at low light werefound to exhibit high Chl a:C ratios and low maintenance respirationrates. As a group, diatoms were consistently the best adaptedfor growth at low irradiance. Chiorophytes, haptophytes, chrysophytesand cryptophytes were intermediate in their performance at lowirradiance. Dinoflagellates exhibited extreme diversity, withspecies spanning the spectrum from very good performance atlow irradiance to very poor. A new µmax-cell carbon relationshipis given based on growth rates normalized to 15°C. Evidenceis presented to show that noise in this relationship can besignificantly reduced by using only carbon-specific growth ratesand using only data for species grown at the same daylength.  相似文献   

14.
The growth rates of Appendicularia sicula, Fritillaria borealissargassi, Fritillaria haplostoma, Oikopleura dioica and Oikopleuralongicauda were determined from microcosms incubated in situat 23C in Jamaican waters. Experiments were conducted fromoligotrophic offshore waters, through mesotrophic Lime Cay andeutrophic Kingston Harbour in both natural and nutrient-enhancedphytoplankton communities. Length-weight relationships werecalculated for two of these species: O.longicauda log W=2.47log TL –6.10 and F.haplostoma log W=2.44 log TL –7.37,where weight (W) is in micrograms and trunk length (TL) is inmicrometres. Instantaneous growth rates averaged 1.7–2.5day–1 for the five species and were observed as high as3.3 day–1 These instantaneous rates are equivalent todaily specific growth rates averaging 4.6–11.4 and rangingup to 28. In larger genera, growth rates were related positivelyto picoplankton and nanoplankton concentration, and negativelyto the biomass of larvaceans, but in the smallest species growthwas unrelated to these factors. However, because the variabilityin these two factors within microcosms exceeded their naturalrange of variability, growth rates of larvaceans may normallybe unlimited by resources or population density effects. 1Present address :Monterey Bay Aquarium Research Institute 7700Sandholdt Road, Moss Landing, CA 95039-0628, USA 2Present address :Bedford Institute of Oceanography PO Box 1006,Dartmouth, Nova Scotia B2Y 4A2, Canada  相似文献   

15.
Planktonic primary production in the German Wadden Sea   总被引:8,自引:0,他引:8  
By combining weekly data of irradiance, attenuation and chlorophylla concentrations with photosynthesis (P) versus light intensity(E) curve characteristics, the annual cycle of planktonic primaryproduction in the estuarine part of the Northfrisian WaddenSea was computed for a 2 year period. Daily water column particulategross production ranged from 5 to 2200 mg C m–2 day–1and showed a seasonal pattern similar to chlorophyll a. Budgetcalculation yielded annual gross particulate primary productionsof 124 and 176 g C m–2 year–1 in 1995 and 1996,respectively. Annual amounts of phytoplankton respiration, calculatedaccording to a two-compartment model of Langdon [in Li,W.K.W.and Maestrini,S.Y. (eds), Measurement of Primary Productionfrom the Molecular to the Global Scale. International Councilfor the Exploration of the Sea, Copenhagen, 1993, pp. 20–36],and dissolved production in 1996, were both in the range of24–39 g C m–2 year–1. Annual total net productionwas thus very similar to particulate gross production (127 and177 g C m–2 year–1 in 1995 and 1996, respectively).Phytoplankton growth was low or even negative in winter. Inspring and summer, production/biomass (Pr/B) ratios varied from0.2 up to 1.7. Phytoplankton growth during the growth seasonalways surpassed average flushing time in the area, thus underliningthe potential of local phytoplankton bloom development in thispart of the Wadden Sea. The chlorophyll-specific maximum photosyntheticrate (PBmax) ranged from 0.8 to 9.9 mg C mg–1 Chl h–1and was strongly correlated with water temperature (r2 = 0.67).By contrast, there was no clear seasonal cycle in B, which rangedfrom 0.007 to 0.039 mg C mg–1 Chl h–1 (µmolphotons m–2 s–1)–1. Its variability was muchless than PBmax and independent of temperature. The magnitudeand part of the variability of PBmax and B are presumably causedby changes in species composition, as evidenced from the rangeof these parameters found among 10 predominant diatom speciesisolated from the Wadden Sea. The ratio of average light conditionsin the water column (Eav) to the light saturation parameterEk indicates that primary production in the Wadden Sea regionunder study is predominantly controlled by light limitationand that nutrient limitation was likely to occur for a few hoursper day only during 5 (dissolved inorganic nitrogen) to 10 (PO4,Si) weeks in the 2 year period investigated.  相似文献   

16.
During the ANTARES 3 cruise in the Indian sector of the SouthernOcean in October–November 1995, the surface waters ofKerguelen Islands plume, and the surface and deeper waters (30–60m) along a transect on 62°E from 48°36'S to the iceedge (58°50'S), were sampled. The phytoplankton communitywas size-fractionated (2 µm) and cell numbers, chlorophyllbiomass and carbon assimilation, through Rubisco and ß-carboxylaseactivities, were characterized. The highest contribution of<2 µm cells to total biomass and total Rubisco activitywas reported in the waters of the Permanent Open Ocean Zone(POOZ) located between 52°S and 55°S along 62°E.In this zone, the picophytoplankton contributed from 26 to 50%of the total chlorophyll (a + b + c) with an average of 0.09± 0.02 µg Chl l–1 for <2 µm cells.Picophytoplankton also contributed 36 to 64% of the total Rubiscoactivity, with an average of 0.80 ± 0.30 mg C mg Chla–1 h–1 for <2 µm cells. The picophytoplanktoncells had a higher ß-carboxylase activity than largercells >2 µm. The mixotrophic capacity of these smallcells is proposed. From sampling stations of the Kerguelen plume,a relationship was observed between the Rubisco activity perpicophytoplankton cell and apparent cell size, which variedwith the sampled water masses. Moreover, a depth-dependent photoperiodicityof Rubisco activity per cell for <2 µm phytoplanktonwas observed during the day/night cycle in the POOZ. In thenear ice zone, a physiological change in picophytoplankton cellsfavouring phosphoenolpyruvate carboxykinase (PEPCK) activitywas reported. A species succession, or an adaptation to unfavourableenvironmental conditions such as low temperature and/or availableirradiance levels, may have provoked this change. The high contributionof picophytoplankton to the total biomass, and its high CO2fixation capacity via autotrophy and mixotrophy, emphasize thestrong regeneration of organic materials in the euphotic layerin the Southern Ocean.  相似文献   

17.
Journal of Plankton Research, 11, 1273–1295, 1989. The values of P/U0 (Table I) and fluid velocity used to calculatethe energy required for sieving (pp. 1289–1290) and severalequations (footnote b of Table I; p. 1290, lines 3–4)are incorrect. The corrected table appears below: Table I. Filter setule measurements (mean and within specimenstandard deviation) of the gnathobases for the cladocerans studiedaGnathobaseof trunklimb number. bP = 8µU0/(b(1 – 21nt + 1/6(t2) - 1/144(t4))), whereP = pressure drop in dyn cm–2, =3.1416, U0 = fluid velocityin cm s–1, b = distance between setule centres in cm,t = ( x setule diameter)/b and µ = 0.0101 dyn s–1cm–2. Formula from Jørgensen (1983). The text (p. 1289, line 19 to p. 1290, line 10) should read: organism. Using a similar argument, a 0.5 mm Ceriodaphnia witha filter area of 0.025 mm2 (Ganf and Shiel, 1985) and pressuredrop P = 2757 dyn cm–2 (with fluid velocity of 0.07 cms–1) allocates only 2171 ergs h–1 to filtrationof a total energy expenditure of 104 ergs h–1 [filtrationenergy (ergs h–1) = area (cm2) x pressure drop (dyn cm–2)x 3600 (s h–1) x 1/0.2 (efficiency of conversion of biochemicalinto mechanical work); total energy (ergs h–1) = respiration(0.05 µl O2 ind–1 h–1 consumed; Gophen, 1976)x conversion factor (2 x 105 ergs µl–1 O2). Withan estimated 0.034 mm2 in filter area, fluid velocity of 0.041cm s–1 and respiration of 1.8 x 104 ergs h–1 (calculatedfrom Porter and McDonough, 1984), a 0.5 mm Bosmina uses <4%of its metabolism to overcome filter resistance. The velocities used in the original examples (0.4 cm s–1for Ceriodaphnia, 0.2 cm s–1 for Bosmina) were derivedfrom literature values of appendage beat rate and estimatesof the distance travelled by the appendages during each beatcycle. This approach unnecessarily assumes that all water movedpasses through the filter. In the new calculations, the flowacross the filter needed for food to be collected by sieving(0.07 cm s–1 for Ceriodaphnia and 0.041 cm s–1 forBosmina) was determined from the maximum clearance rate/filterarea. The amended energy expenditures, although higher, do notrefute the sieve model of particle collection.  相似文献   

18.
Seasonal variations in diversity and biomass of tintinnids (Ciliophora:Tintinnida) were investigated at two fixed stations in the innerpart of the Bahía Blanca Estuary (38°42' S, 61°50'W) during an annual cycle. The variations were analysed in relationto surface temperature, salinity, transparency, solar radiationand chlorophyll a (Chl a)concentration. Biomass was calculatedin terms of biovolume and carbon units. Diversity was estimatedas the number of species and the Shannon Index (H', ln based).Density of tintinnids ranged from 100 to 7800 individuals L–1H' ranged from 0 to 1.81. The biomass varied from 0.3 to 127.78x 106 µm3 L–1 (0.02–39.4 µg C L–1).Density was significantly related to temperature, solar radiationand Secchi distance (P < 0.01); diversity was significantlyrelated to temperature (P < 0.01) and solar radiation (P< 0.05). Biomass was significantly related only to temperature(P < 0.01) in one of the stations. According to principalcomponents analysis (PCA) tintinnids exhibited a segregationof three groups: winter, spring–summer and autumn forthe most internal station and winter, spring and summer–autumnfor the most external station. H' values were lower than thoseobserved in other coastal systems found at about the same latitudein the northern hemisphere.  相似文献   

19.
Experimental studies into the feeding biology of rotifers in brackish water   总被引:1,自引:0,他引:1  
Mass developments of rotifers of the genus Brachionus, and especiallyof B.quadridentatus, occur regularly in the largely hypertrophicchain of shallow waters (‘boddens’) south of theDarss-Zingst peninsula (Southern Baltic). Interest in the autecologyof the species is, therefore, considerable. Various food sourceswere used in laboratory experiments to ascertain the food requirementsof B.quadridentatus, determine its filtration and ingestionrates, and assess its food particle size-selection ability.Growth experiments showed that the chlorophyceans Nannochlorissp. and Chlorella vulgaris possess considerable nutritionalvalue for the species, whereas abundances declined when Microcystisfirma, detritus from Enteromorpha sp. and only bacteria (Pseudomonas),respectively, were provided as food sources. Filtration ratesvaried between 0.02 and 1.73 µl ind.–1 h–1,and ingestion rates between 121 and 5560 cells ind.–1h–1, depending on the filtration rate and algal concentration.Investigations into food particle size selection using fluorescentlatex particles revealed that particle size influences foodparticle intake. When particles of different sizes were mixed,the animals showed a preference for the larger particles andingested the smaller ones with a diameter of 1–2 µmless efficiently. The brackish water species Brachionus plicatiliswas studied besides B.quadridentatus in all experiments. Theformer species proved to be superior both in its range of utilizableparticle sizes and its growth rate. The experiments with laboratorycultures were backed up by studies performed with various rotiferspecies taken from natural populations.  相似文献   

20.
A method was developed to allow direct measurements of predationexerted by metazooplankton on ciliates. The method relied onthe use of ciliates labelled with fluorescent microparticles(FMP). Optimal labelling conditions were determined with ciliatesfrom cultures (Tetrahymena pyriformis) and with natural ciliateassemblages sampled in a river. Labelled T. pyriformis wereused as tracer food to determine gut passage time (GPT) andingestion rates of the rotifer Brachionus calyciflorus in thelaboratory. Predation of metazooplankton from the lowland riverMeuse (Belgium) was determined by labelling natural assemblagesof ciliates and using them as tracer food for metazooplankterssampled in the river. Optimal labels of ciliates, i.e. sharpdistribution of FMP in cells, were obtained with short incubations(10 min) and low FMP concentrations (1 x 105 mL–1). GPTvaried between 30 and 45 min for B. calyciflorus and from 25up to >35 min for rotifers from the river. The ingestionrate of B. calyciflorus fed with T. pyriformis was 3.3 ±0.6 ciliate rot–1 h–1, i.e. 1.4 ± 0.3 ngCrot–1 h–1. Metazooplankton species for which theingestion of ciliates could be measured were the rotifers Keratellacochlearis, Euchlanis dilatata and Synchaeta spp. Ingestionrates measured ranged from 0.4 to 12.5 ngC rot–1 h–1.The method proposed proved to be useful in estimating the predationof microplankton on ciliates in semi- in situ conditions; infurther developments, labelled natural assemblages of ciliatescould be used for in situ incubations with the Haney chamber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号