首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 In recent years, marine scientists have become increasingly alarmed over the decline of live coral cover throughout the Caribbean and tropical western Atlantic region. The Holocene and Pleistocene fossil record of coral reefs from this region potentially provides a wealth of long-term ecologic information with which to assess the historical record of changes in shallow water coral reef communities. Before fossil data can be applied to the modern reef system, critical problems involving fossil preservation must be addressed. Moreover, it must be demonstrated that the classic reef coral zonation patterns described in the early days of coral reef ecology, and upon which “healthy” versus “unhealthy” reefs are determined, are themselves representative of reefs that existed prior to any human influence. To address these issues, we have conducted systematic censuses of life and death assemblages on modern “healthy” patch reefs in the Florida reef tract that conform to the classic Caribbean model of reef coral zonation, and a patch reef in the Bahamas that is currently undergoing a transition in coral dominance that is part of a greater Caribbean-wide phenomenon. Results were compared to censuses of ancient reef assemblages preserved in Pleistocene limestones in close proximity to each modern reef. We have determined that the Pleistocene fossil record of coral reefs may be used to calibrate an ecological baseline with which to compare modern reef assemblages, and suggest that the current and rapid decline of Acropora cervicornis observed on a Bahamian patch reef may be a unique event that contrasts with the long-term persistence of this taxon during Pleistocene and Holocene time. Accepted: 19 May 1998  相似文献   

2.
Summary The shallow marine subtropical Northern Bay of Safaga is composed of a complex pattern of sedimentary facies that are generally rich in molluscs. Thirteen divertaken bulk-samples from various sites (reef slopes, sand between coral patches, muddy sand, mud, sandy seagrass, muddy seagrass, mangrove channel) at water depths ranging from shallow subtidal to 40m were investigated with regard to their mollusc fauna >1mm, which was separated into fragments and whole individuals. Fragments make up more than 88% of the total mollusc remains of the samples, and their proportions correspond to characteristics of the sedimentary facies. The whole individuals were differentiated into 622 taxa. The most common taxon,Rissoina cerithiiformis, represented more than 5% of the total mollusc content in the samples. The main part of the fauna consists of micromolluscs, including both small adults and juveniles. Based on the results of cluster-, correspondence-, and factor analyses the fauna was grouped into several associations, each characterizing a sedimentary facies: (1) “Rhinoclavis sordidula—Corbula erythraeensis-Pseudominolia nedyma association” characterizes mud. (2) “Microcirce sp.—Leptomyaria sp. association” characterizes muddy sand. (3)”Smaragdia spp.-Perrinia stellata—Anachis exilis—assemblage” characterizes sandy seagrass. (4) “Crenella striatissima—Rastafaria calypso—Cardiates-assemblage” characterizes muddy seagrass. (5) “Glycymeris spp.-Parvicardium sueziensis-Diala spp.-assemblage” characterizes sand between coral patches. (6) “Rissoina spp.-Triphoridae —Ostreoidea-assemblage” characterizes reef slopes. (7) “Potamides conicus—Siphonaria sp. 2—assemblage” characterizes the mangrove. The seagrass fauna is related to those of sand between coral patches and reef slopes with respect to gastropod assemblages, numbers of taxa and diversity indices, and to the muddy sand fauna on the basis of bivalve assemblages and feeding strategies of bivalves. The mangrove assemblage is related to those of sand between coral patches and the reef slope with respect to taxonomic composition and feeding strategies of bivalves, but has a strong relationship to those of the fine-grained sediments when considering diversity indices. Reef slope assemblages are closely related to that of sand between coral patches in all respects, except life habits of bivalves, which distincly separates the reef slope facies from all others.  相似文献   

3.
Summary An integrated study of the early Messinian reef complex cropping out along the eastern coast of the Salento Peninsula (southern Italy), including stratigraphy, facies analysis and paleoecological aspects, is here presented. Fourteen facies types belonging to three main facies associations (back reef and shelf, shelf-edge, slope) have been recognized. They document a wide spectrum of depositional environments, reef building organisms and growth fabrics, in response to depth and other environmental factors in different parts of the reef complex. The biotic structure of the reef is also described and discussed in detail. It consists of different types of reef building organisms and of their bioconstructions (mainlyPorites coral reefs,Halimeda bioherms and vermetidmicrobial “trottoirs”), that differ in composition and structure according to their position on the shelf edge-toslope profile. Results indicate that the reef complex of the Salento Peninsula has strong similarities with the typical early Messinian reefs of the Mediterranean region. However, the recognition of some peculiar features, i.e. the remarkable occurrence ofHalimeda bioherms and of vermetid-microbial “trottoirs”, gives new insights for better understanding reef patterns and development of the reef belt during the Late Miocene in the Mediterranean.  相似文献   

4.
Rising atmospheric CO2 and its equilibration with surface ocean seawater is lowering both the pH and carbonate saturation state (Ω) of the oceans. Numerous calcifying organisms, including reef-building corals, may be severely impacted by declining aragonite and calcite saturation, but the fate of coral reef ecosystems in response to ocean acidification remains largely unexplored. Naturally low saturation (Ω ~ 0.5) low pH (6.70–7.30) groundwater has been discharging for millennia at localized submarine springs (called “ojos”) at Puerto Morelos, México near the Mesoamerican Reef. This ecosystem provides insights into potential long term responses of coral ecosystems to low saturation conditions. In-situ chemical and biological data indicate that both coral species richness and coral colony size decline with increasing proximity to low-saturation, low-pH waters at the ojo centers. Only three scleractinian coral species (Porites astreoides, Porites divaricata, and Siderastrea radians) occur in undersaturated waters at all ojos examined. Because these three species are rarely major contributors to Caribbean reef framework, these data may indicate that today’s more complex frame-building species may be replaced by smaller, possibly patchy, colonies of only a few species along the Mesoamerican Barrier Reef. The growth of these scleractinian coral species at undersaturated conditions illustrates that the response to ocean acidification is likely to vary across species and environments; thus, our data emphasize the need to better understand the mechanisms of calcification to more accurately predict future impacts of ocean acidification.  相似文献   

5.
Middle Reef is an inshore turbid zone reef located 4 km offshore from Townsville, Queensland, Australia. The reef consists of four current-aligned, interconnected reef patches that have reached sea level and formed reef flats. It is regularly exposed to high turbidity (up to 50 mg l−1) generated by wave-driven sediment resuspension or by episodic flood plumes. Middle Reef has a high mean hard coral cover (>39%), relatively low mean macro-algal cover (<15%) and a coral community comprising at least 81 hard coral species. Cluster analysis differentiated six benthic communities which were mapped onto the geomorphological structure of the reef to reveal a spatially patchy community mosaic that reflects hydrodynamic and sediment redistribution processes. Coral cover data collected annually from windward slope transects since 1993 show that coral cover has increased over the last ~15 years despite a history of episodic mortality events. Although episodic mortality may be interpreted as an indication of marginality, over decadal timescales, Middle Reef has recovered rapidly following mortality events and is clearly a resilient coral reef.  相似文献   

6.
Increasing sediment onto coral reefs has been identified as a major source of habitat degradation, and yet little is known about how it affects reef fishes. In this study, we tested the hypothesis that sediment-enriched water impairs the ability of larval damselfish to find suitable settlement sites. At three different experimental concentrations of suspended sediment (45, 90, and 180 mg l−1), pre-settlement individuals of two species (Pomacentrus amboinensis and P. moluccensis) were not able to select their preferred habitat. In a clear water environment (no suspended sediment), both species exhibit a strong preference for live coral over partially dead and dead coral, choosing live coral 70 and 80% of the time, respectively. However, when exposed to suspended sediment, no habitat choice was observed, with individuals of both species settling on live coral, partially dead, and dead coral, at the same frequency. To determine a potential mechanism underlying these results, we tested chemosensory discrimination in sediment-enriched water. We demonstrated that sediment disrupts the ability of this species to respond to chemical cues from different substrata. That is, individuals of P. moluccensis prefer live coral to dead coral in clear water, but in sediment-enriched water, chemical cues from live and dead coral were not distinguished. These results suggest that increasing suspended sediment in coral reef environments may reduce settlement success or survival of coral reef fishes. A sediment-induced disruption of habitat choice may compound the effects of habitat loss on coral reefs.  相似文献   

7.
 The sedimentological and chronological study of Holocene reef sequences recovered in drill cores through modern reefs of Mauritius, Réunion Island and Mayotte allows the reconstruction of sea level changes and reef growth patterns during the Holocene. The branching-coral facies systematically predominates over coral head facies throughout the Holocene reef sequences, and Acropora is the main frame builder among the branching forms. The reconstructed sea level curves, based both on identification of coral assemblages and on radiometric U/Th ages, are characterized by a rapid rise between 10 and 7.5 ky BP, followed by a clear inflection between 7.5 and 7 ky BP. The stabilization of sea level at its present level occurred between 2000 and 3000 years ago, probably without a higher sea level stand. Rates of vertical reef accretion range between 0.9 and 7 mm. y-1. In Mauritius, and also probably in Réunion Island, the reef first tracked, then caught-up to sea level to reach an equilibrium position (“catch-up” growth), while the barrier reef margin off Mayotte has been able to keep pace with rising sea level (“keep-up” growth). Accepted: 1 March 1997  相似文献   

8.
Phyto traps were attached to twigs, main branches and trunks of Japanese pear trees in central Japan in autumn of 2004, to evaluate the effectiveness of the trap as a tool to study overwintering phenology of arboreal phytoseiid mites. A subset of the traps was inspected and replaced at two-weeks intervals (“short-term Phyto trap”), in order to evaluate movement of phytoseiid mites on the trees in a short-term. The remaining traps were left undisturbed and collected monthly from January to May 2005 (“long-term Phyto trap”), to know what species overwinter in the traps and when they leave them. Most phytoseiid mites were collected in the traps on twigs. The most abundant phytoseiid species was Typhlodromus vulgaris Ehara. In the short-term traps on twigs, adult females and males of T. vulgaris were collected until mid-November 2004, when the pear trees became completely defoliated, but few mites were collected from December to April. On the other hand, adult females of T. vulgaris were abundant in the long-term traps on twigs sampled from January to April, but other stages of mites were never collected. These results indicate that T. vulgaris had moved to the long-term traps by late November, and that only adult females had overwintered in the traps. These females began to move and reproduce in early May. By that time immature developmental stages of T. vulgaris were also recorded in the short- and long-term Phyto traps. Our results confirmed that the Phyto trap was a useful tool for estimating overwintering phenology of phytoseiid mites on trees.  相似文献   

9.
Den sharing by conspecific spiny lobsters (aggregation) is modulated by chemical attraction but may confer several, not necessarily mutually exclusive, antipredator byproduct benefits: a “guide effect”, which only benefits the individual attracted to a sheltered conspecific; a “dilution effect”, which reduces per-capita risk of predation simply through aggregation; or active “group defense”. Each potential benefit has a different set of predictors (relationships between aggregation and conspecific or predator densities), but conflicting results could suggest the simultaneous operation of more than one benefit. These predictions were tested for coexisting Panulirus guttatus (a reef-obligate) and Panulirus argus (a temporary reef-dweller) using data collected during 11 surveys on fixed sites over a coral reef in Mexico. P. guttatus greatly outnumbered P. argus, but P. argus showed a greater tendency to aggregate. All three benefits of den sharing operated for the more social P. argus, with “group defense” being of the most benefit for larger individuals, and the “guide” and “dilution” effects for smaller individuals recently immigrating into the reef habitat and sharing dens with larger conspecifics. P. guttatus did not display “group defense” and its aggregations appeared to be modulated by the interplay between attraction and aggressive behaviors. This species relied more on solitary crypticity, especially at larger sizes, but appeared to benefit from a “guide effect” at high conspecific densities. In experimental tanks, each species tended to aggregate when tested separately, but when tested jointly, aggregation among P. guttatus was significantly reduced. The experimental results reflect the differential patterns of aggregation between the fore-reef, where P. guttatus dominated, and the back-reef, where coexistence of both species was greater.  相似文献   

10.
Summary The Upper Rhaetian coral limestone of Adnet, southeast of Salzburg Austria has been repeatedly referred to as one of the most spectacular examples of an ancient ‘autochthonous’ coral reef structure. The ‘Tropfbruch’ quarry is probably the best outcrop for interpreting the distributional patterns of biotic successions and communities of a late Triassic patch reef. Our study is based on the interpretation of a) outcrop photographs, b) reef maps resulting from quadrat transects, and c) the analysis of quantitative data describing the distribution and frequency of reef organisms and sediment. A new methodological approach (combination of reef mapping and photo-transects) is used to obtain quantitative field data which can be compared in greater detail with data from modern coral reefs investigated by corresponding quantitative surveys. Three unconformities and three well-defined ‘reef growth stages’ reflecting the vertical and lateral development of the reef structure were differrentiated using transects: Stage 1, representing the reef growth optimum, is characterized by laterally differentiated coral reef knobs with corals in growth position. Criteria supporting this interpretation are the extraordinary size of the corals, their preservation in situ and the great thickness of this interval. The massive coralPamiroseris grew under higher energy conditions at the rim of the reef knob, whereas branchingRetiophyllia colonies preferred less agitated water in the center. Vertical changes are reflected by an increase in frequency of the dasycladacean algaDiplopora adnetensis and by the decreasing size ofRetiophyllia. These sedimentological and biological criteria together with the unconformity above indicate a fall in the sea level as a major control mechanism. Stage 2, separated from stage 1 by an unconformity caused by partial subaerial exposure and karstification, is characterized by vertically stacked coral successions with diverse reef debris. Facies heterogeneity is reflected by differences in the diversity, taphonomy and packing density of reef-building organisms as well as by differences in sediment input from the platform. Water depths and accommodation space were lower, therefore minor sea level fluctuations had a stronger effect on the biotic composition. The high percentage of coral debris and corals reworked by storms and the increase in the input of platform sediment led to a reduction of reef growth. Stage 3, again separated at the base by an unconformity associated with karstification, is characterized by bioclastic sediments with isolated reefbuilders forming a level-bottom community. The distribution of different coral morphotypes suggests that sea level fluctuations were not the only controlling factor. Variations in the substrate were caused by differences in the input of platform sediment. The three-step development seen in Adnet documents the response of low-diverse coral associations to variations caused by small-scale sea level changes, storm activity and sedimentation. The vertical changes in reef community structures correspond to a sequence of ‘allogenic replacements’. The Adnet reef structure should not be regarded as a general model of Alpine Upper Rhaetian reefs, because of the particular setting of the patch reef. Only the ‘capping beds’ of the Upper Rhaetian Reef Limestone of the Steinplatte exhibit criteria similar to Adnet. Potential modern analogues of features seen in the coral communities of Adnet are the internal structure of theRetiophyllia thickets, the key role of branching corals within the communities, the scattered distribution and low and even diversity of corals subsequent to breaks in settlement, segration patterns of corals indicating ‘contact avoidance’, toppling of large coral colonies by intensive boring, and decreasing coral coverage from deeper and sheltered settings to more shallower water depths.  相似文献   

11.
 Managing a coral reef in a small island state is a difficult task. Apart from having conflicting objectives and few data there is the added problem of how to evaluate the less tangible benefits of management. This study reports the successful use of multiple criteria analysis to help the managers of a coral reef to make “good” decisions. “Good” decisions are consistent with the community’s desires to, in this case, preserve social and ecological values while simultaneously maintaining the economic benefits of dive tourism and maintaining the park as a global model of successful management. Multiple criteria analysis provides a systematic framework for evaluating management options. This study presents one of the first times multiple criteria analysis has been used in coral reef management, let alone in a non-industrialised setting. The results suggest that the method may be more widely useful than previously thought. Accepted: 20 July 1999  相似文献   

12.
 CaCO3 production by reef-building organisms on Green Island Reef in the Great Barrier Reef of Australia is estimated and compared with the contribution of benthic foraminifera to the sediment mass of the vegetated sand cay. Major constituents of the cay are benthic foraminifera (mainly Amphistegina lessonii, Baculogypsina sphaerulata, and Calcarina hispida), calcareous algae (Halimeda and coralline algae), hermatypic corals, and molluscs. Among these reef-building organisms, benthic foraminifera are the single most important contributor to the sediment mass of the island (ca. 30% of total sediments), although their production of CaCO3 is smaller than other reef-building organisms. Water current measurements and sediment traps indicate that the velocity of the current around Green Island is suitable for transportation and deposition of foraminiferal tests. Abundant foraminifera presently live in association with algal turf on the shallow exposed reef flat, whose tests were accumulated by waves resulting in the formation and maintenance of the coral sand cay. Accepted: 30 June 1999  相似文献   

13.
Summary The chief mode of carbonate sedimentation on the Belizean atolls Glovers Reef, Lighthouse Reef and Turneffe Islands is the accumulation of organically-derived particles. Variations in the distribution of the composition and grain-sizes of surface sediments, collected along transects across the atolls, are environmentally controlled. Two major sediment types may be distinguished. (1) Reef and fore reef sediments are dominated by fragments of coral, coralline algae andHalimeda. Mean grain-sizes range from 1–2 mm. (2) Back reef sediments contain more mollusk fragments, more fine-grained sediment (<125 μm) and appear to have fewerHalimeda fragments. In addition, sediments from inner platforms and shallow lagoonal parts of Glovers and Lighthouse Reefs comprise non-skeletal grains, namely fecal pellets. Sediments from lagoonal patch reefs may contain up to 20% coral fragments. Mean grain-sizes range from 0.1–1 mm and are finest on the inner platform and lagoon floor of the back reef environment. Within the reef and fore reef environments, it is not possible to distinguish sub-environments on the basis of textural and compositional differences of the sediments. Sediments from patch reefs contrast with those from back reef lagoons and inner platforms and are similar in terms of grain-sizes and compositions to reef and fore reef surface sediments. Non-skeletal grains forming in shallow parts of the back reef in Glovers and Lighthouse Reefs are interpreted to be indurated by interstitial precipitation of calcium carbonate from warm, supersaturated water flushing the sediment. The lack of hardened non-skeletal particles in the back reef sediments of Turneffe Islands is most probably due to the abundance of muddy, organic-rich sediment in the well-protected lagoon. Fine sediment is less permeable and organic films prevent cement overgrowth on particles.  相似文献   

14.
 Coral communities were investigated in the northern Red Sea, in the Gulfs of Suez and Aqaba, for their framework building potential. Five types of coral frameworks were differentiated: Acropora reef framework, Porites reef framework, Porites carpet, faviid carpet, and Stylophora carpet. Two non-framework community types were found: the Stylophora-Acropora community, and soft coral communities. Reef frameworks show a clear ecological zonation along depth and hydrodynamic exposure gradients, with clear indicator communities for each zone. By definition, coral carpets build a framework but lack distinct zonation patterns since they grow only in areas without pronounced gradients. In the northern Red Sea they show a gradual change with depth from Porites to faviid dominance. A Stylophora carpet is restricted to shallow water in the northern Gulf of Suez. Although growth rates of carpets may be somewhat less than those of reefs, the carbonate accumulation is considered to be higher in carpet areas due to their significantly higher areal extension. In addition, reefs and carpets have different sediment retention characteristics – the carpet retains, the reef exports. The in situ fossilization potential of coral carpets is expected to be higher than that of reef frameworks. Accepted: 25 May 1999  相似文献   

15.
Excessive sedimentation is a major threat to coral reefs. It can damage or kill reef-building corals and can prevent the successful settlement of their planktonic larvae. The surgeonfish Ctenochaetus striatus feeds on rocky surfaces by sweeping loose material into its mouth with its flexible, broom-like teeth. In addition, it grasps and removes hard substrates with the aid of its special palate structure. It then transports sediment matter off the reef by defecating the ingested material outside the rocky zone of the reef. We analyzed 150 feces samples of six individuals, differentiating between (1) ingested by sweeping and (2) ingested by scraping, and compared their content with inorganic land-derived and marine sediments trapped at the feeding area. Projections based on fish densities, defecation rates, and quantities as well as composition of sediments collected by traps on the same reef site suggest that C. striatus removes at least 18% of the inorganic sediment sinking onto the reef crest. The eroded share in the exported matter is about 13%. This finding points to a hitherto not verified role of C. striatus as a reef sweeper and reef scraper, whereby the first function is by far dominating.  相似文献   

16.
Several groups of tube-dwelling coral symbionts induce the formation of long, finger-like branches (“fingers”) on Montipora corals in the lagoons of Moorea, French Polynesia. We surveyed the prevalence and taxonomic diversity of these symbionts across the northern lagoons of Moorea, and documented the length and density of the finger structures on coral colonies. We found that the symbionts, which include gammarid amphipods and chaetopterid polychaete worms that were not previously known to associate with scleractinian corals, dramatically alter coral skeletal morphology, and may alter coral biology and reef ecology.  相似文献   

17.
Carsten Helm  Immo Schülke 《Facies》2006,52(3):441-467
Small reefal bioconstructions that developed in lagoonal settings are widespread in a few horizons of the Late Jurassic (Oxfordian) succession of the Korallenoolith Formation, exposed southwest of Hannover, Northwest Germany. Especially the florigemma-Bank Member, “sandwiched” between oolite shoal deposits, exposes a high variety of build-ups, ranging from coral thrombolite patch reefs, to biostromes and to coral meadows. The reefs show a distribution with gradual facies variations along an outcrop belt that extends about 30 km from the Wesergebirge in the NW to the Osterwald Mts in the SE.The patch reefs from the Deister Mts locality at the “Speckhals” are developed as coral-chaetetid-solenoporid-microbialite reefs and represent a reef type that was hitherto unknown so far north of its Tethyan counterparts. They are mainly built up by coral thickets that are preserved in situ up to 1.5 m in height and a few metres in diameter. They contain up to 20 coral species of different morphotypes but are chiefly composed of phaceloid Stylosmilia corallina and Goniocora socialis subordinately. The tightly branched Stylosmilia colonies are stabilized by their anastomosing growth. The coral branches are coated with microbial crusts and micro-encrusters reinforcing the coral framework. Encrusters and other biota within the thicket show a typical community replacement sequence: Lithocodium aggregatum, Koskinobullina socialis and Iberopora bodeuri are pioneer organisms, whereas the occurrence of non-rigid sponges represents the terminal growth stage. The latter are preserved in situ and seem to be characteristic so far poorly known constituents of the Late Jurassic cryptobiont reef dweller community. The distance and overall arrangement of branches seems to be the crucial factor for the manifestation of a (cryptic) habitat promoting such community replacement sequences. Widely spaced branches often lack any encrusting and/or other reef dwelling organisms, whereas tightly branched corals, as is St. corallina, stimulate such biota. Hence, such reefs are well suited for research on coelobites and community sequences of encrusting and cavity dwelling organisms.  相似文献   

18.
Tolerance of environmental variables differs between corals and their dinoflagellate symbionts (Symbiodinium spp.), controlling the holobiont’s (host and symbiont combined) resilience to environmental stress. However, the ecological role that environmental variables play in holobiont distribution remains poorly understood. We compared the drivers of symbiont and coral species distributions at Palmyra Atoll, a location with a range of reef environments from low to high sediment concentrations (1–52 g dry weight m−2 day−1). We observed uniform holobiont partnerships across the atoll (e.g. Montipora spp. with Symbiodinium type C15 at all sites). Multivariate analysis revealed that field-based estimates of settling sediment predominantly explained the spatial variation of coral species among sites (P < 0.01). However, none of the environmental variables measured (sedimentation, temperature, chlorophyll concentration, salinity) affected symbiont distribution. The discord between environmental variables and symbiont distributions suggests that the symbionts are physiologically tolerant of the variable environmental regime across this location and that the distribution of different host–symbiont combinations present is largely dependent on coral rather than Symbiodinium physiology. The data highlight the importance of host tolerance to environmental stressors, which should be considered simultaneously with symbiont sensitivity when considering the impact of variations in environmental conditions on coral communities.  相似文献   

19.
 A small-scale, “no-use zone policy” has been implemented since 1992 at Eilat’s Coral Nature Reserve (Northern Red Sea). Six years later, the status of this closed-to-the-public reef area was compared to two nearby open-to-the-public sites, by evaluating populations of the scleractinian coral Stylophora pistillata in the strolling zone (0.5–1.5 m depth). Results from the open sites show that: (1) Live coral cover was three times lower than at the closed site; (2) numbers of small colonies (recruits) were significantly higher than in the closed site, while numbers of medium and large size colonies (geometric mean radius, >4.1 cm) per m2 were significantly lower; (3) maximum was almost half than that in the closed site (9.6 cm versus 16.7 cm); (4) average number of broken colonies was three times higher than in the closed site; (5) significantly fewer colonies were partially dead. The latter result may reflect senescence processes in the large colonies of the closed site. Although colony breakage is reduced, it appears that the “no-use zone” policy is not sufficient for protecting small reef areas. The intense exploitation of Eilat’s coral reef by the tourist industry requires’ in addition to the conventional protective measures, the initiation of novel management solutions such as reef restoration by sexual and asexual recruits. Accepted: 11 August 1999  相似文献   

20.
The importance of studying coral communities at different spatial scales is acknowledged in a growing volume of scientific literature, and principles of landscape ecology were thus used to elucidate the patterns in coral community structure on the high-latitude reefs in South Africa. These reefs are at the southernmost distribution of this fauna in Africa, are surprisingly species rich, and represent a biodiversity peak in this fauna south of the equator, regardless of the marginal nature of the environment. Coral community patterns were identified on and between the reefs at Sodwana Bay, justifying the grouping of reef areas in distinct zones. A number of landscape components were identified, ranging from the entire reef complex (10 km scale), individual reefs (1 km scales) and reef zones, to components that were separated using multivariate statistical analysis of transect data. These components transcended spatial similarities, e.g. the fore-reef on Five-mile Reef was not similar to the fore-reef on Seven-mile Reef, but was rather grouped with the reef flat on Two-mile Reef. This information was “translated” into an index of management intervention, based on risk assessment, and was generated using parameters that measure susceptibility to crown-of-thorns feeding, bleaching, diver-related damage and swell-induced breakage. We also assessed was the time elapsed since the last major disturbance and the proximity to the only boat launch site, a proxy measure of continuous disturbance. The risk assessment suggested that conservation management is most needed in the stable and “climax” coral communities that are usually characterised by a near-equal mix of hard and soft corals at maximal coral species diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号