首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work it is demonstrated that the characterization of c-type haem containing proteins by electrochemical techniques needs to be cautiously performed when using pyrolytic graphite electrodes. An altered form of the cytochromes, which has a redox potential 300 mV lower than that of the native state and displays peroxidatic activity, can be induced by interaction with the pyrolytic graphite electrode. Proper control experiments need to be performed, as altered conformations of the enzymes containing c-type haems can show activity towards the enzyme substrate. The work was focused on the study of the activation mechanism and catalytic activity of cytochrome c peroxidase from Paracoccus pantotrophus. The results could only be interpreted with the assignment of the observed non-turnover and catalytic signals to a non-native conformation state of the electron-transferring haem. The same phenomenon was detected for Met–His monohaem cytochromes (mitochondrial cytochrome c and Desulfovibrio vulgaris cytochrome c-553), as well as for the bis-His multihaem cytochrome c 3 from Desulfovibrio gigas, showing that this effect is independent of the axial coordination of the c-type haem protein. Thus, the interpretation of electrochemical signals of c-type (multi)haem proteins at pyrolytic graphite electrodes must be carefully performed, to avoid misassignment of the signals and incorrect interpretation of catalytic intermediates.  相似文献   

2.
 Reduction of the haems in tetrahaem cytochromes c 3 is a cooperative process, i.e., reduction of each of the haems depends on the redox states of the other haems. Furthermore, electron transfer is coupled to proton transfer (redox-Bohr effect). Two of its haems and a strictly conserved nearby phenylalanine residue, F20, in Desulfovibrio vulgaris (Hildenborough) cytochrome c 3 form a structural motif that is present in all cytochromes c 3 and also in cytochrome c oxidase. A putative role for this phenylalanine residue in the cooperativity of haem reduction was investigated. Therefore, this phenylalanine was replaced, with genetic techniques, by isoleucine and tyrosine in D. vulgaris (Hildenborough) cytochrome c 3. Cyclic voltammetry studies revealed a small increase (30 mV) in one of the macroscopic redox potentials in the mutated cytochromes. EPR showed that the main alterations occurred in the vicinity of haem I, the haem closest to residue 20 and one of the haems responsible for positive cooperativities in electron transfer of D. vulgaris cytochrome c 3. NMR studies of F20I cytochrome c 3 demonstrated that the haem core architecture is maintained and that the more affected haem proton groups are those near the mutation site. NMR redox titrations of this mutated protein gave evidence for only small changes in the relative redox potentials of the haems. However, electron/electron and proton/electron cooperativity are maintained, indicating that this aromatic residue has no essential role in these processes. Furthermore, chemical modification of the N-terminal amino group of cytochrome c 3 backbone, which is also very close to haem I, had no effect on the network of cooperativities. Received: 25 June 1996 / Accepted: 26 August 1996  相似文献   

3.
The activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase (CCP) was probed through the mediated electrochemical catalysis by its physiological electron donor, P. stutzeri cytochrome c-551. A comparative study was carried out, by performing assays with the enzyme in the resting oxidized state as well as in the mixed-valence activated form, using cyclic voltammetry and a pyrolytic graphite membrane electrode. In the presence of both the enzyme and hydrogen peroxide, the peak-like signal of cytochrome c-551 is converted into a sigmoidal wave form characteristic of an \textE\textr \textC\texti {\text{E}}_{\text{r}} {\text{C}}_{\text{i}}^{\prime } catalytic mechanism. An intermolecular electron transfer rate constant of (4 ± 1) × 105 M−1 s−1 was estimated for both forms of the enzyme, as well as a similar Michaelis–Menten constant. These results show that neither the intermolecular electron transfer nor the catalytic activity is kinetically controlled by the activation mechanism of CCP in the case of the P. stutzeri enzyme. Direct enzyme catalysis using protein film voltammetry was unsuccessful for the analysis of the activation mechanism, since P. stutzeri CCP undergoes an undesirable interaction with the pyrolytic graphite surface. This interaction, previously reported for the Paracoccus pantotrophus CCP, induces the formation of a non-native conformation state of the electron-transferring haem, which has a redox potential 200 mV lower than that of the native state and maintains peroxidatic activity.  相似文献   

4.
Cytochrome c assembly requires sulphydryls at the CXXCH haem binding site on the apoprotein and also chemical reduction of the haem co‐factor. In yeast mitochondria, the cytochrome haem lyases (CCHL, CC1HL) and Cyc2p catalyse covalent haem attachment to apocytochromes c and c1. An in vivo indication that Cyc2p controls a reductive step in the haem attachment reaction is the finding that the requirement for its function can be bypassed by exogenous reductants. Although redox titrations of Cyc2p flavin (Em = ?290 mV) indicate that reduction of a disulphide at the CXXCH site of apocytochrome c (Em = ?265 mV) is a thermodynamically favourable reaction, Cyc2p does not act as an apocytochrome c or c1 CXXCH disulphide reductase in vitro. In contrast, Cyc2p is able to catalyse the NAD(P)H‐dependent reduction of hemin, an indication that the protein's role may be to control the redox state of the iron in the haem attachment reaction to apocytochromes c. Using two‐hybrid analysis, we show that Cyc2p interacts with CCHL and also with apocytochromes c and c1. We postulate that Cyc2p, possibly in a complex with CCHL, reduces the haem iron prior to haem attachment to the apoforms of cytochrome c and c1.  相似文献   

5.
A bacterial cytochrome c peroxidase was purified from the obligate methanotroph Methylococcus capsulatus Bath in either the fully oxidized or the half reduced form depending on the purification procedure. The cytochrome was a homo-dimer with a subunit mol mass of 35.8 kDa and an isoelectric point of 4.5. At physiological temperatures, the enzyme contained one high-spin, low-potential (E m7 = –254 mV) and one low-spin, high-potential (E m7 = +432 mM ) heme. The low-potential heme center exhibited a spin-state transition from the penta-coordinated, high-spin configuration to a low-spin configuration upon cooling the enzyme to cryogenic temperatures. Using M. capsulatus Bath ferrocytochrome c 555 as the electron donor, the K M and V max for peroxide reduction were 510 ± 100 nM and 425 ± 22 mol ferrocytochrome c 555 oxidized min–1 (mole cytochrome c peroxidase)–1, respectively. Received: 6 January 1997 / Accepted: 27 May 1997  相似文献   

6.
MtrC is a decaheme c-type cytochrome associated with the outer cell membrane of Fe(III)-respiring species of the Shewanella genus. It is proposed to play a role in anaerobic respiration by mediating electron transfer to extracellular mineral oxides that can serve as terminal electron acceptors. The present work presents the first spectropotentiometric and voltammetric characterization of MtrC, using protein purified from Shewanella oneidensis MR-1. Potentiometric titrations, monitored by UV–vis absorption and electron paramagnetic resonance (EPR) spectroscopy, reveal that the hemes within MtrC titrate over a broad potential range spanning between approximately +100 and approximately −500 mV (vs. the standard hydrogen electrode). Across this potential window the UV–vis absorption spectra are characteristic of low-spin c-type hemes and the EPR spectra reveal broad, complex features that suggest the presence of magnetically spin-coupled low-spin c-hemes. Non-catalytic protein film voltammetry of MtrC demonstrates reversible electrochemistry over a potential window similar to that disclosed spectroscopically. The voltammetry also allows definition of kinetic properties of MtrC in direct electron exchange with a solid electrode surface and during reduction of a model Fe(III) substrate. Taken together, the data provide quantitative information on the potential domain in which MtrC can operate.  相似文献   

7.
Peter Nicholls  Nobuhito Sone 《BBA》1984,765(2):240-247
Cytochrome caa3 (cytochrome oxidase) from the thermophilic bacterium PS3 can exhibit full catalytic activity in the presence of ascorbate and TMPD or other electron donors and in the absence of added soluble c-type cytochromes. It appears to possess only a low-affinity and not a high-affinity site for the soluble cytochromes. Proteoliposomal cytochrome caa3 develops an effective membrane potential in the presence of ascorbate and TMPD or PMS, in the absence of added soluble cytochrome c. Reduction of the a3 centre is blocked in the presence of cyanide. During reductive titrations of the cyanide-inhibited enzyme, electrons initially equilibrate among three centres, the c haem, the a haem and one of the associated Cu atoms. During steady-state turnover, electrons probably enter the complex via the bound c haem; the a haem and perhaps an associated CuA atom are reduced next. It is concluded that, despite its size and hydrophobic association with the aa3 complex, the haem c-containing subunit can behave in an analogous way to that of mammalian cytochrome c, bound at the high-affinity site of the eucaryotic enzyme.  相似文献   

8.
A novel membrane-bound sulfide-oxidizing enzyme was purified 102-fold from the neutrophilic, obligately chemolithoautotrophic Thiobacillus sp. W5 by means of a six-step procedure. Spectral analysis revealed that the enzyme contains haem c and flavin. SDS-PAGE showed the presence of two types of subunit with molecular masses of 40 and 11 kDa. The smaller subunit contains covalently bound haem c, as was shown by haem staining. A combination of spectral analysis and the pyridine haemochrome test indicated that the sulfide-oxidizing heterodimer contains one molecule of haem c and one molecule of flavin. It appeared that the sulfide-oxidizing enzyme is a member of a small class of redox proteins, the flavocytochromes c, and is structurally most related to the flavocytochrome c sulfide dehydrogenase of the green sulfur bacterium Chlorobium limicola. The pH optimum of the enzyme is 8.6. At pH 9, the V max was 2.1 ± 0.1 μmol cytochrome c (mg protein)–1 min–1, and the K m values for sulfide and cytochrome c were 1.7 ± 0.4 μM and 3.8 ± 0.8 μM, respectively. Cyanide inhibited the enzyme by the formation of an N-5 adduct with the flavin moiety of the protein. On the basis of electron transfer stoichiometry, it seems likely that sulfur is the oxidation product. Received: 15 October 1996 / Accepted: 7 January 1997  相似文献   

9.
The superfamily of quinol and cytochrome c terminal oxidase complexes is related by a homologous subunit containing six positionally conserved histidines that ligate a low-spin heme and a heme–copper dioxygen activating and reduction center. On the basis of the structural similarities of these enzymes, it has been postulated that all members of this superfamily catalyze proton translocation by similar mechanisms and that the CuA center found in most cytochrome c oxidase complexes serves merely as an electron conduit shuttling electrons from ferrocytochrome c into the hydrophobic core of the enzyme. The recent characterization of cytochrome c oxidase complexes and structurally similar cytochrome c:nitric oxide oxidoreductase complexes without CuA centers has strengthened this view. However, recent experimental evidence has shown that there are two ubiquinone(ol) binding sites on the Escherichia coli cytochrome bo 3 complex in dynamic equilibrium with the ubiquinone(ol) pool, thereby strengthening the argument for a Q(H2)-loop mechanism of proton translocation [Musser SM et al. (1997) Biochemistry 36:894–902]. In addition, a number of reports suggest that a Q(H2)-loop or another alternate proton translocation mechanism distinct from the mitochondrial aa 3 -type proton pump functions in Sulfolobus acidocaldarius terminal oxidase complexes. The possibility that a primitive quinol oxidase complex evolved to yield two separate complexes, the cytochrome bc 1 and cytochrome c oxidase complexes, is explored here. This idea is the basis for an evolutionary tree constructed using the notion that respiratory complexity and efficiency progressively increased throughout the evolutionary process. The analysis suggests that oxygenic respiration is quite an old process and, in fact, predates nitrogenic respiration as well as reaction-center photosynthesis. Received: 11 June 1997 / Accepted: 30 October 1997  相似文献   

10.
 A comparative study of electron transfer between the 16 heme high molecular mass cytochrome (Hmc) from Desulfovibrio vulgaris Hildenborough and the [Fe] and [NiFe] hydrogenases from the same organism was carried out, both in the presence and in the absence of catalytic amounts of cytochrome c 3. For comparison, this study was repeated with the [NiFe] hydrogenase from D. gigas. Hmc is very slowly reduced by the [Fe] hydrogenase, but faster by either of the two [NiFe] hydrogenases. In the presence of cytochrome c 3, in equimolar amounts to the hydrogenases, the rates of electron transfer are significantly increased and are similar for the three hydrogenases. The results obtained indicate that the reduction of Hmc by the [Fe] or [NiFe] hydrogenases is most likely mediated by cytochrome c 3. A similar study with D. vulgaris Hildenborough cytochrome c 553 shows that, in contrast, this cytochrome is reduced faster by the [Fe] hydrogenase than by the [NiFe] hydrogenases. However, although catalytic amounts of cytochrome c 3 have no effect in the reduction by the [Fe] hydrogenase, it significantly increases the rate of reduction by the [NiFe] hydrogenases. Received: 14 April 1998 / Accepted: 25 June 1998  相似文献   

11.
 The trihaem cytochrome c 551.5, formerly known as cytochrome c 7, from the organism Desulfuromonas acetoxidans, has been studied in the reduced state by 2D proton NMR. The haem proton resonances were assigned, and several nuclear Overhauser enhancements (NOEs) between resonances arising from different haems were detected and assigned. The relative orientations of the three haems were calculated by fitting both the intensities of the interhaem NOEs and the magnitudes of the ring current shifts of the haem resonances, following the strategy previously used by the authors to reassess the X-ray structure of the haem core in tetrahaem cytochrome c 3 from Desulfumicrobium baculatum. It is concluded that, although the comparison of the protein sequence with those of the tetrahaem cytochromes c 3 shows that in cytochrome c 551.5 about 40% of the sequence is deleted, including the region involved in the attachment of the second of the four haems, this does not induce any significant rearrangement of the remaining three haems other than a slight decrease in the iron-iron distance between two of the haems, namely those corresponding to haems I and IV of cytochrome c 3. Received: 2 February 1996 / Accepted: 26 March 1996  相似文献   

12.
The cytochrome b subunit (HydC) of Wolinella succinogenes hydrogenase binds two haem B groups. This is concluded from the haem B content of the isolated hydrogenase and is confirmed by the response of its cytochrome b to redox titration. In addition, three of the four haem B ligands were identified by characterizing mutants with the corresponding histidine residues replaced by alanine or methionine. Substitution in HydC of His-25, His-67 or His-186, which are, in addition to His-200, predicted to be haem B ligands, caused the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction was retained. The corresponding mutants did not grow with H2 as electron donor and either fumarate or polysulphide as terminal electron acceptor. The mutants grown with formate and fumarate did not catalyse electron transport from H2 to fumarate or to polysulphide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b was not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contained wild-type amounts of the mutated HydC protein. Substitution in HydC of His-122, His-158 or His-187, which are predicted not to be haem B ligands, yielded mutants with wild-type properties. Substitution in HydA of His-188 or of His-305 resulted in mutants with the same properties as those lacking one of the haem B ligands of HydC. His-305 is located in the membrane-integrated C-terminal helix of HydA. His-188 of HydA is predicted to be a ligand of the distal iron–sulphur centre that may serve as the direct electron donor to the haem B groups of HydC. The results suggest that each of the three predicted haem B ligands of HydC tested (out of four) is required for electron transport from H2 to either fumarate or polysulphide, and for quinone reactivity. This also holds true for the two conserved histidine residues of HydA.  相似文献   

13.
Reduction of exogenous ubiquinone and of cytochromes by sulfide in membranes of the chemotrophic bacterium Paracoccus denitrificans GB17 was studied. For sulfide-ubiquinone reductase activity, K m values of 26 ± 4 and 3.1 ± 0.6 μM were determined from titrations with sulfide and decyl-ubiquinone, respectively. A maximal rate of up to 0.3 μmol decyl-ubiquinone reduced (mg protein)–1 min–1 was estimated. The reaction was sensitive to quinone-analogous inhibitors, but insensitive to cyanide. Reduction of cytochromes by sulfide was monitored with an LED-array spectrophotometer. Under oxic conditions, reduction rates and extents of reduction were lower than those under anoxic conditions. Reoxidation of cytochromes was oxygen-dependent and cyanide-sensitive. The multiphasic behavior of transient reduction of cytochrome b with limiting amounts of sulfide reflects that sulfide, in addition to acting as an electron donor, is a slowly binding inhibitor of cytochrome c oxidase. The initial peak of cytochrome b reduction is dependent on electron flow to an oxidant, either oxygen or ferricyanide, and is stimulated by antimycin A. This oxidant-induced reduction of cytochrome b suggests that electron transport from sulfide in P. denitrificans GB17 employs the cytochrome bc 1 complex via the quinone pool. Received: 8 April 1998 / Accepted: 29 July 1998  相似文献   

14.
Cytochrome c552 is the terminal component of the formate-dependent nitrite reduction pathway of Escherichia coli. In addition to four ‘typical’ haem-binding motifs, CXXCH-, characteristic of c-type cytochromes, the N-terminal region of NrfA includes a motif, CWSCK. Peptides generated by digesting the cytochrome from wild-type bacteria with cyanogen bromide followed by trypsin were analysed by on-line HPLC MS/MS in parent scanning mode. A strong signal at mass 619, corresponding to haem, was generated by fragmentation of a peptide of mass 1312 that included the sequence CWSCK. Neither this signal nor the haem-containing peptide of mass 1312 was detected in parallel experiments with cytochrome that had been purified from a transformant unable to synthesize NrfE, NrfF and NrfG: this is consistent with our previous report that NrfE and NrfG (but not NrfF) are essential for formate-dependent nitrite reduction. Redox titrations clearly revealed the presence of high and low mid-point potential redox centres. The best fit to the experimental data is for three n = 1 components with mid-point redox potentials (pH 7.0) of +45 mV (21% of the total absorbance change), ?90 mV (36% of the total) and ?210 mV (43% of the total). Plasmids in which the lysine codon of the cysteine–lysine motif, AAA, was changed to the histidine codon CAT (to create a fifth ‘typical’ haem c-binding motif), or to the isoleucine and leucine codons, ATT and CTT, were unable to transform a Nrf? deletion mutant to Nrf+ or to restore formate-dependent nitrite reduction to the transformants. The presence of a 50 kDa periplasmic c-type cytochrome was confirmed by staining proteins separated by SDS–PAGE for covalently bound haem, but the methyl-viologen-dependent nitrite reductase activities associated with the mutated proteins, although still detectable, were far lower than that of the native protein. The combined data establish not only that there is a haem group bound covalently to the cysteine–lysine motif of cytochrome c552 but also that one or more products of the last three genes of the nrf operon are essential for the haem ligation to this motif.  相似文献   

15.
The catalytic mechanism of Pseudomonas cytochrome c peroxidase   总被引:1,自引:0,他引:1  
The catalytic mechanism of Pseudomonas cytochrome c peroxidase has been studied using rapid-scan spectrometry and stopped-flow measurements. The reaction of the totally ferric form of the enzyme with H2O2 was slow and the complex formed was inactive in the peroxidatic cycle, whereas partially reduced enzyme formed highly reactive intermediates with hydrogen peroxide. Rapid-scan spectrometry revealed two different spectral forms, one assignable to Compound I and the other to Compound II as found in the reaction cycle of other peroxidases. The formation of Compound I was rapid approaching that of diffusion control. The stoichiometry of the peroxidation reaction, deduced from the formation of oxidized electron donor, indicates that both the reduction of Compound I to Compound II and the conversion of Compound II to resting (partially reduced) enzyme are one-electron steps. It is concluded that the reaction mechanism generally accepted for peroxidases is applicable also to Pseudomonas cytochrome c peroxidase, the intramolecular source of one electron in Compound I formation, however, being reduced heme c.  相似文献   

16.
Research on photosynthetic electron transfer closely parallels that of other electron transfer pathways and in many cases they overlap. Thus, the first bacterial cytochrome to be characterized, called cytochrome c 2, is commonly found in non-sulfur purple photosynthetic bacteria and is a close homolog of mitochondrial cytochrome c. The cytochrome bc 1 complex is an integral part of photosynthetic electron transfer yet, like cytochrome c 2, was first recognized as a respiratory component. Cytochromes c 2 mediate electron transfer between the cytochrome bc 1 complex and photosynthetic reaction centers and cytochrome a-type oxidases. Not all photosynthetic bacteria contain cytochrome c 2; instead it is thought that HiPIP, auracyanin, Halorhodospira cytochrome c551, Chlorobium cytochrome c555, and cytochrome c 8 may function in a similar manner as photosynthetic electron carriers between the cytochrome bc 1 complex and reaction centers. More often than not, the soluble or periplasmic mediators do not interact directly with the reaction center bacteriochlorophyll, but require the presence of membrane-bound intermediates: a tetraheme cytochrome c in purple bacteria and a monoheme cytochrome c in green bacteria. Cyclic electron transfer in photosynthesis requires that the redox potential of the system be delicately poised for optimum efficiency. In fact, lack of redox poise may be one of the defects in the aerobic phototrophic bacteria. Thus, large concentrations of cytochromes c 2 and c′ may additionally poise the redox potential of the cyclic photosystem of purple bacteria. Other cytochromes, such as flavocytochrome c (FCSD or SoxEF) and cytochrome c551 (SoxA), may feed electrons from sulfide, sulfur, and thiosulfate into the photosynthetic pathways via the same soluble carriers as are part of the cyclic system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Dimethyl sulfide dehydrogenase isolated from the photosynthetic bacterium Rhodovulum sulfidophilum is a heterotrimeric enzyme containing a molybdenum cofactor at its catalytic site, as well as five iron–sulfur clusters and a heme b cofactor. It oxidizes dimethyl sulfide (DMS) to dimethyl sulfoxide in its native role and transfers electrons to the photochemical reaction center. There is genetic evidence that cytochrome c 2 mediates this process, and the steady state kinetics experiments reported here demonstrated that cytochrome c 2 accepts electrons from DMS dehydrogenase. At saturating concentrations of both substrate (DMS) and cosubstrate (cytochrome c 2), Michaelis constants, K M,DMS and K M,cyt of 53 and 21 μM, respectively, were determined at pH 8. Further kinetic analysis revealed a “ping-pong” enzyme reaction mechanism for DMS dehydrogenase with its two reactants. Direct cyclic voltammetry of cytochrome c 2 immobilized within a polymer film cast on a glassy carbon electrode revealed a reversible FeIII/II couple at +328 mV versus the normal hydrogen electrode at pH 8. The FeIII/II redox potential exhibited only minor pH dependence. In the presence of DMS dehydrogenase and DMS, the peak-shaped voltammogram of cytochrome c 2 is transformed into a sigmoidal curve consistent with a steady-state (catalytic) reaction. The cytochrome c 2 effectively mediates electron transfer between the electrode and DMS dehydrogenase during turnover and a significantly lower apparent electrochemical Michaelis constant of 13(±1) μM was obtained. The pH optimum for catalytic DMS oxidation by DMS dehydrogenase with cytochrome c 2 as the electron acceptor was found to be approximately 8.3.  相似文献   

18.
In a spontaneous mutant (PYM1) of Bacillus cereus impaired in the synthesis of haem A, no haem-A-containing cytochromes were detected spectroscopically. The haem A deficiency was compensated by high levels of haem O and a CO-reactive cytochrome o in membranes; no other oxidases were detected. In contrast, the wild-type strain had considerable amounts of haem A and negligible levels of haem O. The mutant PYM1 exhibited normal colony morphology, growth, and sporulation in nonfermentable media, whereas on fermentable media, the mutant overproduced acid, which led to poor growth and inhibition of sporulation. External control of the pH of the medium in fermentable media allowed close-to-normal growth and massive sporulation of the mutant. The presence of membrane-bound cytochrome caa 3 -OII and aa 3 -II subunits in strain PYM1 was confirmed by Western blots and haem C staining (COII subunit). Western blotting also revealed that in contrast to the wild-type – strain PYM1 contained the membrane-bound subunits caa 3 -COI and aa 3 -I, but in low amounts. The effect of several respiratory inhibitors on the respiratory system of strain PYM1 suggested that the terminal oxidase is highly resistant to KCN and CO and that a c-type cytochrome might be involved in the electron transfer sequence to the putative cytochrome bo. Received: 21 June 1996 / Accepted: 9 October 1996  相似文献   

19.
The midpoint potential of the [2Fe–2S] cluster of the Rieske iron–sulfurprotein (E m 7 = +280mV) is the primary determinant of the rate of electron transfer from ubiquinol to cytochromec catalyzed by the cytochrome bc 1 complex. As the midpoint potential of the Rieske clusteris lowered by altering the electronic environment surrounding the cluster, theubiquinol-cytochrome c reductase activity of the bc 1 complex decreases; between 220 and 280 mV therate changes 2.5-fold. The midpoint potential of the Rieske cluster also affects thepresteady-state kinetics of cytochrome b and c 1 reduction. When the midpoint potential of the Rieskecluster is more positive than that of the heme of cytochrome c 1, reduction of cytochrome bis biphasic. The fast phase of b reduction is linked to the optically invisible reduction of theRieske center, while the rate of the second, slow phase matches that of c 1 reduction. The ratesof b and c 1 reduction become slower as the potential of the Rieske cluster decreases andchange from biphasic to monophasic as the Rieske potential approaches that of theubiquinone/ubiquinol couple. Reduction of b and c 1 remain kinetically linked as the midpoint potentialof the Rieske cluster is varied by 180 mV and under conditions where the presteady statereduction is biphasic or monophasic. The persistent linkage of the rates of b and c 1 reduction isaccounted for by the bifurcated oxidation of ubiquinol that is unique to the Q-cycle mechanism.  相似文献   

20.
Cytochrome c oxidase is essential for aerobic life as a membrane-bound energy transducer. O2 reduction at the haem a3-CuB centre consumes electrons transferred via haem a from cytochrome c outside the membrane. Protons are taken up from the inside, both to form water and to be pumped across the membrane (M.K.F. Wikström, Nature 266 (1977) 271 [1]; M. Wikström, K. Krab, M. Saraste, Cytochrome Oxidase, A Synthesis, Academic Press, London, 1981 [2]). The resulting electrochemical proton gradient drives ATP synthesis (P. Mitchell, Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin, UK, 1966 [3]). Here we present a molecular mechanism for proton pumping coupled to oxygen reduction that is based on the unique properties of water in hydrophobic cavities. An array of water molecules conducts protons from a conserved glutamic acid, either to the Δ-propionate of haem a3 (pumping), or to haem a3-CuB (water formation). Switching between these pathways is controlled by the redox-state-dependent electric field between haem a and haem a3-CuB, which determines the water-dipole orientation, and therefore the proton transfer direction. Proton transfer via the propionate provides a gate to O2 reduction. This pumping mechanism explains the unique arrangement of the metal cofactors in the structure. It is consistent with the large body of biochemical data, and is shown to be plausible by molecular dynamics simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号