首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal and chemical unfolding studies of the calcium-binding canine lysozyme (CL) by fluorescence and circular dichroism spectroscopy show that, upon unfolding in the absence of calcium ions, a very stable equilibrium intermediate state is formed. At room temperature and pH 7.5, for example, a stable molten globule state is attained in 3 M GdnHCl. The existence of such a pure and stable intermediate state allowed us to extend classical stopped-flow fluorescence measurements that describe the transition from the native to the unfolded form, with kinetic experiments that monitor separately the transition from the unfolded to the intermediate state and from the intermediate to the native state, respectively. The overall refolding kinetics of apo-canine lysozyme are characterized by a significant drop in the fluorescence intensity during the dead time, followed by a monoexponential increase of the fluorescence with k = 3.6 s(-1). Furthermore, the results show that, unlike its drastic effect on the stability, Ca(2+)-binding only marginally affects the refolding kinetics. During the refolding process of apo-CL non-native interactions, comparable to those observed in hen egg white lysozyme, are revealed by a substantial quenching of tryptophan fluorescence. The dissection of the refolding process in two distinct steps shows that these non-native interactions only occur in the final stage of the refolding process in which the two domains match to form the native conformation.  相似文献   

2.
The equilibrium and kinetic folding/unfolding of apomyoglobin (ApoMb) were studied at pH 6.2, 11 °C by recording tryptophan fluorescence. The equilibrium unfolding of ApoMb in the presence of urea was shown to involve accumulation of an intermediate state, which had a higher fluorescence intensity as compared with the native and unfolded states. The folding proceeded through two kinetic phases, a rapid transition from the unfolded to the intermediate state and a slow transition from the intermediate to the native state. The accumulation of the kinetic intermediate state was observed in a wide range of urea concentrations. The intermediate was detected even in the region corresponding to the unfolding limb of the chevron plot. Urea concentration dependence was obtained for the observed folding/unfolding rate. The shape of the dependence was compared with that of two-state proteins characterized by a direct transition from the unfolded to the native state.  相似文献   

3.
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.  相似文献   

4.
Efficient formation of the cpn60-rhodanese complex can be achieved by mixing unfolded rhodanese with excess cpn60 at low temperature. By employing these conditions, a stable and highly reactivatable complex is formed. The complex is not formed when native enzyme is used. Concentrations of NaCl, as high as 0.75 M, do not have any effect on the formation or disruption of the binary complex. cpn60-bound rhodanese contains an exposed hydrophobic surface, as detected by the binding of the fluorescent reporter, 1-anilinonaphthalene-8-sulfonic acid. The intrinsic fluorescence of cpn60-bound rhodanese reports that the average tryptophan is in an intermediate environment between that found in unfolded and native states. This form of rhodanese has an accessibility to quenching by acrylamide or iodide that is intermediate between the unfolded and native forms of the enzyme. Protease susceptibility studies show that rhodanese bound to cpn60 exhibits a trypsin digestion pattern similar to the native enzyme, although it is more rapidly proteolyzed. The results suggest that the conformation of cpn60-bound rhodanese resembles a native-like conformation, but with increased flexibility. Further, only intact rhodanese or enzyme lacking its N-terminal sequence can interact with cpn60 and form a stable binary complex. The protein fragment corresponding to the rhodanese N-terminal sequence did not form part of a stable complex with cpn60.  相似文献   

5.
We have defined the free-energy profile of the Src SH2 domain using a variety of biophysical techniques. Equilibrium and kinetic experiments monitored by tryptophan fluorescence show that Src SH2 is quite stable and folds rapidly by a two-state mechanism, without populating any intermediates. Native state hydrogen-deuterium exchange confirms this two-state behavior; we detect no cooperative partially unfolded forms in equilibrium with the native conformation under any conditions. Interestingly, the apparent stability of the protein from hydrogen exchange is 2 kcal/mol greater than the stability determined by both equilibrium and kinetic studies followed by fluorescence. Native-state proteolysis demonstrates that this "super protection" does not result from a deviation from the linear extrapolation model used to fit the fluorescence data. Instead, it likely arises from a notable compaction in the unfolded state under native conditions, resulting in an ensemble of conformations with substantial solvent exposure of side chains and flexible regions sensitive to proteolysis, but backbone amides that exchange with solvent approximately 30-fold slower than would be expected for a random coil. The apparently simple behavior of Src SH2 in traditional unfolding studies masks the significant complexity present in the denatured-state ensemble.  相似文献   

6.
Nakao M  Maki K  Arai M  Koshiba T  Nitta K  Kuwajima K 《Biochemistry》2005,44(17):6685-6692
The intermediate in the equilibrium unfolding of canine milk lysozyme induced by a denaturant is known to be very stable with characteristics of the molten globule state. Furthermore, there are at least two kinetic intermediates during refolding of this protein: a burst-phase (first) intermediate formed within the dead time of stopped-flow measurements and a second intermediate that accumulates with a rate constant of 22 s(-)(1). To clarify the relationships of these intermediates with the equilibrium intermediate, and also to characterize the structural changes of the protein during refolding, here we studied the kinetic refolding reactions using stopped-flow circular dichroism at 10 different wavelengths and obtained the circular dichroism spectra of the intermediates. Comparison of the circular dichroism spectra of the intermediates, as well as the absence of observed kinetics in the refolding from the fully unfolded state to the equilibrium intermediate, has demonstrated that the burst-phase intermediate is equivalent to the equilibrium intermediate. The difference circular dichroism spectrum that represented changes from the kinetic intermediate to the native state had characteristics of an exciton coupling band, indicating that specific packing of tryptophan residues in this protein occurred in this phase. From these findings, we propose a schematic model of the refolding of canine milk lysozyme that is consistent with the hierarchical mechanism of protein folding.  相似文献   

7.
The kinetics of actin unfolding induced by guanidine hydrochloride has been studied. On the basis of obtained experimental data a new kinetic pathway of actin unfolding was proposed. We have shown that the transition from native to inactivated actin induced by guanidine hydrochloride (GdnHCl) passes through essential unfolding of the protein. This means that inactivated actin should be considered as the off-pathway species rather than an intermediate conformation between native and completely unfolded states of actin, as has been assumed earlier. The rate constants of the transitions that give rise to the inactivated actin were determined. At 1.0-2.0 M GdnHCl the value of the rate constant of the transition from native to essentially unfolded actin exceeds that of the following step of inactivated actin formation. It leads to the accumulation of essentially unfolded macromolecules early in the unfolding process, which in turn causes the minimum in the time dependencies of tryptophan fluorescence intensity, parameter A, characterizing the intrinsic fluorescence spectrum position, and tryptophan fluorescence anisotropy.  相似文献   

8.
The use of steady-state fluorescence quenching methods is reported as a probe of the accessibility of the single fluorescent tryptophan residue of bovine growth hormone (bGH, bovine somatotropin, bSt) in four solution-state conformations. Different bGH conformations were prepared by using previous knowledge of the multi-state nature of the equilibrium unfolding pathway for bGH: alterations in denaturant and protein concentration yielded different bGH conformations (native, monomeric intermediate, associated intermediate and unfolded). Because the intramolecular fluorescence quenching which occurs in the native state is reduced when the protein unfolds to any of the other conformations, steady-state fluorescence intensity measurements can be used to monitor bGH unfolding as well as the formation of the associated intermediate. These steady-state intensity changes have been confirmed with fluorescence lifetime measurements for the different conformational states of bGH. Fluorescence quenching results were obtained using the quenchers iodide (ionic), acrylamide (polar) and trichloroethanol (non-polar). Analysis of the results for native-state bGH reveals that the tryptophan environment is slightly non-polar (in agreement with the emission maximum of 335 nm) and the tryptophan is more exposed to acrylamide than most native-state tryptophan residues which have been studied. The tryptophan is most accessible to all quenchers in the unfolded state, because no steric restrictions inhibit quencher interaction with the tryptophan residue. The iodide quenching results indicate that the associated intermediate tryptophan is not accessible to iodide, probably due to negative charges inhibiting iodide penetration. The associated intermediate tryptophan is less accessible to all three quenchers than the monomeric intermediate tryptophan, due to tight packing of molecules in the associated intermediate state.  相似文献   

9.
Binding of native cyt c to L-PG micelles leads to a partially unfolded conformation of cyt c. This micelle-bound state has no stable tertiary structure, but remains as alpha-helical as native cyt c in solution. In contrast, binding of the acid-unfolded cyt c to L-PG micelles induces folding of the polypeptide, resulting in a similar helical state to that originated from the binding of native cyt c to L-PG micelles. Far-ultraviolet (UV) circular dichroism (CD) spectra showed that this common micelle-associated helical state (HL) has a native-like alpha-helix content, but is highly expanded without a tightly packed hydrophobic core, as revealed by tryptophan fluorescence, near-UV, and Soret CD spectroscopy. The kinetics of the interaction of native and acid-unfolded cyt c was investigated by stopped-flow tryptophan fluorescence. Formation of H(L) from the native state requires the disruption of the tightly packed hydrophobic core in the native protein. This micelle-induced unfolding of cyt c occurs at a rate approximately 0.1 s(-1), which is remarkably faster in the lipid environment compared with the expected rate of unfolding in solution. Refolding of acid-unfolded cyt c with L-PG micelles involves an early highly helical collapsed state formed during the burst phase (<3 ms), and the observed main kinetic event reports on the opening of this early compact intermediate prior to insertion into the lipid micelle.  相似文献   

10.
The unfolded state of a protein is an ensemble of a large number of conformations ranging from fully extended to compact structures. To investigate the effects of the difference in the unfolded-state ensemble on protein folding, we have studied the structure, stability, and folding of "circular" dihydrofolate reductase (DHFR) from Escherichia coli in which the N and C-terminal regions are cross-linked by a disulfide bond, and compared the results with those of disulfide-reduced "linear" DHFR. Equilibrium studies by circular dichroism, difference absorption spectra, solution X-ray scattering, and size-exclusion chromatography show that whereas the native structures of both proteins are essentially the same, the unfolded state of circular DHFR adopts more compact conformations than the unfolded state of the linear form, even with the absence of secondary structure. Circular DHFR is more stable than linear DHFR, which may be due to the decrease in the conformational entropy of the unfolded state as a result of circularization. Kinetic refolding measurements by stopped-flow circular dichroism and fluorescence show that under the native conditions both proteins accumulate a burst-phase intermediate having the same structures and both fold by the same complex folding mechanism with the same folding rates. Thus, the effects of the difference in the unfolded state of circular and linear DHFRs on the refolding reaction are not observed after the formation of the intermediate. This suggests that for the proteins with close termini in the native structure, early compaction of a protein molecule to form a specific folding intermediate with the N and C-terminal regions in close proximity is a crucial event in folding. If there is an enhancement in the folding reflecting the reduction in the breadth of the unfolded-state ensemble for circular DHFR, this acceleration must occur in the sub-millisecond time-range.  相似文献   

11.
Spontaneous mutations at numerous sites distant from the active site of human immunodeficiency virus type 1 protease enable resistance to inhibitors while retaining enzymatic activity. As a benchmark for probing the effects of these mutations on the conformational adaptability of this dimeric β-barrel protein, the folding free-energy surface of a pseudo-wild-type variant, HIV-PR?, was determined by a combination of equilibrium and kinetic experiments on the urea-induced unfolding/refolding reactions. The equilibrium unfolding reaction was well described by a two-state model involving only the native dimeric form and the unfolded monomer. The global analysis of the kinetic folding mechanism reveals the presence of a fully folded monomeric intermediate that associates to form the native dimeric structure. Independent analysis of a stable monomeric version of the protease demonstrated that a small-amplitude fluorescence phase in refolding and unfolding, not included in the global analysis of the dimeric protein, reflects the presence of a transient intermediate in the monomer folding reaction. The partially folded and fully folded monomers are only marginally stable with respect to the unfolded state, and the dimerization reaction provides a modest driving force at micromolar concentrations of protein. The thermodynamic properties of this system are such that mutations can readily shift the equilibrium from the dimeric native state towards weakly folded states that have a lower affinity for inhibitors but that could be induced to bind to their target proteolytic sites. Presumably, subsequent secondary mutations increase the stability of the native dimeric state in these variants and, thereby, optimize the catalytic properties of the resistant human immunodeficiency virus type 1 protease.  相似文献   

12.
Sasahara K  Demura M  Nitta K 《Biochemistry》2000,39(21):6475-6482
Equilibrium unfolding of hen egg white lysozyme as a function of GdnCl concentration at pH 0.9 was studied over a temperature range 268.2-303.2 K by means of CD spectroscopy. As monitored by far- and near-UV CD at 222 and 289 nm, the lack of coincidence between two unfolding transition curves was observed, which suggests the existence of a third conformational species in addition to native and unfolded states. The three-state model, in which a stable intermediate is populated, was employed to estimate the thermodynamic parameters for the GdnCl-induced unfolding. It was found that the transition from the native to intermediate states proceeds with significant changes in enthalpy and entropy due to an extremely cooperative process, while the transition from the intermediate to unfolded states shows a low cooperativity with small enthalpy and entropy changes. These results indicate that the highest energy barrier for the GdnCl-induced unfolding of hen lysozyme is located in the process from the native state to the intermediate state, and this process is largely responsible for the cooperativity of protein unfolding.  相似文献   

13.
The native conformation of proteins in the serpin superfamily is metastable. In order to understand why serpins attain the native state instead of more stable conformations we have begun investigations into the equilibrium-unfolding of alpha(1)-antitrypsin. alpha(1)-Antitrypsin contains two tryptophan residues, Trp194 and Trp238, situated on the A and B beta-sheets, respectively. Site-directed mutagenesis was used to construct two single-tryptophan variants. Both variants were fully active and had similar secondary structure and stabilities to alpha(1)-antitrypsin. The denaturation of alpha(1)-antitrypsin and its variants was extremely similar when followed by far-UV CD, indicating the presence of a single intermediate. Fluorescence analysis of the unfolding behavior of each single tryptophan variant indicated that the sole tryptophan residue reported the structural changes within its immediate environment. These data suggest that the A beta-sheet is expanded in the intermediate state whilst no structural change around the B beta-sheet has occurred. In the urea-induced unfolded state, Trp238 does not become fully solvated, suggesting the persistence of structure around this residue. The implications of these data on the folding, misfolding and function of the serpin superfamily are discussed.  相似文献   

14.
The effect of osmolyte sucrose on the stability and compaction of the folded and unfolded states of ribosomal protein S6 from Thermus thermophilus was analyzed. Confirming previous results obtained with sodium sulfate and trehalose, refolding stopped-flow measurements of S6 show that sucrose favors the conversion of the unfolded state ensemble to a highly compact structure (75% as compact as the folded state). This conversion occurs when the unfolded state is suddenly placed under native conditions and the compact state accumulates in a transient off-folding pathway. This effect of sucrose on the compaction of the unfolded state ensemble is counteracted by guanidinium hydrochloride. The compact state does not accumulate at higher guanidinium concentrations and the unfolded state ensemble does not display increased compaction in the presence of 6 M guanidinium as evaluated by collisional quenching of tryptophan fluorescence. In contrast, accessibility of the tryptophan residue of folded S6 above 1 M sucrose concentration decreased as a result of an increased compaction of the folded state. Unfolding stopped-flow measurements of S6 reflect this increased compaction of the folded state, but the unfolding pathway is not affected by sucrose. Compaction of folded and unfolded S6 induced by sucrose occurs under native conditions indicating that decreased protein conformational entropy significantly contributes to the mechanism of protein stabilization by osmolytes.  相似文献   

15.
Fluorescence and circular dichroism data as a function of temperature were obtained to characterize the unfolding of nuclease A and two of its less stable mutants. These spectroscopic data were obtained with a modified instrument that enables the nearly simultaneous detection of both fluorescence and CD data on the same sample. A global analysis of these multiple datasets yielded an excellent fit of a model that includes a change in the heat capacity change, ΔCp, between the unfolded and native states. This analysis gives a ΔCp of 2.2 kcal/mol/·K for thermal unfolding of the WT protein and 1.3 and 1.8 kcal/mol/K for the two mutants. These ΔCp values are consistent with significant population of the cold unfolded state at ∼0°C. Independent evidence for the existence of a cold unfolded state is the observation of a separately migrating peak in size exclusion chromatography. The new chromatographic peak is seen near 0°C, has a partition coefficient corresponding to a larger hydrodynamic radius, and shows a red-shifted fluorescence spectrum, as compared to the native protein. Data also indicate that the high-temperature unfolded form of mutant nuclease is relatively compact. Size exclusion chromatography shows the high temperature unfolded form to have a hydrodynamic radius that is larger than that for the native form, but smaller than that for the urea or pH-induced unfolded forms. Addition of chemical denaturants to the high-temperature unfolded form causes a further unfolding of the protein, as indicated by an increase in the apparent hydrodynamic radius and a decrease in the rotational correlation time for Trp140 (as determined by fluorescence anisotropy decay measurements). Proteins 28:227–240, 1997 © 1997 Wiley-Liss Inc.  相似文献   

16.
Equilibrium studies on the acid included denaturation of stem bromelain (EC 3.4.22.32) were performed by CD spectroscopy, fluorescence emission spectroscopy and binding of the hydrophobic dye, 1-anilino 8-naphthalene sulfonic acid (ANS). At pH 2.0, stem bromelain lacks a well defined tertiary structure as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of some native like secondary structure at pH 2.0. The mean residue ellipticities at 208 nm plotted against pH showed a transition around pH 4.5 with loss of secondary structure leading to the formation of an acid-unfolded state. With further decrease in pH, this unfolded state regains most of its secondary structure. At pH 2.0, stem bromelain exists as a partially folded intermediate containing about 42.2% of the native state secondary structure Enhanced binding of ANS was observed in this state compared to the native folded state at neutral pH or completely unfolded state in the presence of 6 m GdnHCl indicating the exposure of hydrophobic regions on the protein molecule. Acrylamide quenching of the intrinsic tryptophan residues in the protein molecule showed that at pH 2.0 the protein is in an unfolded conformation with more tryptophan residues exposed to the solvent as compared to the native conformation at neutral pH. Interestingly, stem bromelain at pH 0.8 exhibits some characteristics of a molten globule, such as an enhanced ability to bind the fluorescent probe as well as considerable retention of secondary structure. All the above data taken together suggest the existence of a partially folded intermediate state under low pH conditions.  相似文献   

17.
We have carried out a systematic investigation of salts- and alcohols-induced conformational alterations on the trifluoroacetic acid (TFA)-treated ferricytochrome c by soret absorption spectroscopy, far UV circular dichroism (CD), tryptophan fluorescence, and 1-anilino-8-naphthalene sulfonate (ANS) binding. TFA induces the unfolding of native cytochrome c obtained from horse heart leading to loss of secondary structure. The addition of increasing concentration of salts and alcohols leads to increase in MRE value at 222 and 208 nm indicating an increase in the alpha-helical content leading to formation of compact dimensional structure. Cytochrome c is a heme protein in which the resonance energy of tryptophan is transferred to heme resulting in quenched tryptophan fluorescence. Addition of alcohols leads to increase in tryptophan and ANS fluorescence. The tryptophan and ANS fluorescence in case of salts shows decreased fluorescence intensity. TFA-induced unfolded cytochrome c showed the soret absorption maximum at 394 nm. However, an intermediate state in presence of alcohols and salts showed the absorption maxima at 398 nm and 402 nm, respectively. Among all the salts and alcohols studied, K3Fe(CN)6 and butanol were found to be most effective as examined by the above-mentioned spectroscopic techniques. The order of effectiveness of alcohols was found to be butanol > propanol > ethanol > methanol. The following effective trend in the case of salts was obtained: K3Fe(CN)6 > K2SO4>KClO4 > KCl. These results suggest that alcohols induce an intermediate with molten globule-like conformation on the TFA unfolded state, whereas salts induce a refolded intermediate approaching native-like conformation.  相似文献   

18.
Patra AK  Udgaonkar JB 《Biochemistry》2007,46(42):11727-11743
The mechanisms of folding and unfolding of the small plant protein monellin have been delineated in detail. For this study, a single-chain variant of the natively two-chain monellin, MNEI, was used, in which the C terminus of chain B was connected to the N terminus of chain A by a Gly-Phe linker. Equilibrium guanidine hydrochloride (GdnHCl)-induced unfolding experiments failed to detect any partially folded intermediate that is stable enough to be populated at equilibrium to a significant extent. Kinetic experiments in which the refolding of GdnHCl-unfolded protein was monitored by measurement of the change in the intrinsic tryptophan fluorescence of the protein indicated the accumulation of three transient partially structured folding intermediates. The fluorescence change occurred in three kinetic phases: very fast, fast, and slow. It appears that the fast and slow changes in fluorescence occur on competing folding pathways originating from one unfolded form and that the very fast change in fluorescence occurs on a third parallel pathway originating from a second unfolded form of the protein. Kinetic experiments in which the refolding of alkali-unfolded protein was monitored by the change in the fluorescence of the hydrophobic dye 8-anilino-1-naphthalenesulfonic acid (ANS), consequent to the dye binding to the refolding protein, as well as by the change in intrinsic tryptophan fluorescence, not only confirmed the presence of the three kinetic intermediates but also indicated the accumulation of one or more early intermediates at a few milliseconds of refolding. These experiments also exposed a very slow kinetic phase of refolding, which was silent to any change in the intrinsic tryptophan fluorescence of the protein. Hence, the spectroscopic studies indicated that refolding of single-chain monellin occurs in five distinct kinetic phases. Double-jump, interrupted-folding experiments, in which the accumulation of folding intermediates and native protein during the folding process could be determined quantitatively by an unfolding assay, indicated that the fast phase of fluorescence change corresponds to the accumulation of two intermediates of differing stabilities on competing folding pathways. They also indicated that the very slow kinetic phase of refolding, identified by ANS binding, corresponds to the formation of native protein. Kinetic experiments in which the unfolding of native protein in GdnHCl was monitored by the change in intrinsic tryptophan fluorescence indicated that this change occurs in two kinetic phases. Double-jump, interrupted-unfolding experiments, in which the accumulation of unfolding intermediates and native protein during the unfolding process could be determined quantitatively by a refolding assay, indicated that the fast unfolding phase corresponds to the formation of fully unfolded protein via one unfolding pathway and that the slow unfolding phase corresponds to a separate unfolding pathway populated by partially unfolded intermediates. It is shown that the unfolded form produced by the fast unfolding pathway is the one which gives rise to the very fast folding pathway and that the unfolded form produced by the slower unfolding pathway is the one which gives rise to the slow and fast folding pathways.  相似文献   

19.
Results of actin folding-unfolding pathways examination and characterization of intermediate and misfolded states are summarized. Properties of microenvironments and peculiarities of location of tryptophan residues in protein are analysed in detail. This allowed to conclude that the main contribution to the bulk fluorescence of native protein is made by internal tryptophan residues Trp 340 and Trp 356, localized in hydrophobic regions, while tryptophan residues Trp 79 and Trp 86 are quenched. It has been shown that inactivated actin, previously regarded as an intermediate state between native and completely unfolded state of protein is in reality a misfolded aggregated state. The properties of actin in this state were characterized in detail. In particular, it is shown that inactivated actin is a monodisperse associate consisting of 15 monomer unit. Two earlier unknown intermediate states, which precede completely unfolding of protein macromolecule and formation of inactivated actin, were visualized. A new scheme of folding-unfolding processes was proposed. It is shown that the reason of anomalous effects, which are recorded for actin in solutions with small concentrations of GdnHCl, is a specific interaction of actin with a denaturant.  相似文献   

20.
The relative contributions of chain topology and amino acid sequence in directing the folding of a (betaalpha)(8) TIM barrel protein of unknown function encoded by the Bacillus subtilis iolI gene (IOLI) were assessed by reversible urea denaturation and a combination of circular dichroism, fluorescence and time-resolved fluorescence anisotropy spectroscopy. The equilibrium reaction for IOLI involves, in addition to the native and unfolded species, a stable intermediate with significant secondary structure and stability and self-associated forms of both the native and intermediate states. Global kinetic analysis revealed that the unfolded state partitions between an off-pathway refolding intermediate and the on-pathway equilibrium intermediate early in folding. Comparisons with the folding mechanisms of two other TIM barrel proteins, indole-3-glycerol phosphate synthase from the thermophile Sulfolobus solfataricus (sIGPS) and the alpha subunit of Escherichia coli tryptophan synthase (alphaTS), reveal striking similarities that argue for a dominant role of the topology in both early and late events in folding. Sequence-specific effects are apparent in the magnitudes of the relaxation times and relative stabilities, in the presence of additional monomeric folding intermediates for alphaTS and sIGPS and in rate-limiting proline isomerization reactions for alphaTS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号