首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White spot syndrome virus (WSSV) occurs worldwide and causes high mortality and considerable economic damage to the shrimp farming industry. No adequate treatments against this virus are available. It is generally accepted that invertebrates such as shrimp do not have an adaptive immune response system such as that present in vertebrates. As it has been demonstrated that shrimp surviving a WSSV infection have higher survival rates upon subsequent rechallenge, we investigated the potential of oral vaccination of shrimp with subunit vaccines consisting of WSSV virion envelope proteins. Penaeus monodon shrimp were fed food pellets coated with inactivated bacteria overexpressing two WSSV envelope proteins, VP19 and VP28. Vaccination with VP28 showed a significant lower cumulative mortality compared to vaccination with bacteria expressing the empty vectors after challenge via immersion (relative survival, 61%), while vaccination with VP19 provided no protection. To determine the onset and duration of protection, challenges were subsequently performed 3, 7, and 21 days after vaccination. A significantly higher survival was observed both 3 and 7 days postvaccination (relative survival, 64% and 77%, respectively), but the protection was reduced 21 days after the vaccination (relative survival, 29%). This suggests that contrary to current assumptions that invertebrates do not have a true adaptive immune system, a specific immune response and protection can be induced in P. monodon. These experiments open up new ways to benefit the WSSV-hampered shrimp farming industry.  相似文献   

2.
Although invertebrates lack a true adaptive immune response, the potential to vaccinate Penaeus monodon shrimp against white spot syndrome virus (WSSV) using the WSSV envelope proteins VP19 and VP28 was evaluated. Both structural WSSV proteins were N-terminally fused to the maltose binding protein (MBP) and purified after expression in bacteria. Shrimp were vaccinated by intramuscular injection of the purified WSSV proteins and challenged 2 and 25 days after vaccination to assess the onset and duration of protection. As controls, purified MBP- and mock-vaccinated shrimp were included. VP19-vaccinated shrimp showed a significantly better survival (p<0.05) as compared to the MBP-vaccinated control shrimp with a relative percent survival (RPS) of 33% and 57% at 2 and 25 days after vaccination, respectively. Also, the groups vaccinated with VP28 and a mixture of VP19 and VP28 showed a significantly better survival when challenged two days after vaccination (RPS of 44% and 33%, respectively), but not after 25 days. These results show that protection can be generated in shrimp against WSSV using its structural proteins as a subunit vaccine. This suggests that the shrimp immune system is able to specifically recognize and react to proteins. This study further shows that vaccination of shrimp may be possible despite the absence of a true adaptive immune system, opening the way to new strategies to control viral diseases in shrimp and other crustaceans.  相似文献   

3.
To determine whether Penaeus chinensis can be protected against white spot syndrome virus (WSSV) infection by intramuscular injection with long double-stranded RNAs (dsRNAs) as in other shrimp species and whether the protection degree by WSSV-specific dsRNAs is correlated with the roles of viral genes, P. chinensis juveniles were intramuscularly injected with long dsRNAs corresponding to VP28, VP281, protein kinase genes of WSSV, and an unrelated long dsRNA corresponding to a green fluorescence protein (GFP) gene. All shrimp injected with long dsRNAs including GFP dsRNA showed higher survival rates against WSSV infection than shrimp injected with PBS alone. Furthermore, shrimp injected with dsRNAs corresponding to VP28 and protein kinase showed higher survival rates than those injected with dsRNAs corresponding to VP281 and GFP. These results indicate that the introduction of long dsRNAs corresponding to viral proteins, which are essential for WSSV infection, is quite effective in blocking WSSV infection in P. chinensis, and suggest that dsRNA-mediated protection is a common feature across shrimp species.  相似文献   

4.
The gene sequence encoding VP3 capsid protein of Taura syndrome virus (TSV) was cloned into pGEX-6P-1 expression vector and transformed into Escherichia coli BL21. After induction, recombinant GST-VP3 (rVP3) fusion protein was obtained and further purified by electro-elution before use in immunizing Swiss mice for production of monoclonal antibodies (MAb). One MAb specific to glutathione-S-transferase (GST) and 6 MAb specific to VP3 were selected using dot blotting and Western blotting. MAb specific to VP3 could be used to detect natural TSV infections in farmed whiteleg shrimp Penaeus vannamei by dot blotting and Western blotting, without cross reaction to shrimp tissues or other shrimp viruses, such as white spot syndrome virus (WSSV), yellow head virus (YHV), monodon baculovirus (MBV) and hepatopancreatic parvovirus (HPV). These MAb were also used together with those specific for WSSV to successfully detect TSV and WSSV in dual infections in farmed P. vannamei.  相似文献   

5.
6.
7.
Several oral vaccination studies have been undertaken to evoke a better protection against white spot syndrome virus (WSSV), a major shrimp pathogen. Formalin-inactivated virus and WSSV envelope protein VP28 were suggested as candidate vaccine components, but their uptake mechanism upon oral delivery was not elucidated. In this study the fate of these components and of live WSSV, orally intubated to black tiger shrimp (Penaeus monodon) was investigated by immunohistochemistry, employing antibodies specific for VP28 and haemocytes. The midgut has been identified as the most prominent site of WSSV uptake and processing. The truncated recombinant VP28 (rec-VP28), formalin-inactivated virus (IVP) and live WSSV follow an identical uptake route suggested as receptor-mediated endocytosis that starts with adherence of luminal antigens at the apical layers of gut epithelium. Processing of internalized antigens is performed in endo-lysosomal compartments leading to formation of supra-nuclear vacuoles. However, the majority of WSSV-antigens escape these compartments and are transported to the inter-cellular space via transcytosis. Accumulation of the transcytosed antigens in the connective tissue initiates aggregation and degranulation of haemocytes. Finally the antigens exiting the midgut seem to reach the haemolymph. The nearly identical uptake pattern of the different WSSV-antigens suggests that receptors on the apical membrane of shrimp enterocytes recognize rec-VP28 efficiently. Hence the truncated VP28 can be considered suitable for oral vaccination, when the digestion in the foregut can be bypassed.  相似文献   

8.
White spot syndrome caused by white spot syndrome virus (WSSV) is one of the most threatening diseases of shrimp culture industry. Previous studies have successfully demonstrated the use of DNA- and RNA-based vaccines to protect WSSV infection in shrimp. In the present study, we have explored the protective efficacy of antisense constructs directed against WSSV proteins, VP24, and VP28, thymidylate synthase (TS), and ribonucleotide reductase-2 (RR2) under the control of endogenous shrimp histone-3 (H3) or penaedin (Pn) promoter. Several antisense constructs were generated by inserting VP24 (pH3–VP24, pPn–VP24), VP28 (pH3–VP28, pPn–VP28), TS (pH3–TS, pPn–TS), and RR2 (pH3–RR2) in antisense orientation. These constructs were tested for their protective potential in WSSV infected cell cultures, and their effect on reduction of the viral load was assessed. A robust reduction in WSSV copy number was observed upon transfection of antisense constructs in hemocyte cultures derived from Penaeus monodon and Scylla serrata. When tested in vivo, antisense constructs offered a strong protection in WSSV challenged P. monodon. Constructs expressing antisense VP24 and VP28 provided the best protection (up to 90 % survivability) with a corresponding decrease in the viral load. Our work demonstrates that shrimp treated with antisense constructs present an efficient control strategy for combating WSSV infection in shrimp aquaculture.  相似文献   

9.
A cDNA library was constructed from white spot syndrome virus (WSSV)-infected penaeid shrimp tissue. cDNA clones with WSSV inserts were isolated and sequenced. By comparison with DNA sequences in GenBank, cDNA clones containing sequence identical to those of the WSSV envelope protein VP28 and nucleoprotein VP15 were identified. Poly(A) sites in the mRNAs of VP28 and VP15 were identified. Genes encoding the major viral structural proteins VP28, VP26, VP24, VP19 and VP15 of 5 WSSV isolates collected from different shrimp species and/or geographical areas were sequenced and compared with those of 4 other WSSV isolate sequences in GenBank. For each of the viral structural protein genes compared, the nucleotide sequences were 100 to 99% identical among the 9 isolates. Gene probes or PCR primers based on the gene sequences of the WSSV structural proteins can be used for diagnoses and/or detection of WSSV infection.  相似文献   

10.
Lu Y  Liu J  Jin L  Li X  Zhen Y  Xue H  You J  Xu Y 《Fish & shellfish immunology》2008,25(5):604-610
White spot syndrome virus (WSSV) causes high mortality and large economic losses in cultured shrimp. The VP28, VP19 and VP15 genes encode viral structural proteins of WSSV. In this study, hens were immunized with recombinant plasmid (pCI-VP28/VP19/VP15) with linkers or with inactivated WSSV, which used CpG oligodeoxynucleotides (CpG ODNs) and Freund's adjuvant as adjuvant, respectively. Egg yolk immunoglobulin (IgY) from hens immunized with inactivated vaccine and DNA vaccine was obtained, purified and used for protection of Metapenaeus ensis shrimp against WSSV. The data showed that the antibody response of the hens immunized with the DNA vaccine was improved by CpG ODNs as adjuvant, but was still inferior to inactivated WSSV in both sera and egg yolks. Using specific IgY from hens immunized with inactivated WSSV and DNA vaccine to neutralize WSSV, the challenged shrimp showed 73.3% and 33.3% survival, respectively. Thus, the results suggest that passive immunization strategy with IgY will be a valuable method against WSSV infection in shrimp.  相似文献   

11.
Historic emergence, impact and current status of shrimp pathogens in Asia   总被引:9,自引:0,他引:9  
It is estimated that approximately 60% of disease losses in shrimp aquaculture have been caused by viral pathogens and 20% by bacterial pathogens. By comparison, losses to fungi and parasites have been relatively small. For bacterial pathogens, Vibrio species are the most important while for viral pathogens importance has changed since 2003 when domesticated and genetically selected stocks of the American whiteleg shrimp Penaeus (Litopenaeus) vannamei (Boone 1931) replaced the formerly dominant giant tiger or black tiger shrimp Penaeus (Penaeus) monodon (Fabricius 1798) as the dominant cultivated species. For both species, white spot syndrome virus (WSSV) and yellow head virus (YHV) are the most lethal. Next most important for P. vannamei is infectious myonecrosis virus (IMNV), originally reported from Brazil, but since 2006 from Indonesia where it was probably introduced by careless importation of shrimp aquaculture stocks. So far, IMNV has not been reported from other countries in Asia. Former impacts of Taura syndrome virus (TSV) and infectious hypodermal and hematopoietic necrosis virus (IHHNV) on this species have dramatically declined due to the introduction of tolerant stocks and to implementation of good biosecurity practices. Another problem recently reported for P. vannamei in Asia is abdominal segment deformity disease (ASDD), possibly caused by a previously unknown retrovirus-like agent. Next most important after WSSV and YHV for P. monodon is monodon slow growth syndrome (MSGS) for which component causes appear to be Laem Singh virus (LSNV) and a cryptic integrase containing element (ICE). Hepatopancreatic parvovirus (HPV) and monodon baculovirus (MBV) may be problematic when captured P. monodon are used to produce larvae, but only in the absence of proper preventative measures. Since 2009 increasing losses with P. vannamei in China, Vietnam and now Thailand are associated with acute hepatopancreatic necrosis syndrome (AHPNS) of presently unknown cause. Despite these problems, total production of cultivated penaeid shrimp from Asia will probably continue to rise as transient disease problems are solved and use of post larvae originating from domesticated SPF shrimp stocks in more biosecure settings expands.  相似文献   

12.
White spot disease is an important viral disease caused by white spot syndrome virus (WSSV) and is responsible for huge economic losses in the shrimp culture industry worldwide. The VP28 gene encoding the most dominant envelope protein of WSSV was used to construct a DNA vaccine. The VP28 gene was cloned in the eukaryotic expression vector pcDNA3.1 and the construct was named as pVP28. The protective efficiency of pVP28 against WSSV was evaluated in Penaeus monodon by intramuscular challenge. In vitro expression of VP28 gene was confirmed in sea bass kidney cell line (SISK) by fluorescence microscopy before administering to shrimp. The distribution of injected pVP28 in different tissues of shrimp was studied and the results revealed the presence of pVP28 in gill, head soft tissue, abdominal muscle, hemolymph, pleopods, hepatopancreas and gut. RT-PCR and fluorescence microscopy analyses showed the expression of pVP28 in all these tissues examined. The results of vaccination trials showed a significantly higher survival rate in shrimp vaccinated with pVP28 (56.6-90%) when compared to control groups (100% mortality). The immunological parameters analyzed in the vaccinated and control groups revealed that the vaccinated shrimp showed significantly high level of prophenoloxidase and superoxide dismutase (SOD) when compared to the control groups. The high levels of prophenoloxidase and superoxide dismutase (SOD) might be responsible for developing resistance against WSSV in DNA vaccinated shrimp.  相似文献   

13.
&#  &#  &#  &#  &#  &#  &#  &# 《水生生物学报》2013,37(4):705-711
以枯草芽孢杆菌(Bacillus subtilis)为活载体口服递呈对虾白斑综合征病毒(WSSV)囊膜蛋白VP28, 评价其抗病毒感染能力、对南美白对虾免疫相关基因表达以及血淋巴细胞对病毒特异性吞噬的影响。经口服免疫枯草重组菌株B. subtilis-VP28攻毒后, 对虾的相对存活率达83.3%。为探讨重组菌株的抗病机理, 比较研究了免疫相关基因proPO(酚氧化酶原)、Peroxinectin(PE)和脂多糖--1, 3-葡聚糖结合蛋白(LGBP)基因的表达差异, 并进一步分析了血淋巴细胞吞噬活性和特异性。结果表明, B. subtilis-VP28菌液能显著提高(P 0.05)对虾proPO、PE和LGBP mRNA的表达水平和血细胞对WSSV的吞噬活性, B. subtilis组对免疫相关基因也有一定的激活作用, 而B. subtilis-VP28发酵上清液则能增加血细胞吞噬活性; 此外, B. subtilis-VP28菌液组血细胞对WSSV具有特异性吞噬作用。研究为枯草重组菌株B. subtilis-VP28抗WSSV感染作用及其作为特殊功能水产微生态制剂的应用提供了一定的科学依据。    相似文献   

14.
15.
This study investigates white spot syndrome virus (WSSV) gene expression levels in the cells of 2 hosts (Penaeus monodon and Litopenaeus vannamei). Microarray and expressed sequence tag (EST) analysis of the mRNA profiles in WSSV-infected P. monodon cells were used to identify WSSV genes that were very highly expressed. Results showed that the mRNA of the WSSV icp11 gene consistently had the highest copy number of all (3x higher than the major envelope protein, VP28). At the protein level in WSSV-infected L. vannamei, 2-dimensional gel analysis and liquid chromatography-nano-electrospray ionization tandem mass spectrometry (LC-nanoESI-MS/MS) protein identification also showed that this WSSV non-structural protein has the highest expression levels reported to date. ICP11 is capable of self-multimerization, and it becomes located in both the cytoplasm and nucleus of the host cell. These data suggest that ICP11 plays an important, but presently unknown, role during viral infection, and that expression of the WSSV icp11 gene/WSSV ICP11 protein is potentially a good and diagnostically useful indicator of WSSV infection.  相似文献   

16.
Genetic studies in shrimp have focused on disease, with production traits such as growth left unexamined. Two shrimp species, Litopenaeus vannamei and Penaeus monodon, which represent the majority of US shrimp imports, were selected for single nucleotide polymorphism (SNP) discovery in alpha-amylase (AMY2) and cathepsin-l (CTSL), both candidate genes for growth. In L. vannamei, four SNPs were found in AMY2 and one SNP was found in CTSL. In P. monodon, one SNP was identified in CTSL. The CTSL gene was mapped to linkage group 28 of P. monodon using the female map developed with the Australian P. monodon mapping population. Association analyses for the AMY2 and CTSL genes with body weight (BW) were performed in two L. vannamei populations. While neither gene was found to be significantly associated with BW in these populations, there was a trend in one population towards higher BW for allele G of CTSL SNP C681G.  相似文献   

17.
The present work provides the first evidence of polychaete worms as passive vectors of white spot syndrome virus (WSSV) in the transmission of white spot disease to Penaeus monodon broodstocks. The study was based on live polychaete worms, Marphysa spp., obtained from worm suppliers/worm fishers as well as samples collected from 8 stations on the northern coast of Tamilnadu (India). Tiger shrimp Penaeus monodon broodstock with undeveloped ovaries were experimentally infected with WSSV by feeding with polychaete worms exposed to WSSV. Fifty percent of polychaete worms obtained from worm suppliers were found to be WSSV positive by 2-step PCR, indicating high prevalence of WSSV in the live polychaetes used as broodstock feed by hatcheries in this area. Of 8 stations surveyed, 5 had WSSV positive worms with prevalence ranging from 16.7 to 75%. Polychaetes collected from areas near shrimp farms showed a higher level of contamination. Laboratory challenge experiments confirmed the field observations, and > 60% of worms exposed to WSSV inoculum were proved to be WSSV positive after a 7 d exposure. It was also confirmed that P. monodon broodstock could be infected with WSSV by feeding on WSSV contaminated polychaete worms. Though the present study indicates only a low level infectivity in wild polychaetes, laboratory experiments clearly indicated the possibility of WSSV transfer from the live feed to shrimp broodstock, suggesting that polychaete worms could play a role in the epizootiology of WSSV.  相似文献   

18.
White spot syndrome (WSS) is one of the most common and most disastrous diseases of shrimp worldwide. It causes up to 100% mortality within 3 to 4 days in commercial shrimp farms, resulting in large economic losses to the shrimp farming industry. VP28 envelope protein of WSSV is reported to play a key role in the systemic infection in shrimps. Considering the most sombre issue of viral disease in cultivated shrimp, the present study was undertaken to substantiate the inhibition potential of Avicennia marinaderived phytochemicals against the WSSV envelope protein VP28. Seven A. marina-derived phytochemicals namely stigmasterol, triterpenoid, betulin, lupeol, avicenol-A, betulinic acid and quercetin were docked against the WSSV protein VP28 by using Argus lab molecular docking software. The chemical structures of the phytochemicals were retrieved from Pubchem database and generated from SMILES notation. Similarly the protein structure of the envelope protein was obtained from protein data bank (PDB-ID: 2ED6). Binding sites were predicted by using ligand explorer software. Among the phytochemicals screened, stigmasterol, lupeol and betulin showed the best binding exhibiting the potential to block VP28 envelope protein of WSSV, which could possibly inhibit the attachment of WSSV to the host species. Further experimental studies will provide a clear understanding on the mode of action of these phytochemicals individually or synergistically against WSSV envelope protein and can be used as an inhibitory drug to reduce white spot related severe complications in crustaceans.  相似文献   

19.
White spot disease (WSD) is caused by the white spot syndrome virus (WSSV), which results in devastating losses to the shrimp farming industry around the world. However, the mechanism of virus entry and spread into the shrimp cells is unknown. A binding assay in vitro demonstrated VP28-EGFP (envelope protein VP28 fused with enhanced green fluorescence protein) binding to shrimp cells. This provides direct evidence that VP28-EGFP can bind to shrimp cells at pH 6.0 within 0.5 h. However, the protein was observed to enter the cytoplasm 3 h post-adsorption. Meanwhile, the plaque inhibition test showed that the polyclonal antibody against VP28 (a major envelope protein of WSSV) could neutralize the WSSV and block an infection with the virus. The result of competition ELISA further confirmed that the envelope protein VP28 could compete with WSSV to bind to shrimp cells. Overall, VP28 of the WSSV can bind to shrimp cells as an attachment protein, and can help the virus enter the cytoplasm.  相似文献   

20.
White spot syndrome virus (WSSV) disease is a major threat to shrimp culture worldwide. Here, we assessed the efficacy of the oral administration of purified recombinant VP28, an envelope protein of WSSV, expressed in a Gram-positive bacterium, Brevibacillus brevis, in providing protection in shrimp, Penaeus japonicus, upon challenge with WSSV. Juvenile shrimp (2-3g in body weight) fed with pellets containing purified recombinant VP28 (50mug/shrimp) for 2weeks showed significantly higher survival rates than control groups when challenged with the virus at 3days after the last day of feeding. However, when shrimp were challenged 2weeks after the last day of feeding, survival rates decreased (33.4% and 24.93%, respectively). Survival rate was dose-dependent, increasing from 60.7 to 80.3% as the dose increased from 1 to 50mug/shrimp. At a dose of 50mug/shrimp, the recombinant protein provided protection as soon as 1day after feeding (72.5% survival). Similar results were obtained with larger-sized shrimp. These results show that recombinant VP28 expressed in a Gram-positive bacterium is a potential oral vaccine against WSSV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号