首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sponges (Phylum Porifera) are an evolutionary and ecologically significant group; however information on processes influencing sponge population distributions is surprisingly limited. Carteriospongia foliascens is a common Indo-Pacific sponge, which has been reported from the intertidal to the mesophotic. Interestingly, the distribution of C. foliascens at inshore reefs of the Great Barrier Reef is restricted to the intertidal with no individuals evident in adjacent subtidal habitats. The abundance of C. foliascens and substrate availability was first quantified to investigate the influence of substrate limitation on adult distribution. Pre-settlement processes of larval spawning, swimming speeds, phototaxis, vertical migration, and settlement to intertidal and subtidal substrate cues were also quantified. Notably, suitable settlement substrate (coral rubble) was not limiting in subtidal habitats. C. foliascens released up to 765 brooded larvae sponge−1 day−1 during the day, with larvae (80%±5.77) being negatively phototactic and migrating to the bottom within 40 minutes from release. Subsequently, larvae (up to 58.67%±2.91) migrated to the surface after the loss of the daylight cue (nightfall), and after 34 h post-release >98.67% (±0.67) of larvae had adopted a benthic habit regardless of light conditions. Intertidal and subtidal biofilms initiated similar settlement responses, inducing faster (as early 6 h post-release) and more successful metamorphosis (>60%) than unconditioned surfaces. C. foliascens has a high larval supply and larval behaviours that support recruitment to the subtidal. The absence of C. foliascens in subtidal habitats at inshore reefs is therefore proposed to be a potential consequence of post-settlement mortalities.  相似文献   

2.
The prevailing environmental conditions when reproductive products are released in the water column can have a profound influence on the biology and ecology of marine organisms. In reef-building corals, brooding species that release azooxanthellate larvae are expected to release their larvae before sunrise, similar to species releasing zooxanthellate larvae as established in previous studies. This study investigated the diel timing of release of asymbiotic larvae by Isopora cuneata in northwestern Philippines during 2 years through ex situ observations on gravid colonies collected from the reef. Planulation mainly occurred after sunset until midnight, with grand mean hour of release at 19:35 h (95% confidence limit: 18:44–21:02 h) in April 2010 and 19:41 h (18:10–20:59 h) in March 2011. This pattern of release timing is distinct from what has been previously reported for brooding scleractinian coral species with zooxanthellate larvae (i.e., release close to sunrise). The release coincides with the low tidal stand, which may provide opportunity for the prompt settlement of newly released, buoyant larvae to shallow reef areas where adult colonies are generally distributed. The larvae were able to settle with 20 ± 25% success within a day of release, though a distinct settlement peak at 3 days post-release (70 ± 25%). This study provides new information on the early life strategies of the reef-building coral Isopora cuneata. The unique pattern of larval release time and the settlement behavior may influence the population dynamics and success of the species through space and time.  相似文献   

3.
External chemical signals used by scleractinian corals to recognize suitable substrata for larval settlement and metamorphosis were identified from crustose coralline red algae (CCA). A fragment of coral rubble with CCA induced larval metamorphosis of the scleractinian coral Pseudosiderastrea tayamai. A natural inducer and compounds that enhanced its effect in larval metamorphosis were isolated from the methanol extracts of coral rubble with CCA. A bromotyrosine derivative, 11-deoxyfistularin-3 (10− 7 M) isolated from the CCA, induced the metamorphosis of P. tayamai larvae (27.5 ± 24.0%). In the presence of fucoxanthinol (10− 9 M) and fucoxanthin (10− 9 M), the percentage of metamorphosis induced by the bromotyrosine derivative was further enhanced to 87.8 ± 13.0 and 88.4 ± 17.8%, respectively. Both carotenoids are also found in the coral rubble with CCA. These results suggest that bromotyrosine derivative and carotenoids have a synergistic effect in the metamorphosis of P. tayamai larvae. The synergistic effect provides a higher selectivity for recruitment than a single-component natural inducer for recognizing suitable substrata for larval metamorphosis. Thus, the effect might offer a survival advantage for benthic marine invertebrates.  相似文献   

4.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

5.
Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.  相似文献   

6.
The effect of elevated seawater temperatures, such as those plaguing tropical seas during the summers of anomalously warm years, on early life stages of reef corals remains poorly studied. To redress this situation, survivorship of larvae of the brooding coral, Favia fragum, was studied in the laboratory, using both short term (48 h) and long term (156–191 h) exposures to 28, 29, and 31°C. Ability to settle when presented with induction substrates and survival after settlement, at the same exposure temperature and after reciprocal transfers to the other experimental temperatures, were also measured. No significant effect of temperature on survivorship was detected after 48 h of exposure, but larvae incubated for 156 h at the highest temperature (31°C) exhibited a 13% reduced survivorship compared to larvae at 28°C. Induction of settlement further increased mortality at the highest temperature (31°C); survivorship after settlement at 31°C was 27% lower than when larvae were simply maintained at the elevated temperature. These results indicate that elevated temperatures are more detrimental to coral larvae undergoing the developmentally complex settlement process than to the swimming planula stage. This may bode poorly for Caribbean corals with late summer reproductive seasons. Communicated by Ecology Editor Prof. Peter Mumby  相似文献   

7.
Planktonic larvae of the serpulid polychaete Spirobranchus giganteus, an obligate associate of live coral, were tested for preferences for materials diffusing from natural substrates. Choices offered were Acropora prolifera, a very abundant coral on the Heron Island reef flat; Palauastraea ramosa, a less abundant coral, dead coral rubble and a glass tube as a control. Larval life is approximately 12 days. The larvae tested were 1–4 days old. Adults of S. giganteus occur commonly on A. prolifera and much less frequently on P. ramosa. Experiments were designed to prevent contact between larvae and substrate. Larvae preferred A. prolifera over P. ramosa, rubble and the control. There was no preference expressed between the control and P. ramosa or the control and rubble. A preference by young S. giganteus larvae for a substance diffusing from coral, acting together with a known positive phototaxis, may be adaptive in that it may help to maintain larvae in surface waters over the reef and in the vicinity of a specific coral until they are old enough to settle.  相似文献   

8.
Degraded reefs with a high abundance of macroalgae usually also have low densities of coral recruits. Few studies, however, have examined whether these algae affect coral larval settlement. This study demonstrates, experimentally, that larvae of the Caribbean coral Favia fragrum can settle on the green alga Halimeda opuntia even when another substrate more suitable for settlement is present. Larval settlement onto experimental substrates was quantified under three treatments: rubble only, rubble plus plastic algal mimic, and rubble plus live H. opuntia. Similar total larval settlement was observed in all treatments. No larvae settled on the algal mimic, but total settlement was similar on the rubble in the first two treatments, showing that the rubble alone offered sufficient substrate for high settlement success. About half the larvae in the live algal treatment settled on H. opuntia instead of on the rubble, showing that larvae did not reject this substrate as they did the algal mimic. This result raises the possibility that corals will settle on some macroalgae when their abundance is high. Most macroalgae, including H. opuntia, are ephemeral substrates unsuitable for post-settlement survival. Such unexpected settlement may therefore have significant consequences for coral recruitment success on algal-dominated reefs.  相似文献   

9.
Crustose coralline algae (CCA) are a critical component of coral reefs as they accrete carbonate for reef structure and act as settlement substrata for many invertebrates including corals. CCA host a diversity of microorganisms that can also play a role in coral settlement and metamorphosis processes. Although the sensitivity of CCA to ocean acidification (OA) is well established, the response of their associated microbial communities to reduced pH and increased CO2 was previously not known. Here we investigate the sensitivity of CCA‐associated microbial biofilms to OA and determine whether or not OA adversely affects the ability of CCA to induce coral larval metamorphosis. We experimentally exposed the CCA Hydrolithon onkodes to four pH/pCO2 conditions consistent with current IPCC predictions for the next few centuries (pH: 8.1, 7.9, 7.7, 7.5, pCO2: 464, 822, 1187, 1638 μatm). Settlement and metamorphosis of coral larvae was reduced on CCA pre‐exposed to pH 7.7 (pCO2 = 1187 μatm) and below over a 6‐week period. Additional experiments demonstrated that low pH treatments did not directly affect the ability of larvae to settle, but instead most likely altered the biochemistry of the CCA or its microbial associates. Detailed microbial community analysis of the CCA revealed diverse bacterial assemblages that altered significantly between pH 8.1 (pCO2 = 464 μatm) and pH 7.9 (pCO2 = 822 μatm) with this trend continuing at lower pH/higher pCO2 treatments. The shift in microbial community composition primarily comprised changes in the abundance of the dominant microbes between the different pH treatments and the appearance of new (but rare) microbes at pH 7.5. Microbial shifts and the concomitant reduced ability of CCA to induce coral settlement under OA conditions projected to occur by 2100 is a significant concern for the development, maintenance and recovery of reefs globally.  相似文献   

10.
Some scleractinian coral larvae have an extraordinary capacity to delay metamorphosis, and this is reflected in the large geographic range of many species. Coral eggs typically contain a high proportion of wax esters, which have been hypothesized to provide a source of energy for long-distance dispersal. To better understand the role of lipids in the dispersal of broadcast spawning coral larvae, ontogenetic changes in the lipid and fatty acid composition of Goniastrea retiformis were measured from the eggs until larvae were 30 days old. Egg biomass was 78.8 ± 0.5% lipids, 86.3 ± 0.2% of which were wax esters, 9.3 ± 0.0% polar lipids, 4.1 ± 0.2% sterols, and 0.3 ± 0.1% triacylglycerols. The biomass of wax esters declined significantly through time, while polar lipids, sterols and triacylglycerols remained relatively constant, suggesting that wax esters are the prime source of energy for development. The most prevalent fatty acid in the eggs was palmitic acid, a marker of the dinoflagellate Symbiodinium, highlighting the importance of symbiosis in coral reproductive ecology. The proportion of polyunsaturated fatty acids declined through time, suggesting that they are essential for larval development. Interestingly, triacylglycerols are only abundant in the propagules that contain Symbiodinium, suggesting important differences in the energetic of dispersal among species with vertical and horizontal transmission of symbionts.  相似文献   

11.
Natural inducers for coral larval metamorphosis   总被引:1,自引:9,他引:1  
 Coral gametes from Acropora millepora (Ehrenberg, 1834) and from multi-species spawning slicks provided larvae for use in metamorphosis assays with a selection of naturally occurring inducer chemicals. Four species of crustose coralline algae, one non-coralline crustose alga and two branching coralline algae induced larval metamorphosis. However, one additional species of branching coralline algae did not produce a larval response. Metamorphosis was also observed when larvae were exposed to skeleton from the massive coral Goniastrea retiformis (Lamarck, 1816) and to calcified reef rubble, demonstrating metamorphosis is possible in the absence of encrusting algae. Chemical extracts from these algae and the coral skeleton, obtained using either decalcification or simple methanol extraction procedures, also contained active inducers. These results extend the number of crustose algal species known to induce coral metamorphosis, suggest that some inducers may not necessarily be strongly associated with the calcified algal cell walls, and indicate that inducer sources in reef habitats may be more diverse than previously reported. Accepted: 21 May 1999  相似文献   

12.
Larvae of the scleractinian coral Pocillopora damicornis are induced to settle and metamorphose by the presence of marine bacterial biofilms, and the larvae of Montipora capitata respond to a combination of filamentous and crustose coralline algae. The primary goal of this study was to better understand metamorphosis of cnidarian larvae by determining what types of receptors and signal-transduction pathways are involved during stimulation of metamorphosis of P. damicornis and M. capitata. Evidence from studies on larvae of hydrozoans suggests that G-protein-coupled receptors (GPCRs) are good candidates. Settlement experiments were conducted in which competent larvae were exposed to neuropharmacological agents that affect GPCRs and their associated signal-transduction pathways, AC/cAMP and PI/DAG/PKC. On the basis of the results of these experiments, we conclude that GPCRs and these pathways do not mediate settlement and metamorphosis in either coral species. Two compounds that had an effect on both species, forskolin and phorbol-12-myristate-13-acetate (TPA), may be acting on other cellular processes not related to GPCRs. This study strengthens our understanding of the underlying physiological mechanisms that regulate metamorphosis in coral larvae.  相似文献   

13.
The feeding rate effects were studied on the growth performance of gynogenetic diploid larvae of sterlet Acipenser ruthenus during the first 4 weeks of exogenous feeding. The experimental rearing was conducted from 7 to 38 days post‐hatch (dph) in a circulation system. This was set up in four groups with three replicates (440 individuals/replicate), viz: AC‐control larvae fed Artemia sp., CFC‐control larvae fed compound feed, AG‐gynogenetic larvae fed Artemia sp., and CFG‐gynogenetic larvae fed compound feed. The larvae were reared in glass tanks (44 L volume, 10 individuals/L) with the temperature maintained at 18 ± 0.5°C, photoperiod of 12L:12D and water flow regime of 1‐L/min and fed 50%, 25%, 25%, and 9% of their total biomass/day during feeding. Highest TL and WBW of gynogenetic diploid larvae (AG) were observed with 50.6 ± 1.2 mm and 607.3 ± 36.1 mg (n = 30) at 38 dph. Highest TL and WBW of control larvae (AC) were recorded with 49.5 ± 3.8 mm and 600.8 ± 88.0 mg (n = 30), respectively, with 73.1% ± 11.4% survival; the lowest survival rate was at 46.4% ± 7.1% (n = 30) for the CFG group. The results indicate that the gynogenetic and normal larvae of sterlet fed with live food (Artemia nauplii) from 7 dph can achieve higher growth and survivability compared to the larvae fed with formulated test feed. Results of this study suggest that the effective rearing of sterlet larvae from 7 to 38 dph strongly depends upon the types of feed rather than the genome manipulation performed.  相似文献   

14.
Coral planulae are induced to settle and metamorphose by contact with either crustose coralline algae or marine bacterial biofilms. Larvae of two coral species, Pocillopora damicornis and Montipora capitata, which respond to different metamorphic cues, were utilized to investigate the sensory mechanisms used to detect metamorphic cues. Because the aboral pole of the coral planula is the point of attachment to the substratum, we predicted that it is also the point of detection for cues. To determine where sensory cells for cues are localized along the body, individual larvae were transversely cut into oral and aboral portions at various levels along the oral–aboral axis, and exposed to settlement‐inducing substrata. Aboral ends of M. capitata metamorphosed, while oral ends continued to swim. However, in larvae of P. damicornis, ¾ oral ends (i.e., lacking the aboral pole) were also able to metamorphose, indicating that the cells that detect cues may be distributed along the sides of the body. These cells do not correspond to FMRFamide‐immunoreactive cells that are present throughout the body. Cesium ions induced both aboral and oral ends of larvae of both species to settle, suggesting that oral ends have not lost their capacity to metamorphose, despite lacking sensory cells to detect natural cues. To determine whether sensory cells in larvae of P. damicornis are restricted to one side of the body, swimming behavior over substrata was observed in larvae labeled with diI, a red fluorescent lipophilic membrane stain. The larvae were found to rotate around the oral–aboral axis, with their surface against the substratum, not favoring a particular side for detecting cues. While clarifying the regions of the larval body important for settlement and metamorphosis in coral planulae, we conclude that significant differences between coral species may be due to differences in the distribution of sensory structures in relation to different planular sizes.  相似文献   

15.
Settlement preferences of Pocillopora damicornis larvae were examined on artificial substrata. Planulation of P. damicornis followed a lunar cycle and the release of larvae occurred after new moon. P. damicornis larvae had the highest rates of settlement within 3 days of being presented settlement substrata. Cumulative settlement gradually increased from 3 to 8 days, and post-settlement mortality was most frequent after 8 days. Settlement experiments showed greatest settlement preference to cement tiles containing 10% coral rubble. This study suggests that physical cues are important in the settlement process, which may be useful for coral reef rehabilitation projects.  相似文献   

16.

Background

Restoration is increasingly implemented to reestablish habitat structure and function following physical anthropogenic disturbance, but scientific knowledge of effectiveness of methods lags behind demand for guidelines. On coral reefs, recovery is largely dependent on coral reestablishment, and substratum stability is critical to the survival of coral fragments and recruits. Concrete is often used to immobilize rubble, but its ecological performance has not been rigorously evaluated, and restoration has generally fallen short of returning degraded habitat to pre-disturbance conditions. Fragments of erect branching sponges mediate reef recovery by facilitating rubble consolidation, yet such natural processes have been largely overlooked in restoring reefs.

Methods

On two reefs in Curacao, four treatments - coral rubble alone, rubble seeded with sponge fragments, rubble bound by concrete, and concrete “rubble” bound by concrete - were monitored over four years to investigate rubble consolidation with and without sponges and the ecological performance of treatments in terms of the number and diversity of coral recruits. Species specific rates of sponge fragment attachment to rubble, donor sponge growth and tissue replacement, and fragment survival inside rubble piles were also investigated to evaluate sponge species performance and determine rates for sustainably harvesting tissue.

Findings/Significance

Rubble piles seeded with sponges retained height and shape to a significantly greater degree, lost fewer replicates to water motion, and were significantly more likely to be consolidated over time than rubble alone. Significantly more corals recruited to sponge-seeded rubble than to all other treatments. Coral diversity was also greatest for rubble with sponges and it was the only treatment to which framework building corals recruited. Differences in overall sponge species performance suggest species selection is important to consider. Employing organisms that jump start successional pathways and facilitate recovery can significantly improve restoration outcomes; however, best practices require techniques be tailored to each system.  相似文献   

17.
The study aim was to determine the optimum age, wet body weight (WBW) and total length (TL) of the crucian carp, Carassius carassius (L.), to ensure the effectiveness of weaning directly without a gradual transfer from live food to a compound feed. Moreover, the state of development of the digestive tract was analyzed histologically based on the height of enterocytes. Experimental rearing was conducted between days 5 and 45 post hatch (DPH). Initial WBW of fish was 2.2 ± 0.6 (n = 30) mg and TL 6.1 ± 0.1 (n = 30) mm. Rearing was carried out at 27 ± 0.5°C, with fish divided into six groups: one control (C) fed with Artemia sp. nauplii, and five groups initially fed with Artemia sp. but later replaced by a compound feed. Weaning with the compound diet started at 15, 20, 25, 30 and 35 DPH in groups labeled F15, F20, F25, F30, F35, respectively. Larvae were fed three times per day (08.00 h, 13.00 h, 18.00 h) in equal portions (4% of larvae biomass per day, converted to the dry matter of the feed). Daily biomass growth was adopted as 15%. Each group was triplicated (n = 50 individuals per replicate). Highest values of TL 42.1 ± 0.7 (n = 30) mm and WBW 905.3 ± 50.3 (n = 30) mg were recorded in the control group at 45 DPH; lowest survival rate of 45 DPH was in group F15 (90.7 ± 1.2%, n = 30). The highest value of the enterocyte epithelial length was observed in individuals within groups F30, 34.8 ± 1.2 μm (n = 30) and F35, 35.4 ± 3.6 μm (n = 30), respectively, 30 and 35 DPH; highest percentage of deformations on the final day of the experiment was in group F15 (100 ± 0.0%, n = 30). The results indicate that an effective direct transfer from live food to prepared diets (with no gradual transfer) cannot be performed with crucian carp larvae before 30 DPH at 27°C, when the fish have reached TL = 31.1 ± 0.4 mm (n = 30) and WBW = 436.9 ± 13.7 mg (n = 30).  相似文献   

18.
Aphis glycines Matsumura is an important pest of soybean in Asia and North America. Hymenoptera parasitoids play a key role in the control of the soybean aphid. The correct identification of parasitoids is a critical step that precedes the assessment of their potential biological control agents. Accurate identification of the majority of the species attacking the soybean aphid often requires elaborate specimen preparation and expert taxonomic knowledge. In this study, we facilitated the identification of soybean aphid parasitoids by applying a DNA barcoding approach following a preliminary morphological identification. We generated DNA sequence data from the mitochondrial COI gene and the D2 region of 28S rDNA to assess the genetic variation within and between parasitoid species emerging from the soybean aphid in China. Fifteen Hymenoptera parasitoid species belonging to 10 genera of five families were identified with little intra‐specific variation (0.09% ± 0.06% for 28S and 0.36% ± 0.18% for COI) and large inter‐specific divergence (30.46% ± 3.42% for 28S and 20.4% ± 1.20% for COI).  相似文献   

19.
Complex environmental cues dictate the settlement of coral planulae in situ; however, simple artificial cues may be all that is required to induce settlement of ex situ larval cultures for reef re-seeding and restoration projects. Neuropeptides that transmit settlement signals and initiate the metamorphic cascade have been isolated from hydrozoan taxa and shown to induce metamorphosis of reef-building Acropora spp. in the Indo-Pacific, providing a reliable and efficient settlement cue. Here, the metamorphic activity of six GLW-amide cnidarian neuropeptides was tested on larvae of the Caribbean corals Acropora palmata, Montastraea faveolata and Favia fragum. A. palmata planulae were induced to settle by the exogenous application of the neuropeptide Hym-248 (concentrations ≥1 × 10−6 M), achieving 40–80% attachment and 100% metamorphosis of competent planulae (≥6 days post-fertilization) during two spawning seasons; the remaining neuropeptides exhibited no activity. Hym-248 exposure rapidly altered larval swimming behavior (<1 h) and resulted in >96% metamorphosis after 6 h. In contrast, M. faveolata and F. fragum planulae did not respond to any GLW-amides tested, suggesting a high specificity of neuropeptide activators on lower taxonomic scales in corals. Subsequent experiments for A. palmata revealed that (1) the presence of a biofilm did not enhance attachment efficiency when coupled with Hym-248 treatment, (2) neuropeptide-induced settlement had no negative effects on early life-history developmental processes: zooxanthellae acquisition and skeletal secretion occurred within 12 days, colonial growth occurred within 36 days, and (3) Hym-248 solutions maintained metamorphic activity following storage at room temperature (10 days), indicating its utility in remote field settings. These results corroborate previous studies on Indo-Pacific Acropora spp. and extend the known metamorphic activity of Hym-248 to Caribbean acroporids. Hym-248 allows for directed and reliable settlement of larval cultures and has broad applications to the study and rehabilitation of threatened Acropora populations in the Caribbean.  相似文献   

20.
Within populations of brooding sessile corals, sperm dispersal constitutes the mechanism by which gametes interact and mating occurs, and forms the first link in the network of processes that determine specieswide connectivity patterns. However, almost nothing is known about sperm dispersal for any internally fertilizing coral. In this study, we conducted a parentage analysis on coral larvae collected from an area of mapped colonies, to measure the distance sperm disperses for the first time in a reef‐building coral and estimated the mating system characteristics of a recently identified putative cryptic species within the Seriatopora hystrix complex (ShA; Warner et al. 2015). We defined consensus criteria among several replicated methods (colony 2.0, cervus 3.0, mltr v3.2) to maximize accuracy in paternity assignments. Thirteen progeny arrays indicated that this putative species produces exclusively sexually derived, primarily outcrossed larvae (mean tm = 0.999) in multiple paternity broods (mean rp = 0.119). Self‐fertilization was directly detected at low frequency for all broods combined (2.8%), but comprised 23% of matings in one brood. Although over 82% of mating occurred between colonies within 10 m of each other (mean sperm dispersal = 5.5 m ± 4.37 SD), we found no evidence of inbreeding in the established population. Restricted dispersal of sperm compared to slightly greater larval dispersal appears to limit inbreeding among close relatives in this cryptic species. Our findings establish a good basis for further work on sperm dispersal in brooding corals and provide the first information about the mating system of a newly identified and abundant cryptic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号