首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Mesophotic coral reefs in the Indo-West Pacific, the most diverse coral reef region on earth, are among the least documented. This study provides the first detailed investigation of the diversity of Scleractinia and Octocorallia of the mesophotic Great Barrier Reef (GBR). Specimens were collected by 100-m rock dredge tows at 47–163 m depth on 23 sites in four regions (15.3°–19.7° latitude South). Twenty-nine hard coral species from 19 families were recorded, with the greatest diversity found at <60 m depth, and no specimen was found >102 m. Many of these species are also commonly observed at shallower depths, particularly in inshore areas. Twenty-seven octocoral genera were collected, 25 of which represented azooxanthellate genera. Generic richness of octocorals was highest at depths >60 m. Sixteen of the 25 azooxanthellate genera were either absent or very rare at <18 m, and only five azooxanthellate genera were common on both shallow and mesophotic reefs. Species-area models indicated that the total diversity of hard corals on the deep mesophotic reefs sampled during this study was ~84 species while octocorals were represented by ~37 genera; however, the wide 95% confidence limits indicates that more intensive sampling effort is required to improve the accuracy of these estimates. Nonetheless, these results show that the taxonomic richness, particularly of hard corals, on mesophotic reefs may be much higher than previously thought, a finding that has implications for the comprehensive and adequate protection of the full range of biodiversity of the GBR.  相似文献   

2.
Mesophotic coral reefs (30–150 m) have been assumed to be physically and biologically connected to their shallow-water counterparts, and thus may serve as refugia for important taxonomic groups such as corals, sponges, and fish. The recent invasion of the Indo–Pacific lionfish (Pterois volitans) onto shallow reefs of the Caribbean and Bahamas has had significant, negative, effects on shallow coral reef fish populations. In the Bahamas, lionfish have extended their habitat range into mesophotic depths down to 91 m where they have reduced the diversity of several important fish guilds, including herbivores. A phase shift to an algal dominated (>50% benthic cover) community occurred simultaneously with the loss of herbivores to a depth of 61 m and caused a significant decline in corals and sponges at mesophotic depths. The effects of this invasive lionfish on mesophotic coral reefs and the subsequent changes in benthic community structure could not be explained by coral bleaching, overfishing, hurricanes, or disease independently or in combination. The significant ecological effects of the lionfish invasion into mesophotic depths of coral reefs casts doubt on whether these communities have the resilience to recover themselves or contribute to the recovery of their shallow water counterparts as refugia for key coral reef taxa.  相似文献   

3.
Given the global degradation of shallow-water coral reef ecosystems resulting from anthropogenic activities, mesophotic coral reef ecosystems (MCEs) are gaining attention because they are generally considered a de facto refuge for shallow-water species. Despite their inferred importance, MCEs remain one of the most understudied reef habitats, and basic information on the taxonomic composition, depth range, habitat preferences, and abundance and distribution of MCE taxa is scarce. The processes that structure these communities are virtually unknown. Here, we provide a review of what is known about MCEs community ecology and outline essential gaps in our knowledge of these deeper water coral reef ecosystems. The primary findings of this review are as follows: (1) many dominant shallow-water species are absent from MCEs; (2) compared to shallow reefs, herbivores are relatively scarce, perhaps due to limited habitat complexity at depth; (3) changes in the dominant photosynthetic taxa with depth suggest adaptation and specialization to depth; (4) evidence regarding the importance of heterotrophy for zooxanthellate corals at depth is conflicting and inconclusive; and (5) decreased light with depth, but not temperature, appears to be the primary factor limiting the depth of MCEs. The majority of research done to date has been performed in the Caribbean, where some generalization can be made about the community structure and distribution of MCEs. The larger and more diverse Indo-Pacific remains largely unexplored with no apparent generalizations from the few sites that have been comparatively well studied. For MCEs, large gaps in knowledge remain on fundamental aspects of ecology. Advanced technologies must be harnessed and logistical challenges overcome to close this knowledge gap and empower resource managers to make informed decisions on conserving shallow-water and mesophotic coral reef ecosystems.  相似文献   

4.
Mesophotic coral ecosystems (below 30–40 m depth) host a large diversity of zooxanthellate coral communities and may play an important role in the ecology and conservation of coral reefs. Investigating the reproductive biology of mesophotic corals is important to understand their life history traits. Despite an increase in research on mesophotic corals in the last decade, their reproductive biology is still poorly understood. Here, gametogenesis and fecundity of the Indo-Pacific mesophotic coral, Acropora tenella, were examined in an upper mesophotic reef (40 m depth) in Okinawa, Japan for the first time. Acropora tenella is a hermaphrodite with a single annual gametogenic cycle, and both oogenesis and spermatogenesis occurring for 11–12 and 5–6 months, respectively. Timing of spawning of this species was similar to other shallow Acropora spp. in the region. However, colonies had longer gametogenic cycles and less synchronous gamete maturation compared to shallow acroporids with spawning extended over consecutive months. Both the polyp fecundity (number of eggs per polyp) and gonad index (defined as the number of eggs per square centimeter) of A. tenella were lower than most acroporids. Our findings contribute to understanding of the life history of corals on mesophotic reefs and suggest that the reproductive biology of upper mesophotic corals is similar to that of shallow-water corals.  相似文献   

5.
Efforts to map coral reef ecosystems in the Hawaiian Archipelago using optical imagery have revealed the presence of numerous scleractinian, zoothanthellate coral reefs at depths of 30–130+ m, most of which were previously undiscovered. Such coral reefs and their associated communities have been recently defined as mesophotic coral ecosystems (MCEs). Several types of MCEs are found in Hawai‘i, each of which dominates a different depth range and is characterized by a unique pattern of coral community structure and colony morphology. Although MCEs are documented near both ends of the archipelago and on many of the islands in between, the maximum depth and prevalence of MCEs in Hawai‘i were found to decline with increasing latitude. The Main Hawaiian Islands (MHI) had significantly deeper and greater percentages of scleractinian coral, and peaks in cover of both scleractinian corals and macroalgae occurred within depth bins 20 m deeper than in the Northwestern Hawaiian Islands (NWHI). Across the archipelago, as depth increased the combined percentage of living cover of mega benthic taxa declined sharply with increasing depth below 70 m, despite the widespread availability of hard substrate.  相似文献   

6.
We analyzed an extensive dataset of over 9000 benthic and suprabenthic species found throughout the Gulf of Mexico (GoMx) to assess whether mesophotic coral ecosystems represent distinct assemblages and evaluate their potential to serve as refugia for shallow reef communities. We assessed community structure of the overall benthic community from 0 to 300 m via non-metric multidimensional scaling (NMDS) of species presence across depth bands. We used the Jaccard index of similarity to calculate the proportion of shared species between adjacent depth bands, measure species turnover with depth, and assess taxonomic overlap between shallow reefs versus progressively deeper depth bands. NMDS ordinations showed that the traditionally defined mesophotic range (30–150 m) as a whole is not a distinct community. In contrast, taxonomically distinct communities, determined by hierarchical clustering, were found at 0–70, 60–120, 110–200, and 190–300 m. Clustering highlighted an important separation in the benthic community at ~60 m, which was especially important for actinopterygian fishes. Species turnover between adjacent depths decreased with depth for all taxa combined and individual taxa, with peaks at ~60, 90–120, and 190–200 m. Fishes showed lower turnover from shallow to upper mesophotic depths (0–50 m) than all taxa combined, a substantial peak at 60 m, followed by a precipitous and continued decline in turnover thereafter. Taxonomic overlap between shallow (0–20 m) and progressively deeper zones declined steadily with depth in all taxa and individual taxa, suggesting that mid- and lower mesophotic habitats have less (but not inconsequential) potential to serve as refugia (60–150 m, 15–25% overlap with shallow habitats) than upper mesophotic zones (30–60 m, 30–45% overlap with shallow habitats) for all taxa combined. We conclude that the traditional mesophotic zone is home to three ecological communities in the GoMx, one that is confluent with shallow reefs, a distinct mesophotic assemblage spanning 60–120 m, and a third that extends onto the outer continental shelf.  相似文献   

7.
An investigation into the insular shelf and submerged banks surrounding Tutuila, American Samoa, was conducted using a towed camera system. Surveys confirmed the presence of zooxanthellate scleractinian coral communities at mesophotic depths (30–110 m). Quantification of video data, separated into 10-m-depth intervals, yielded a vertical, landward-to-seaward and horizontal distribution of benthic assemblages. Hard substrata composed a majority of bottom cover in shallow water, whereas unconsolidated sediments dominated the deep insular shelf and outer reef slopes. Scleractinian coral cover was highest atop mid-shelf patch reefs and on the submerged bank tops in depths of 30–50 m. Macroalgal cover was highest near shore and on reef slopes approaching the bank tops at 50–60 m. Percent cover of scleractinian coral colony morphology revealed a number of trends. Encrusting corals belonging to the genus Montipora were most abundant at shallow depths with cover gradually decreasing as depth increased. Massive corals, such as Porites spp., displayed a similar trend. Percent cover values of plate-like corals formed a normal distribution, with the highest cover observed in the 60–70 m depth range. Shallow plate-like corals belonged mostly to the genus Acropora and appeared to be significantly prevalent on the northeastern and eastern banks. Deeper plate-like corals on the reef slopes were dominated by Leptoseris, Pachyseris, or Montipora genera. Branching coral cover was high in the 80–110 m depth range. Columnar and free-living corals were also occasionally observed from 40–70 m.  相似文献   

8.
The coral species Leptoseris troglodyta sp. n. (Scleractinia, Agariciidae) is described as new to science. It is the first known azooxanthellate shallow-water agariciid and is recorded from the ceilings of caves at 5-35 m depth in West Pacific coral reefs. The corals have monocentric cup-shaped calices. They may become colonial through extramural budding from the basal coenosteum, which may cause adjacent calices to fuse. The size, shape and habitat of Leptoseris troglodyta are unique compared to other Leptoseris species, many of which have been recorded from mesophotic depths. The absence of zooxanthellae indicates that it may survive well in darkness, but endolithic algae in some corals indicate that they may be able to get some light. The presence of menianes on the septal sides, which may help to absorb light at greater depths in zooxanthellate corals, have no obvious adaptive relevance in the new species and could have been inherited from ancestral species that perhaps were zooxanthellate. The new species may be azooxanthellate as derived through the loss of zooxanthellae, which would be a reversal in Leptoseris phylogeny.  相似文献   

9.
Mesophotic coral-reef ecosystems (MCEs), which comprise the light-dependent communities of corals and other organisms found at depths between 30 and ~ 150 m, have received very little study to date. However, current technological advances, such as remotely operated vehicles and closed-circuit rebreather diving, now enable their thorough investigation. Following the reef-building stony corals, octocorals are the second most common benthic component on many shallow reefs and a major component on deep reefs, the Red Sea included. This study is the first to examine octocoral community features on upper MCEs based on species-level identification and to compare them with the shallower reef zones. The study was carried out at Eilat (Gulf of Aqaba, northern Red Sea), comparing octocoral communities at two mesophotic reefs (30–45 m) and two shallow reef zones (reef flat and upper fore-reef) by belt transects. A total of 30 octocoral species were identified, with higher species richness on the upper MCEs compared to the shallower reefs. Although the MCEs were found to host a higher number of species than the shallower reefs, both featured a similar diversity. Each reef zone revealed a unique octocoral species composition and distinct community structure, with only 16% of the species shared by both the MCEs and the shallower reefs. This study has revealed an almost exclusive dominance of zooxanthellate species at the studied upper MCE reefs, thus indicating an adequate light regime for photosynthesis there. The findings should encourage similar studies on other reefs, aimed at understanding the spatiotemporal features and ecological role of octocorals in reef ecosystems down to the deepest limit of the MCEs.  相似文献   

10.
Mesophotic coral ecosystems (MCEs) are characterized by the presence of light-dependent corals and associated communities that are typically found at depths ranging from 30 to 40 m and extending to over 150 m in tropical and subtropical regions. The dominant communities providing structural habitat in the mesophotic zone can be comprised of coral, sponge, and algal species. Because working in this depth range is constrained by traditional SCUBA limits, less is known about corals and associated organisms there compared to shallower coral communities. Following the first-ever gathering of international scientists to review and discuss existing knowledge of MCEs, this issue focuses on the ecological characterization, geomorphology, and concept of MCEs as refugia for shallow-water populations. The review and research papers comprising this special issue reflect the current scientific understanding of these ecosystems and the underlying mechanisms that regulate them, as well as potential resource management implications. It is important to understand the value and role of mesophotic coral ecosystems in tropical and subtropical regions as these areas face increasing environmental change and human impacts  相似文献   

11.
The presence, genetic identity and diversity of algal endosymbionts (Symbiodinium) in 114 species from 69 genera (20 families) of octocorals from the Great Barrier Reef (GBR), the far eastern Pacific (EP) and the Caribbean was examined, and patterns of the octocoral-algal symbiosis were compared with patterns in the host phylogeny. Genetic analyses of the zooxanthellae were based on ribosomal DNA internal transcribed spacer 1 (ITS1) region. In the GBR samples, Symbiodinium clades A and G were encountered with A and G being rare. Clade B zooxanthellae have been previously reported from a GBR octocoral, but are also rare in octocorals from this region. Symbiodinium G has so far only been found in Foraminifera, but is rare in these organisms. In the Caribbean samples, only Symbiodinium clades B and C are present. Hence, Symbiodinium diversity at the level of phylogenetic clades is lower in octocorals from the Caribbean compared to those from the GBR. However, an unprecedented level of ITS1 diversity was observed within individual colonies of some Caribbean gorgonians, implying either that these simultaneously harbour multiple strains of clade B zooxanthellae, or that ITS1 heterogeneity exists within the genomes of some zooxanthellae. Intracladal diversity based on ITS should therefore be interpreted with caution, especially in cases where no independent evidence exists to support distinctiveness, such as ecological distribution or physiological characteristics. All samples from EP are azooxanthellate. Three unrelated GBR taxa that are described in the literature as azooxanthellate (Junceella fragilis, Euplexaura nuttingi and Stereonephthya sp. 1) contain clade G zooxanthellae, and their symbiotic association with zooxanthellae was confirmed by histology. These corals are pale in colour, whereas related azooxanthellate species are brightly coloured. The evolutionary loss or gain of zooxanthellae may have altered the light sensitivity of the host tissues, requiring the animals to adopt or reduce pigmentation. Finally, we superimposed patterns of the octocoral-algal symbiosis onto a molecular phylogeny of the host. The data show that many losses/gains of endosymbiosis have occurred during the evolution of octocorals. The ancestral state (azooxanthellate or zooxanthellate) in octocorals remains unclear, but the data suggest that on an evolutionary timescale octocorals can switch more easily between mixotrophy and heterotrophy compared to scleractinian corals, which coincides with a low reliance on photosynthetic carbon gain in the former group of organisms.  相似文献   

12.
Quantitative surveys of sessile benthos and fish populations associated with reef habitats across a 15–50 m depth gradient were performed by direct diver observations using rebreathers at Isla Desecheo, Puerto Rico. Statistically significant differences between depths were found for total live coral, total coral species, total benthic algae, total sponges and abiotic cover. Live coral cover was higher at the mid-shelf (20 m) and shelf-edge (25 m) stations, whereas benthic algae and sponges were the dominant sessile-benthic assemblage at mesophotic stations below 25 m. Marked shifts in the community structure of corals and benthic algae were observed across the depth gradient. A total of 119 diurnal, non-cryptic fish species were observed across the depth gradient, including 80 species distributed among 7,841 individuals counted within belt-transects. Fish species richness was positively correlated with live coral cover. However, the relationship between total fish abundance and live coral was weak. Abundance of several numerically dominant fish species varied independently from live coral cover and appeared to be more influenced by depth and/or habitat type. Statistically significant differences in the rank order of abundance of fish species at euphotic vs mesophotic stations were detected. A small assemblage of reef fishes that included the cherubfish, Centropyge argi, sunshine chromis, Chromis insolata, greenblotch parrotfish, Sparisoma atomarium, yellowcheek wrasse, Halichoeres cyanocephalus, sargassum triggerfish, Xanthichthys ringens, and the longsnout butterflyfish, Chaetodon aculeatus was most abundant or only present from stations deeper than 30 m, and thus appear to be indicator species of mesophotic habitats.  相似文献   

13.

Environmental clines such as latitude and depth that limit species’ distributions may be associated with gradients in habitat suitability that can affect the fitness of an organism. With the global loss of shallow-water photosynthetic coral reefs, mesophotic coral ecosystems (~30–150 m) may be buffered from some environmental stressors, thereby serving as refuges for a range of organisms including mobile obligate reef dwellers. Yet habitat suitability may be diminished at the depth boundary of photosynthetic coral reefs. We assessed the suitability of coral-reef habitats across the majority of the depth distribution of a common demersal reef fish (Stegastes partitus) ranging from shallow shelf (SS, <10 m) and deep shelf (DS, 20–30 m) habitats in the Florida Keys to mesophotic depths (MP, 60–70 m) at Pulley Ridge on the west Florida Shelf. Diet, behavior, and potential energetic trade-offs differed across study sites, but did not always have a monotonic relationship with depth, suggesting that some drivers of habitat suitability are decoupled from depth and may be linked with geographic location or the local environment. Feeding and diet composition differed among depths with the highest consumption of annelids, lowest ingestion of appendicularians, and the lowest gut fullness in DS habitats where predator densities were highest and fish exhibited risk-averse behavior that may restrict foraging. Fish in MP environments had a broader diet niche, higher trophic position, and higher muscle C:N ratios compared to shallower environments. High C:N ratios suggest increased tissue lipid content in fish in MP habitats that coincided with higher investment in reproduction based on gonado-somatic index. These results suggest that peripheral MP reefs are suitable habitats for demersal reef fish and may be important refuges for organisms common on declining shallow coral reefs.

  相似文献   

14.
Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light‐dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching‐related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30–75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs.  相似文献   

15.
  1. While the effects of irradiance on coral productivity are well known, corals along a shallow to mesophotic depth gradient (10–100 m) experience incident irradiances determined by the optical properties of the water column, coral morphology, and reef topography.
  2. Modeling of productivity (i.e., carbon fixation) using empirical data shows that hemispherical colonies photosynthetically fix significantly greater amounts of carbon across all depths, and throughout the day, compared with plating and branching morphologies. In addition, topography (i.e., substrate angle) further influences the rate of productivity of corals but does not change the hierarchy of coral morphologies relative to productivity.
  3. The differences in primary productivity for different coral morphologies are not, however, entirely consistent with the known ecological distributions of these coral morphotypes in the mesophotic zone as plating corals often become the dominant morphotype with increasing depth.
  4. Other colony‐specific features such as skeletal scattering of light, Symbiodiniaceae species, package effect, or tissue thickness contribute to the variability in the ecological distributions of morphotypes over the depth gradient and are captured in the metric known as the minimum quantum requirements.
  5. Coral morphology is a strong proximate cause for the observed differences in productivity, with secondary effects of reef topography on incident irradiances, and subsequently the community structure of mesophotic corals.
  相似文献   

16.
Shallow coral reefs are extensively studied but, although scleractinian corals have been recorded to 165 m, little is known about other mesophotic coral reef ecosystem (MCE) inhabitants. Brachyuran crabs fill many ecological and trophic niches on reefs, making them ideal candidates for evaluating species composition among depths to ask whether MCEs host the same communities as shallower reef communities that have been well studied. Here we deployed autonomous reef monitoring structures for 2 yr on the south shore of O‘ahu along a depth gradient (12, 30, 60, and 90 m) to sample and assess brachyuran crab communities. A total of 663 brachyuran crabs representing 69 morphospecies (16 families) were found. Community composition was not significantly different within depths, but was highly stratified by depth. Each depth was distinct, but the 30 and 60 m depths were least dissimilar from one another. We show that deeper reefs host significantly different brachyuran communities, and at much lower total abundance, than shallow reefs in Hawai‘i, with 4–27 unique morphospecies per depth and only 3 of 69 morphospecies (~4 %) occurring across the entire depth range sampled.  相似文献   

17.
Biogeographic patterns for azooxanthellate corals are not as well known as those of zooxanthellate (primarily reef-building) corals. I analyzed occurrences of 129 species of azooxanthellate corals in 19 geopolitical regions in the Caribbean and surrounding areas. I performed an unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis using Bray-Curtis' similarity measure on the complete data set and shallow- and deep-water subsets of the data. The results indicate two provinces, each with a widespread (tropical and subtropical distributions) component to its fauna. One province has a tropical and primarily insular component to it, while the other has a subtropical and primarily continental component. By contrast, zooxanthellate corals have a uniform faunal composition throughout the Caribbean. Moreover, zooxanthellate corals have half as many species in the Caribbean as the azooxanthellate corals even though their global diversities are equal. These differences in diversity and geographic distribution patterns should be considered when developing conservation strategies.  相似文献   

18.
19.
Correlations between environmental parameters (depth temperature and solar radiation) and growth parameters (bulk skeletal density, linear extension rate and net calcification rate) of the solitary azooxanthellate coral, Caryophyllia inornata, were investigated along an 8° latitudinal gradient on the western Italian coasts. Net calcification rate correlated positively with both bulk skeletal density and linear extension rate, showing that C. inornata allocates calcification resources evenly to thickening the skeleton and increasing linear growth. Overall, the three growth parameters did not follow gradients in the two environmental parameters, showing a different trend compared to most studies on zooxanthellate corals. However, the results are in agreement with the only previous analysis of an azooxanthellate coral, Leptopsammia pruvoti, studied along the same latitudinal gradient. In a comparison of the response to temperature of all Mediterranean species whose growth has been investigated to date, azooxanthellate corals were more tolerant to temperature increases than zooxanthellate corals.  相似文献   

20.
Mesophotic reef fish assemblages (30–90 m depth) of the small and remote St. Peter and St. Paul’s Archipelago (SPSPA), Mid-Atlantic Ridge, Brazil, were characterized using remotely operated vehicles. Ordination analyses identified distinct fish assemblages in the upper (30–50 m) and lower (50–90 m) mesophotic zones, the former characterized by high abundances of species that are also abundant at euphotic reefs (Caranx lugubris, Melichthys niger, Stegastes sanctipauli and Chromis multilineata) and the latter dominated by two mesophotic specialists (Prognathodes obliquus and Chromis enchrysura). Planktivores dominated fish assemblages, particularly in the upper mesophotic zone, possibly due to a greater availability of zooplankton coming from the colder Equatorial Undercurrent in mesophotic depths of the SPSPA. Turf algae, fleshy macroalgae and scleractinian corals dominated benthic assemblages between 30 and 40 m depth, while bryozoans, black corals and sponges dominated between 40 and 90 m depth. Canonical correspondence analysis explained 74 % of the relationship between environmental characteristics (depth, benthic cover and complexity) and structure of fish assemblages, with depth as the most important independent variable. Juveniles of Bodianus insularis and adults of P. obliquus and C. enchrysura were clearly associated with branching black corals (Tanacetipathes spp.), suggesting that black corals play key ecological roles in lower mesophotic reefs of the SPSPA. Results from this study add to the global database about mesophotic reef ecosystems (MREs) and provide a baseline for future evaluations of possible anthropogenic and natural disturbances on MREs of the SPSPA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号