首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Specific, polyclonal antisera have been raised to the native branched-chain 2-oxoacid dehydrogenase complex (BCOADC) from bovine kidney and each of its three constituent enzymes: E1, the substrate-specific 2-oxoacid dehydrogenase; E2, the multimeric dihydrolipoamide acyltransferase 'core' enzyme and E3, dihydrolipoamide dehydrogenase. Purified BCOADC, isolated by selective poly(ethyleneglycol) precipitation and hydroxyapatite chromatography, contains only traces of endogenous E3 as detected by a requirement for this enzyme in assaying overall complex activity and by immunoblotting criteria. A weak antibody response was elicited by the E1 beta subunit relative to the E2 and E1 alpha polypeptides employing either purified E1 or BCOADC as antigens. Anti-BCOADC serum showed no cross-reaction with high levels of pig heart E3 indicating the absence of antibody directed against this component. However, immunoprecipitates of mature BCOADC from detergent extracts of NBL-1 (bovine kidney) or PK-15 (porcine kidney) cell lines incubated for 3-4 h in the presence of [35S]methionine contained an additional 55,000-Mr species which was identified as E3 on the basis of immunocompetition studies. Accumulation of newly synthesised [35S]methionine-labelled precursors for E2, E1 alpha and E3 was achieved by incubation of PK-15 cells for 4 h in the presence of uncouplers of oxidative phosphorylation. Pre-E2 exhibited an apparent Mr value of 56,500, pre-E1 alpha, 49,000 and pre-E3, 57,000 compared to subunit Mr values of 50,000, 46,000 and 55,000, respectively, for the mature polypeptides. Thus, like the equivalent lipoate acyltransferases of the mammalian pyruvate dehydrogenase (PDC) and 2-oxoglutarate dehydrogenase (OGDC) complexes, pre-E2 of BCOADC characteristically contains an extended presequence. In NBL-1 cells, pre-E2 was found to be unstable since no cytoplasmic pool of this precursor could be detected; moreover, processed E1 alpha was not assembled into intact BCOADC as evidenced by the absence of E2 or E3 in immunoprecipitates with anti-(BCOADC) serum after a 45-min 'chase' period in the absence of uncoupler. Dihydrolipoamide dehydrogenase (E3), in its precursor state, was not present in immune complexes with anti-(BCOADC) serum, indicating that its co-precipitation with mature complex is by virtue of its high affinity for assembled complex in vivo whereas no equivalent interaction of pre-E3 with its companion precursors occurs prior to mitochondrial import.  相似文献   

2.
To examine the stereospecific effects of lipoic compounds on pyruvate metabolism, the effects of R-lipoic acid (R-LA), S-lipoic acid (S-LA) and 1,2-diselenolane-3-pentanoic acid (Se-LA) on the activities of the mammalian pyruvate dehydrogenase complex (PDC) and its catalytic components were investigated. Both S-LA and R-LA markedly inhibited PDC activity; whereas Se-LA displayed inhibition only at higher concentrations. Examination of the effects on the individual catalytic components indicated that Se-LA inhibited the pyruvate dehydrogenase component; whereas R-LA and S-LA inhibited the dihydrolipoamide acetyltransferase component. The three lipoic compounds lowered dihydrolipoamide dehydrogrenase (E3) activity in the forward reaction by about 30 to 45%. The kinetic data of E3 showed that both R-LA and Se-LA are used as substrates by E3 for the reverse reaction. Decarboxylation of [1-14C]pyruvate via PDC by cultured HepG2 cells was not affected by R-LA, but moderately decreased with S-LA and Se-LA. These findings indicate that (i) purified PDC and its catalytic components are affected by lipoic compounds based on their stereoselectivity; and (ii) the oxidation of pyruvate by intact HepG2 cells is not inhibited by R-LA. The later finding with the intact cells is in support of therapeutic role of R-LA as an antioxidant.  相似文献   

3.
In the present study, the effects of 4-hydroxy-2-nonenal (HNE) on highly purified pyruvate dehydrogenase complex (PDC) and its catalytic components in vitro and on PDC, alpha-ketoglutarate dehydrogenase complex (KGDC), and the branched-chain alpha-keto acid dehydrogenase complex (BCKDC) activities in cultured human HepG2 cells were investigated. Among the PDC components, the activity of the dihydrolipoamide acetyltransferase-E3-binding protein subcomplex (E2-E3BP) only was decreased by HNE. Dihydrolipoamide dehydrogenase (E3) protected the E2-E3BP subcomplex from HNE inactivation in the absence of the substrates. In the presence of E3 and NADH, when lipoyl groups were reduced, higher inactivation of the E2-E3BP subcomplex by HNE was observed. Purified PDC was protected from HNE-induced inactivation by several thiol compounds including lipoic acid plus [LA-plus; 2-(N,N-dimethylamine)ethylamidolipoate(.)HCl]. Treatment of cultured HepG2 cells with HNE resulted in a significant reduction of PDC and KGDC activities, whereas BCKDC activity decreased to a lesser extent. Lipoyl compounds afforded protection from HNE-induced inhibition of PDC. This protection was higher in the presence of cysteine and reduced glutathione. Cysteine was able to restore PDC activity to some extent after HNE treatment. These findings show that thiols, including lipoic acid, provide protection against HNE-induced inactivation of lipoyl-containing complexes in the mitochondria.  相似文献   

4.
The production of high-titre monospecific polyclonal antibodies against the purified pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase multienzyme complexes from ox heart is described. The specificity of these antisera and their precise reactivities with the individual components of the complexes were examined by immunoblotting techniques. All the subunits of the pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase complexes were strongly antigenic, with the exception of the common lipoamide dehydrogenase component (E3). The titre of antibodies raised against E3 was, in both cases, less than 2% of that of the other subunits. Specific immunoprecipitation of the dissociated N-[3H]ethylmaleimide-labelled enzymes also revealed that E3 alone was absent from the final immune complexes. Strong cross-reactivity with the enzyme present in rat liver (BRL) and ox kidney (NBL-1) cell lines was observed when the antibody against ox heart pyruvate dehydrogenase was utilized to challenge crude subcellular extracts. The immunoblotting patterns again lacked the lipoamide dehydrogenase band, also revealing differences in the apparent Mr of the lipoate acetyltransferase subunit (E2) from ox kidney and rat liver. The additional 50 000-Mr polypeptide, previously found to be associated with the pyruvate dehydrogenase complex, was apparently not a proteolytic fragment of E2 or E3, since it could be detected as a normal component in boiled sodium dodecyl sulphate extracts of whole cells. The low immunogenicity of the lipoamide dehydrogenase polypeptide may be attributed to a high degree of conservation of its primary sequence and hence tertiary structure during evolution.  相似文献   

5.
Coenzyme Q(0) (Q(0)), a strong electrophile, is toxic to insulin-producing cells. Q(0) was incubated with rat and human pancreatic islets and INS-1 insulinoma cells, and its attachment to cellular proteins was studied with Western analysis using antiserum raised against the benzoquinone ring structure of ubiquinone (anti-Q). Q(0) covalently bonded to two proteins, one of 50 kDa and another of 70 kDa. Both proteins were found to be mitochondrial in human and rat islet cells and in many rat organs. Mitochondria were incubated with Q(0), and affinity-purified anti-Q was used to immunoprecipitate the 50-kDa protein. Amino acid sequencing identified it as dihydrolipoamide succinyltransferase, the E2 component of the alpha-ketoglutarate dehydrogenase complex (KDC). Western analysis also showed that Q bonds to the E2 components of the purified KDC and (0)the pyruvate dehydrogenase complex (PDC). Dihydrolipoamide acetyltransferase, the E2 of the PDC, has a molecular mass of 70 kDa, and the 70-kDa protein was inferred to be this enzyme. Q(0) was found to bond only to proteins containing dihydrolipoate, and in preparations of mitochondria, thiol reducing agents facilitated the attachment of Q(0), but oxidizing agents prevented it, suggesting that Q(0) bonds to thiols of dihydrolipoamide. Incubation of human or pig PDC with Q(0) followed by matrix-assisted laser desorption ionization time-of-flight and liquid chromatography/electrospray ionization mass spectrometry analyses of chymotrypsin-digested peptides of PDC E2 confirmed that Q(0) bonds to the dihydrolipoamide in these proteins. In mitochondria, coenzymes Q(1) and Q(2) did not bond to the 50-kDa protein but competed with the bonding of Q(0) to this protein. The prevention by Q(1) of characteristics the bonding of Q(0) to KDC E2, as well as other of the Q(0) effect, are reminiscent of the action of Q(0) on the mitochondrial permeability transition pore described previously (Fontaine, E., Ichas, F., and Bernardi, P. (1998) J. Biol. Chem. 273, 25734-25740).  相似文献   

6.
Two distinct dihydrolipoamide dehydrogenases (E3s, EC 1.8.1.4) have been detected in pea (Pisum sativum L. cv. Little Marvel) leaf extracts and purified to at or near homogeneity. The major enzyme, a homodimer with an apparent subunit Mr value 56 000 (80–90% of overall activity), corresponded to the mitochondrial isoform studied previously, as confirmed by electrospray mass spectrometry and N-terminal sequence analysis. The minor activity (10–20%), which also behaved as a homodimer, copurified with chloroplasts, and displayed a lower subunit Mr value of 52 000 which was close to the Mr value of 52 614±9.89 Da determined by electrospray mass spectrometry. The plastidic enzyme was also present at low levels in root extracts where it represented only 1–2% of total E3 activity. The specific activity of the chloroplast enzyme was three-to fourfold lower than its mitochondrial counterpart. In addition, it displayed a markedly higher affinity for NAD+ and was more sensitive to product inhibition by NADH. It exhibited no activity with NADP+ as cofactor nor was it inhibited by the presence of high concentrations of NADP+ or NADPH. Antibodies to the mitochondrial enzyme displayed little or no cross-reactivity with its plastidic counterpart and available amino acid sequence data were also suggestive of only limited sequence similarity between the two enzymes. In view of the dual location of the pyruvate dehydrogenase multienzyme complex (PDC) in plant mitochondria and chloroplasts, it is likely that the distinct chloroplastic E3 is an integral component of plastidic PDC, thus representing the first component of this complex to be isolated and characterised to date.Abbreviations E1 pyruvate dehydrogenase - E2 dihydrolipoamide acetyltransferase - E3 dihydrolipoamide dehydrogenase - PDC pyruvate dehydrogenase complex - OGDC 2-oxoglutarate dehydrogenase complex - GDC glycine decarboxylase complex - SDS-PAGE sodium dodecyl sulphate/polyacrylamide gel electrophoresis - TDP thiamine diphosphate - Mr relative molecular mass J.G.L. is grateful to the Biotechnology and Biological Sciences Research Council (BBSRC), U.K. for continuing financial support. M.C. is the holder of a BBSRC-funded earmarked Ph.D. studentship.  相似文献   

7.
The pyruvate dehydrogenase complex (PDC) in pea (Pisum sativum L., cv. Little Marvel) was studied immunologically using antibodies to specific subunits of mammalian PDC. Pea mitochondria and chloroplasts were both found to contain PDC, but distinct differences were noted in the subunit relative molecular mass (Mr) values of the individual enzymes in the mitochondrial and chloroplast PDC complexes. In particular, the mitochondrial E3 enzyme (dihydrolipoamide dehydrogenase; EC 1.8.1.4) has a high subunit Mr value of 67 000, while the chloroplast E3 enzyme has a subunit Mr value of 52 000, similar in size to the prokaryotic, yeast ad mammalian E3 enzymes. In addition, component X (not previously noted in plant PDC) was also found to be present in two distinct forms in pea mitochondrial and chloroplast complexes. As in the case of E3, mitochondrial component X has a higher subunit Mr value (67 000) than component X from chloroplasts (48 000), which is similar in size to its mammalian counterpart. The subunit Mr value of E2 (dihydrolipoamide acetyltransferase; EC 2.3.1.12) in both mitochondria and chloroplasts (50 000) is lower than that of mammalian E2 (74 000) but similar to that of yeast E2 (58 000), and is consistent with the presence of only a single lipoyl domain. Neither mitochondria nor chloroplasts showed any appreciable cross-reactivity with antiserum to mammalian E1 (pyruvate dehydrogenase; EC 1.2.4.1). However, mitochondria cross-reacted strongly with antiserum to yeast E1, giving a single band (Mr 41 000) which is thought to be E1a. Chloroplasts showed no cross-reactivity with yeast E1, indicating that the mitochondrial E1a subunit and its chloroplast equivalent are antigenically distinct polypeptides.Abbreviations E1 pyruvate dehydrogenase - E2 dihydrolipoamide acetyltransferase - E3 dihydrolipoamide dehydrogenase - Mr relative molecular mass - PDC pyruvate dehydrogenase multienzyme complex - SDS sodium dodecyl sulphate The financial support of the Agricultural and Food Research Council is gratefully acknowledged. We thank Steve Hill (Department of Botany, University of Edinburgh, UK) for advice on mitochondrial isolation, and James Neagle (Department of Biochemistry, University of Glasgow) and Ailsa Carmichael for helpful discussion.  相似文献   

8.
The aceEF-lpd operon of Escherichia coli encodes the pyruvate dehydrogenase (E1p), dihydrolipoamide acetyltransferase (E2p) and dihydrolipoamide dehydrogenase (E3) components of the pyruvate dehydrogenase multienzyme complex (PDH complex). A thermoinducible expression system was developed to amplify a variety of genetically restructured PDH complexes, including those containing three, two, one and no lipoyl domains per E2p chain. Although large quantities of the corresponding complexes were produced, they had only 20-50% of the predicted specific activities. The activities of the E1p components were diminished to the same extent, and this could account for the shortfall in overall complex activity. Thermoinduction was used to express a mutant PDH complex in which the putative active-site histidine residue of the E2p component (His-602) was replaced by cysteine in the H602C E2p component. This substitution abolished dihydrolipoamide acetyltransferase activity of the complex without affecting other E2p functions. The results support the view that His-602 is an active-site residue. The inactivation could mean that the histidine residue performs an essential role in the acetyltransferase reaction mechanism, or that the reaction is blocked by an irreversible modification of the cysteine substituent. Complementation was observed between the H602C PDH complex and a complex that is totally deficient in lipoyl domains, both in vitro, by the restoration of overall complex activity in mixed extracts, and in vivo, from the nutritional independence of strains that co-express the two complexes from different plasmids.  相似文献   

9.
Calpain inhibition by peptide epoxides.   总被引:8,自引:4,他引:4       下载免费PDF全文
The protein activator of phosphorylated branched-chain 2-oxo acid dehydrogenase complex was purified greater than 1000-fold from extracts of rat liver mitochondria; the specific activity was greater than 1000 units/mg of protein (1 unit gives half-maximum re-activation of 10 munits of phosphorylated complex). Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis gave two bands (Mr 47700 and 35300) indistinguishable from the alpha- and beta-subunits of the branched-chain dehydrogenase component of the complex. On gel filtration (Sephacryl S-300), apparent Mr was 190000. This and other evidence suggests that activator protein is free branched-chain dehydrogenase; this conclusion is provisional until identical amino acid composition of the subunits has been demonstrated. Activator protein (i.e. free branched-chain dehydrogenase) was inhibited (up to 30%) by NaF, whereas branched-chain complex was not inhibited. There was no convincing evidence for interconvertible active and inactive forms of activator protein in rat liver mitochondria. Activator protein was detected in mitochondria from liver (ox, rabbit and rat) and kidney (ox and rat), but not in rat heart or skeletal-muscle mitochondria. In rat liver mitochondrial extracts, branched-chain complex sedimented with the mitochondrial membranes, whereas activator protein remained in the supernatant. Activator protein re-activated phosphorylated (inactive) particulate complex from rat liver mitochondria, but it did not activate dephosphorylated complex. Liver and kidney, but not muscle, mitochondria apparently contain surplus free branched-chain dehydrogenase, which is bound by the complex with lower affinity than is the branched-chain dehydrogenase intrinsic to the complex. It is suggested that this functions as a buffering mechanism to maintain branched-chain complex activity in liver and kidney mitochondria.  相似文献   

10.
Antisera to purified gamma-glutamyltranspeptidase (gamma GTP) from human and rat kidney were prepared, and their reactivities toward purified gamma GTP from kidney, liver, and bile were tested. The following results were obtained: 1. On double immunodiffusion, Triton-solubilized gamma GTP, and papain-solubilized gamma GTP from rat kidney gave single precipitin lines which fused completely against antiserum to the purified enzyme from rat kidney. 2. An antigen-antibody complex of human kidney gamma GTP retained about 50% of the catalytic activity of the antigen. 3. Double immunodiffusion showed that the enzymes from human liver, kidney, and bile were immunologically identical. 4. Antiserum to rat kidney gamma GTP partially cross reacted with human gamma GTP, but antiserum to human gamma GTP reacted only very weakly with rat gamma GTP. It is concluded that gamma GTP of human liver, kidney, and bile are immunologically identical and that rat gamma GTP and human gamma GTP have certain antigenic determinants in common.  相似文献   

11.
The α-ketoglutarate dehydrogenase complex in extracts of bovine kidney and liver mitochondria is inactivated rapidly at 25 °C. This inactivation is not accompanied by loss of activity of the three component enzymes of the complex. This inactivation can be prevented by extensive washing of the mitochondria with dilute phosphate buffer prior to rupturing the mitochondria by freezing and thawing. Evidence is presented that the washings contain a protease which cleaves a peptide bond or bonds in the dihydrolipoyl transsuccinylase component of the α-ketoglutarate dehydrogenase complex, and this limited proteolysis results in dissociation of α-ketoglutarate dehydrogenase and dihydrolipoyl dehydrogenase from the transsuccinylase.The protease appears to be specific for the transsuccinylase component of the mammalian α-ketoglutarate dehydrogenase complex. It does not affect the activity of the mammalian pyruvate dehydrogenase complex or the Escherichia coli α-ketoglutarate dehydrogenase complex. The protease has been purified about 100-fold from extracts of unwashed mitochondria from bovine kidney. It requires a thiol for activity and it is not affected by treatment with diisopropyl phosphorofluoridate or phenylmethyl sulfonylfluoride.A component has been detected in highly purified preparations of the bovine kidney α-ketoglutarate dehydrogenase complex by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which is present in trace amounts, if at all, in purified preparations of the bovine heart α-ketoglutarate dehydrogenase complex. This component is tightly bound to the transsuccinylase.  相似文献   

12.
Branched-chain alpha-ketoacid dehydrogenase kinase was purified to homogeneity from rat liver and rat heart. The initial step was the purification of rat liver and heart branched-chain alpha-ketoacid dehydrogenase complex with high kinase activity by a modification of a method described previously. Preservation of high kinase activity during purification of the complex required the presence of fresh dithiothreitol throughout the procedure. The kinase was released from the complex by oxidation of dithiothreitol with potassium ferricyanide and purified by high-speed centrifugation, immunoadsorption chromatography, and DEAE-Sephacel chromatography. Both kinase preparations gave only one polypeptide band with a molecular weight of 44,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Phosphorylation and inactivation of the branched-chain alpha-ketoacid dehydrogenase complex by the purified kinase was inhibited by alpha-chloroisocaproate and dichloroacetate, established inhibitors of the phosphorylation of the branched-chain alpha-ketoacid dehydrogenase complex. The kinase did not exhibit autophosphorylation and does not correspond to the same protein as pyruvate dehydrogenase kinase. The kinase phosphorylated histone (type II-S), but this reaction was slow relative to the phosphorylation of the branched-chain alpha-ketoacid dehydrogenase complex and was not inhibited by alpha-chloroisocaproate.  相似文献   

13.
Cryoelectron microscopy has been performed on frozen-hydrated pyruvate dehydrogenase complexes from bovine heart and kidney and on various subcomplexes consisting of the dihydrolipoyl transacetylase-based (E2) core and substoichiometric levels of the other two major components, pyruvate dehydrogenase (E1) and dihydrolipoyl dehydrogenase (E3). The diameter of frozen-hydrated pyruvate dehydrogenase complex (PDC) is 50 nm, which is significantly larger than previously reported values. On the basis of micrographs of the subcomplexes, it is concluded that the E1 and E3 are attached to the E2-core complex by extended (4-6 nm maximally) flexible tethers. PDC constructed in this manner would probably collapse and appear smaller than its native size when dehydrated, as was the case in previous electron microscopy studies. The tether linking E1 to the core involves the hinge sequence located between the E1-binding and catalytic domains in the primary sequence of E2, whereas the tether linking E3 is probably derived from a similar hinge-type sequence in component X. Tilting of the E2-based cores and comparison with model structures confirmed that their overall shape is that of a pentagonal dodecahedron. The approximately 6 copies of protein X present in PDC do not appear to be clustered in one or two regions of the complex and are not likely to be symmetrically distributed.  相似文献   

14.
Pyruvate dehydrogenase complex (PDHC) was purified from bovine kidney with a specific activity of 12-16 mumol of NADH or acetyl-CoA formed/min/mg protein. The four peptides comprising its three catalytic components were separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Rabbit antibodies against this highly purified PDHC (anti-PDHC) exhibited similar binding affinity to the phospho-PDHC as it did to the PDHC antigen. To test whether there exist brain isozymes of PDHC differing from kidney enzyme, which has been extensively characterized, the PDHCs in bovine brain and kidney were compared using this anti-PDHC. The PDHC activities in the brain and kidney mitochondrial extracts were inhibited to the same degree by varying amounts of anti-PDHC. Brain PDHC was precipitated with the anti-PDHC and resolved by SDS-PAGE. The four brain PDHC peptides isolated immunochemically with anti-PDHC had the same sizes as the kidney PDHC peptides. These PDHC peptides from kidney and brain were further compared by their peptide fragment patterns, which were generated by partial proteolysis with Staphylococcus aureus V8 protease or by CNBr and resolved by SDS-PAGE. The peptide patterns generated with the former method indicated that the alpha and beta peptides of the pyruvate dehydrogenase (E1) component and the peptide of dihydrolipoyl transacetylase (E2) component of kidney PDHC were very similar to the corresponding peptides immunologically isolated from brain. The peptide patterns generated with CNBr further confirmed that the beta E1 and E2 peptides of kidney PDHC were similar to the corresponding peptides from brain.  相似文献   

15.
The pyruvate dehydrogenase complex (mPDC) from potato (Solanum tuberosum cv. Romano) can be disassociated in 1 M NaCl and 0.1 M glycine into a large dihydrolipoamide acetyltransferase (E2) complex and smaller pyruvate dehydrogenase (E1) and dihydrolipoamide dehydrogenase (E3) complexes. The E2 complex consists of 55 and 78-kDa polypeptides which are reversibly radiolabelled to a similar degree in the intact mPDC by [2-14C]pyruvate. Affinity-purified antibodies against the 55-kDa protein do not cross-react with the 78-kDa protein and the two proteins show different peptide patterns following partial proteolysis. The 78 and 55-kDa proteins are present in approximately equal abundance in the E2 complex and incorporate a similar amount of [14C] on incubation with [2-14C]pyruvate. Native mPDC and the E2 complex have sedimentation coefficients of 50S and 30S, respectively. Titration of electro-eluted polypeptides against the intact mPDC and E2 complex revealed that each mg of mPDC contains 0.4 mg of E1, 0.4 mg of E2 and 0.2 mg of E3. Labelling of partially purified mPDC from potato, pea, cauliflower, maize and barley, with [2-14C]pyruvate, suggest that a 78-kDa acetylatable protein is only found in the dicotyledonous species, while all plant species tested contained a smaller 52-60 kDa acetylatable protein.  相似文献   

16.
An immunological analysis has been conducted of early events in the biosynthesis, import and assembly of the mammalian pyruvate dehydrogenase complex (PDC). For this purpose, monospecific polyclonal antisera were produced against the intact assembly from ox heart, Mr 8.5 x 10(6), and each of its component polypeptides, E1 alpha, E1 beta, E2, E3 and protein X. Optimal detergent-based incubation mixtures were developed for obtaining clean immunoprecipitation of PDC polypeptides and their precursors from [35S]methionine-labelled extracts of PK-15 (pig kidney), NBL-1 (bovine kidney) and BRL (Buffalo Rat liver) cells. In PK-15 cells, independent higher Mr species, corresponding to precursors of the E2, E1 alpha and E1 beta subunits of PDC, could be detected by immune precipitation and fluorography after incubation of intact cells for 4 h with [35S]methionine and 1-2 mM-2,4-dinitrophenol or 10-15 microM-carbonyl cyanide p-trifluoromethoxyphenylhydrazone. Similar precursor states could be observed in uncoupler-treated BRL or NBL-1 cells. Pre-E1 alpha, pre-E1 beta and also pre-E3, have signal sequences in the Mr range 1500-3000 while pre-E2 contains a long additional segment of Mr 7000-9000. All of these forms exhibit similar kinetics of processing to the mature subunits with a transit time of 10-12 min. In NBL-1 cells, E3 is present in the immune complexes formed with anti-PDC serum whereas this is not the case in PK-15 cells. Thus, there are significant variations in the affinity of lipoamide dehydrogenase (E3) for the E2 core structure in different species. Pre-E1 alpha accumulates only poorly in PK-15 cells and is aberrantly processed on removal of uncoupler. This precursor is markedly more stable in NBL-1 and BRL cells. The lack of detection of a precursor form of component X is also discussed.  相似文献   

17.
T L Wu  L J Reed 《Biochemistry》1984,23(2):221-226
Binding of pyruvate dehydrogenase (E1) and dihydrolipoamide dehydrogenase (E3) to the isolated dihydrolipoamide acetyltransferase (E2) core of the pyruvate dehydrogenase complex from bovine heart and kidney was investigated with equilibrium, competitive binding, and kinetic methods. E2, which consists of 60 subunits arranged with icosahedral 532 symmetry, apparently possesses six equivalent, noninteracting binding sites for E3 dimers. It is proposed that each E3 dimer extends across 2 of the 12 faces of the E2 pentagonal dodecahedron. The equilibrium constant (Kd) for dissociation of E3 from E2 is about 3 nM, and the dissociation rate constant is about 0.057 min-1. For E1, Kd is about 13 nM, and the dissociation rate constant is about 0.043 min-1. Extensive phosphorylation of E1 (about three phosphoryl groups per E1 tetramer) increases Kd to about 40 nM.  相似文献   

18.
Primary biliary cirrhosis (PBC) is an autoimmune liver disease characterized by autoantibodies reactive with the pyruvate dehydrogenase complex. A conformational epitope has been mapped to aa 91-227 within the inner lipoyl domain of the E2 subunit (pyruvate dehydrogenase complex E2 (PDC-E2)). We have used phage display to further localize this epitope. A random heptapeptide library was screened using IgG from two patients with PBC, with negative selection using pooled normal IgG. Phage that contained peptide inserts (phagotopes) selected using PBC sera differed from those selected using IgG from patients with RA or polychondritis. Two motifs occurred only among the PBC-selected phagotopes; these were MH (13 sequences, 16 phagotopes) and FV (FVEHTRW, FVEIYSP, FVLPWRI). The phagotopes selected were tested for reactivity with anti-PDC-E2 affinity purified from four patients with PBC. Phagotopes that contained 1 of 15 different peptide sequences were reactive with one or more of these four anti-PDC-E2 preparations, whereas phagotopes that contained 1of the remaining 28 sequences were negative. The peptides (FVLPWRI, MHLNTPP, MHLTQSP) encoded by three phagotopes that were strongly reactive with all four preparations of anti-PDC-E2 were synthesized. Each of the selected peptides, but not an irrelevant peptide, inhibited the reactivity by ELISA of PBC serum with recombinant PDC-E2 and reduced the inhibition of the enzyme activity of PDC by a PBC serum. The peptide sequences, along with the known NMR structure of the inner lipoyl domain of PDC-E2, allow the prediction of nonsequential residues 131HM132 and 178FEV180 that contribute to a conformational epitope.  相似文献   

19.
Mammalian pyruvate dehydrogenase multienzyme complex (PDC) is a key metabolic assembly comprising a 60-meric pentagonal dodecahedral E2 (dihydrolipoamide acetyltransferase) core attached to which are 30 pyruvate decarboxylase E1 heterotetramers and 6 dihydrolipoamide dehydrogenase E3 homodimers at maximal occupancy. Stable E3 integration is mediated by an accessory E3-binding protein (E3BP) located on each of the 12 E2 icosahedral faces. Here, we present evidence for a novel subunit organization in which E3 and E3BP form subcomplexes with a 1:2 stoichiometry implying the existence of a network of E3 "cross-bridges" linking pairs of E3BPs across the surface of the E2 core assembly. We have also determined a low resolution structure for a truncated E3BP/E3 subcomplex using small angle x-ray scattering showing one of the E3BP lipoyl domains docked into the E3 active site. This new level of architectural complexity in mammalian PDC contrasts with the recently published crystal structure of human E3 complexed with its cognate subunit binding domain and provides important new insights into subunit organization, its catalytic mechanism and regulation by the intrinsic PDC kinase.  相似文献   

20.
The four pyruvate dehydrogenase kinase (PDK) and two pyruvate dehydrogenase phosphatase (PDP) isoenzymes that are present in mammalian tissues regulate activity of the pyruvate dehydrogenase complex (PDC) by phosphorylation/dephosphorylation of its pyruvate dehydrogenase (E1) component. The effect of lipoic acids on the activity of PDKs and PDPs was investigated in purified proteins system. R-lipoic acid, S-lipoic acid and R-dihydrolipoic acid did not significantly affect activities of PDPs and at the same time inhibited PDKs to different extents (PDK1>PDK4 approximately PDK2>PDK3 for R-LA). Since lipoic acids inhibited PDKs activity both when reconstituted in PDC and in the presence of E1 alone, dissociation of PDK from the lipoyl domains of dihydrolipoamide acetyltransferase in the presence of lipoic acids is not a likely explanation for inhibition. The activity of PDK1 towards phosphorylation sites 1, 2 and 3 of E1 was decreased to the same extent in the presence of R-lipoic acid, thus excluding protection of the E1 active site by lipoic acid from phosphorylation. R-lipoic acid inhibited autophosphorylation of PDK2 indicating that it exerted its effect on PDKs directly. Inhibition of PDK1 by R-lipoic acid was not altered by ADP but was decreased in the presence of pyruvate which itself inhibits PDKs. An inhibitory effect of lipoic acid on PDKs would result in less phosphorylation of E1 and hence increased PDC activity. This finding provides a possible mechanism for a glucose (and lactate) lowering effect of R-lipoic acid in diabetic subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号