首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A tissue-printing technique was used to follow distribution of lead ions in different organs of lupin seedling with the histological localization of pathogenesis-related proteins designated as PR-L1 to PR-L6, which were found to be induced in lupin roots by heavy metals (Przymusiński and Gwóźdź 1999). Lead nitrate solution was supplied to the root tips and the histological distribution of the metal in lupin organs was visualized by staining with 0.6 % (w/v) of sodium rhodizonate. As the distance from the site of lead application increased, the amount of free lead ions decreased and in the petioles the metal was not detected at all. Lead ions were localized mostly in vascular bundles, which suggests that it was transported into the upper parts of seedlings with the transpiration stream. Immunohistochemical analysis of the tissue prints showed that as compared to the control lead visibly increased the accumulation of the PR proteins in roots, hypocotyls, stems and leaf petioles of the lupin seedling. The histological distribution of the PR protein differs from that of lead, and was localized in parenchymatic cells of root cortex, hypocotyl and stem. It is worth noticing that the stress protein was also observed in the leaf petioles where lead was not detected. This fact as well as marked enhancement of PR (L1–L6) proteins accumulation in lead treated seedlings and our earlier studies (Przymusiński and Gwóźdź 1994, 1999, Przymusiński et al. 1995) suggests that these proteins could be elements of plant’s defence system against both biotic and abiotic stressing factors.  相似文献   

2.
Plant cell responses to heavy metals: molecular and physiological aspects   总被引:3,自引:0,他引:3  
The effect of lead, cadmium and cooper on protein pattern, free radicals and antioxidant enzymes in root of Lupinus luteus L. were investigated. Heavy metals inhibited growth of lupin roots, which was accompanied by increased synthesis and accumulation of a 16 kDa polypeptide (Przymusiński et al. 1991 Biochem. Physiol. Pflanzen., 187:51–57). This component has been earlier identified as immunologically related to Cu,Zn-superoxide dismutase (Przymusiński et al. 1995 Env.Exp.Bot., 35:485–495). However, more detailed study revealed that this stress-stimulated protein is composed of four to six polypeptides of different electrophoretic mobility. The most abundant polypeptides of the 16kDa region were found to be closely homologous to pathogen related proteins. The number and intensity of these polypeptides was highly variable in roots of individual seedlings, which suggests that they might represent separate allelic forms. Electron paramagnetic spectra revealed that at low lead concentrations the amplitude of the first derivative was similar to the control and distinctly increased at higher metal concentrations. On the other hand, at the lower lead concentrations the activity of antioxidant enzymes increased, whereas at higher metal doses the enzyme activities did not raise further (SOD) or even dropped (CAT, APOX). This implies that the responses of antioxidant system to lead is dose-dependent stimulated by low metal concentrations, whereas at the higher metal level the free radical emission is beyond the quenching capacity of antioxidant enzymes, which in turn might contribute to the reduced root growth. The effect of various heavy metals: Pb2+, Cd2+ and Cu2+ on phytochelatins and antioxidant enzymes depends on the kind of metal ion. Pb2+ and Cd2+ stimulated the PCs formation whereas Cu2+ was not effective. On the other hand, in root exposed to Cu the activity of catalase (CAT) was the highest as was the production of H2O2. The strong oxidative effect of Cu2+ ions which were not complexed by PCs suggests that these peptides might by involved in the cellular defense system by binding excessive heavy metal ions. On the basis of our results it can be concluded that in lupin roots exposed to heavy metals there is a complex defense system against metal phytotoxicity, which comprises of specific proteins, antioxidant enzymes and phytochelatins.  相似文献   

3.
In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca2+ uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca2+ transport system (Bazhenova et al. J Biol Chem 273:4372–4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96–100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352–1356, 2000; Deryabina et al. J Biol Chem 276:47801–47806, 2001) were very resistant to Ca2+ overload. However, exposure of yeast mitochondria to 50–100 μM Ca2+ in the presence of the Ca2+ ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca2+/nH+-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca2+- ETH129-induced activation of the Ca2+/H+-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca2+ overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319–331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37–51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.  相似文献   

4.
Kim YH  Kim CY  Song WK  Park DS  Kwon SY  Lee HS  Bang JW  Kwak SS 《Planta》2008,227(4):867-881
Plant peroxidases (POD) reduce hydrogen peroxide (H2O2) in the presence of an electron donor. Extracellular POD can also induce H2O2 production and may perform a significant function in responses to environmental stresses via the regulation of H2O2 in plants. We previously described the isolation of 10 POD cDNA clones from cell cultures of sweetpotato (Ipomoea batatas). Among them, the expression of the swpa4 gene was profoundly induced by a variety of abiotic stresses and pathogenic infections (Park et al. in Mol Gen Genome 269:542–552 2003; Jang et al. in Plant Physiol Biochem 42:451–455 2004). In the present study, transgenic tobacco (Nicotiana tabacum) plants overexpressing the swpa4 gene under the control of the CaMV 35S promoter were generated in order to assess the function of swpa4 in planta. The transgenic plants exhibited an approximately 50-fold higher POD specific activity than was observed in control plants. Both transient expression analysis with the swpa4-GFP fusion protein and POD activity assays in the apoplastic washing fluid revealed that the swpa4 protein is secreted into the apoplastic space. In addition, a significantly enhanced tolerance to a variety of abiotic and biotic stresses occurred in the transgenic plants. These plants harbored increased lignin and phenolic content, and H2O2 was also generated under normal conditions. Furthermore, they showed an increased expression level of a variety of apoplastic acidic pathogenesis-related (PR) genes following enhanced H2O2 production. These results suggest that the expression of swpa4 in the apoplastic space may function as a positive defense signal in the H2O2-regulated stress response signaling pathway.  相似文献   

5.
The basis for the outcome of competition between sulfidogens and methanogens for H2 was examined by comparing the kinetic parameters of representatives of each group separately and in co-culture. Michaelis-Menten parameters (V max and K m) for four methanogens and five sulfate-reducing bacteria were determined from H2-depletion data. Further, Monod growth parameters (max, K s, Y H2) for Desulfovibrio sp. G11 and Methanospirillum hungatei JF-1 were similarly estimated. H2 K m values for the methanogenic bacteria ranged from 2.5 M (Methanospirillum PM1) to 13 M for Methanosarcina barkeri MS; Methanospirillum hungatei JF-1 and Methanobacterium PM2 had intermediate H2 K m estimates of 5 M. Average H2 K m estimates for the five sulfidogens was 1.2 M. No consistent difference among the V max estimates for the above sulfidogens (mean=100 nmol H2 min-1 mg-1 protein) and methanogens (mean=110 nmol H2 min-1 mg-1 protein) was found. A two-term Michaelis-Menten equation accurately predicted the apparent H2 K m values and the fate of H2 by resting co-cultures of sulfate-reducers and methanogens. Half-saturation coefficients (K s) for H2-limited growth of Desulfovibrio sp. G11 (2–4 M) and Methanospirillum JF-1 (6–7 M) were comparable to H2 K m estimates obtained for these organisms. Maximum specific growth rates for Desulfovibrio sp. G11 (0.05 h-1) were similar to those of Methanospirillum JF-1 (0.05–0.06 h-1); whereas G11 had an average yield coefficient 4 x that of JF-1. Calculated max and V max/K m values for the methanogens and sulfidogens studied predict that the latter bacterial group will process more H2 whether these organisms are in a growing or resting state, when the H2 concentration is in the first-order region.  相似文献   

6.
We have tested the hypothesis (Van Ooteghem et al. Appl Biochem Biotechnol 2002 98–100: 177–189) that microaerobic metabolism may increase the yield of H2 from the thermophilic bacterium Thermotoga neapolitana. In anaerobic conditions, T. neapolitana converted glucose into acetic acid and lactic acid and yielded 2.4 ± 0.3 mol H2 mol−1 glucose. The bacterium tolerated low O2 partial pressures but the H2 yield was not improved under microaerobic conditions. Our results indicate that T. neapolitana only produces H2 by anaerobic metabolism, and that the yield of H2 can be maximised by minimising the production of lactic acid.  相似文献   

7.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems. The present study demonstrates that H2O2 was generated in seedling explants after the primary roots were removed, and it mediates the auxin response prior to adventitious root formation in cucumber (Cucumis sativus L. Ganfeng 8). When compared with the controls, treatment of cucumber seedling explants after primary roots removal with either 20–40 mM H2O2 or 10 μM IAA significantly increased the number of adventitious roots, and treatment with 10–50 mM H2O2 significantly increased the fresh weight of adventitious roots. The effects of H2O2 on promoting the formation and growth of adventitious roots were eliminated by 2 mM ascorbic acid, 100 U CAT or 1 μM DPI, and the effects of IAA were eliminated by 4 mM ascorbic acid, 100 U CAT or 5 μM DPI. Treatment with either 4 mM ascorbic acid or 1–5 μM DPI inhibited the formation and growth of adventitious roots, and these inhibitory effects were partly reversed by exogenous H2O2.Furthermore, a higher concentration of endogenous H2O2 was detected in seedling explants 3 h after the primary roots were removed. However, in 10 μM DPI-treated seedling explants, the concentration of endogenous H2O2 was markedly reduced by DPI. Results obtained suggest that H2O2 may function as a signaling molecule, involved in the formation and development of adventitious roots in cucumber.  相似文献   

8.
A. Yokota  S. Kitaoka  K. Miura  A. Wadano 《Planta》1985,165(1):59-67
The nonenzymatic reaction of glyoxylate and H2O2 was measured under physiological conditions of the pH and concentrations of reactants. The reaction of glyoxylate and H2O2 was secondorder, with a rate constant of 2.27 l mol-1 s-1 at pH 8.0 and 25° C. The rate constant increased by 4.4 times in the presence of Zn2+ and doubled at 35°C. We propose a mechanism for the reaction between glyoxylate and H2O2. From a comparison of the rates of H2O2 decomposition by catalase and the reaction with glyoxylate, we conclude that H2O2 produced during glycolate oxidation in peroxisomes is decomposed by catalase but not by the reaction with glyoxylate, and that photorespiratory CO2 originates from glycine, but not from glyoxylate, in C3 plants. Simulation using the above rate constant and reported kinetic parameters leads to the same conclusion, and also makes it clear that alanine is a satisfactory amino donor in the conversion of glyoxylate to glycine. Some serine might be decomposed to give glycine and methylene-tetrahydrofolate; the latter is ultimately oxidized to CO2. In the simulation of the glycolate pathway of Euglena, the rate constant was high enough to ensure the decarboxylation of glyoxylate by H2O2 to produce photorespiratory CO2 during the glycolate metabolism of this organism.Abbreviations Chl chlorophyll - GGT glutamate: glyoxylate aminotransferase (EC 2.6.1.4) - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - SGT serine: glyoxylate aminotransferase (EC 2.6.1.45) This is the ninth in a series on the metabolism of glycolate in Euglena gracilis. The eighth is Yokota et al. (1982)  相似文献   

9.
Hu X  Jiang M  Zhang A  Lu J 《Planta》2005,223(1):57-68
The histochemical and cytochemical localization of abscisic acid (ABA)-induced H2O2 production in leaves of maize (Zea mays L.) plants were examined, using 3,3-diaminobenzidine (DAB) and CeCl3 staining, respectively, and the relationship between ABA-induced H2O2 production and ABA-induced subcellular activities of antioxidant enzymes was studied. H2O2 generated in response to ABA treatment was detected within 0.5 h in major veins of the leaves and maximized at about 2–4 h. In mesophyll and bundle sheath cells, ABA-induced H2O2 accumulation was observed only in apoplast, and the greatest accumulation occurred in the walls of mesophyll cells facing large intercellular spaces. Meanwhile, ABA treatment led to a significant increase in the activities of the leaf chloroplastic and cytosolic antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX) and glutathione reductase (GR), and pretreatment with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), the O 2 scavenger Tiron and the H2O2 scavenger dimethylthiourea (DMTU) almost completely arrested the increase in the activities of these antioxidant enzymes. Our results indicate that the accumulation of apoplastic H2O2 is involved in the induction of the chloroplastic and cytosolic antioxidant enzymes. Moreover, an oxidative stress induced by paraquat (PQ), which generates O 2 and then H2O2 in chloroplasts, also up-regulated the activities of the chloroplastic and cytosolic antioxidant enzymes, and the up-regulation was blocked by the pretreatment with Tiron and DMTU. These data suggest that H2O2 produced at a specific cellular site could coordinate the activities of antioxidant enzymes in different subcellular compartments.  相似文献   

10.
Nitrogen fixation was measured in monocropped sweet-blue lupin (Lupinus angustifolius), lupin intercropped with two ryegrass (Lolium multiflorum) cultivars or with oats (Avena sativa) on an Andosol soil, using the 15N isotope dilution method. At 117 days after planting and at a mean temperature below 10°C, monocropped lupin derived an average of 92% or 195 kg N ha−1 of its N from N2 fixation. Intercropping lupin with cereals increased (p<0.05) the percentage of N derived from atmospheric N2 (% Ndfa) to a mean of 96%. Compared to the monocropped, total N fixed per hectare in intercropped lupin declined approximately 50%, in line with the decrease in seeding rate and dry matter yield. With these high values of N2 fixation, selection of the reference crop was not a problem; all the cereals, intercropped or grown singly produced similar estimates of N2 fixed in lupin. It was deduced from the 15N data that significant N transfer occurred from lupin to intercropped Italian ryegrass but not to intercropped Westerwoldian ryegrass or to oats. Doubling the 15N fertilizer rate from 30 to 60 kg N ha−1 decreased % Ndfa to 86% (p<0.05), but total N fixed was unaltered. These results indicate that lupin has a high potential for N2 fixation at low temperatures, and can maintain higher rates of N2 fixation in soils of high N than many other forage and pasture legumes.  相似文献   

11.
Three peroxidase isoenzyme-groups found in cell walls of tobacco were tested for their capacity to form H2O2. Isoenzyme-group GI, located only in cell walls (GII and GIII are also found in protoplasts) showed the highest Kapp-value for H2O2-formation. The lowest Kapp-value, i.e., maximal H2O2-formation was received for group GIII which is ionically bound to the cell wall. As shown before, GI yields maximal polymerization rates for coniferyl- and p-coumarylalcohol. These facts indicate that each of the peroxidase isoenzyme groups of the cell wall is involved with different catalytic functions within the same pathways of H2O2-formation and succeeding lignification. H2O2-formation catalyzed by all 3 groups was increased by very low concentrations of Mn2+-ions. The required amount of Mn2+ leading to maximal stimulation was in each case dependent on the basic rate of H2O2-formation. Maximal stimulation of H2O2-formation by phenolic compounds was achieved by coniferylalcohol at a concentration of 10-4M for all groups. Stimulation by p-coumaryl-and by sinapylalcohol was not as significant.  相似文献   

12.
Overexpression of Arabidopsis thaliana farnesyl diphosphate synthase isoform 1S (FPS1S) in transgenic A. thaliana (L.) Heynh. leads to necrotic lesion formation in leaves in planta and to premature senescence in detached leaves [A. Masferrer et al. (2002) Plant J 30:123–132]. Here we report that leaves of plants overexpressing FPS1S with symptoms of necrosis show increased H2O2 formation and induction of both the pathogenesis-related 1 (PR-1) and the alternative oxidase 1a (AOX1a) genes. These findings indicate that plants overexpressing FPS1S should be considered as lesion-mimic mutants and lead us to propose that H2O2 is the main inducing agent of necrosis in these plants. The onset of necrosis appears in a developmentally regulated manner that correlates with the developmental decline of endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity. Accordingly, constitutive overexpression of HMGR in plants overexpressing FPS1S prevents both necrosis and premature senescence. These observations demonstrate that both phenotypes are due to an insufficient supply of mevalonic acid and support the notion that the metabolic imbalance associated with FPS1S overexpression is, in fact, triggered by the developmental decline of HMGR activity. We also show that overexpression of FPS1S alleviates growth inhibition caused by overexpression of the catalytic domain of isoform HMGR1S. Overall, our results reinforce the view that the levels of specific intermediates of the mevalonic acid pathway must be strictly controlled, particularly those located at branch-point positions, in order to avoid deleterious effects on plant growth and development.Abbreviations AOX1a Alternative oxidase 1a - DMAPP Dimethylallyl diphosphate - FPP Farnesyl diphosphate - FPS Farnesyl diphosphate synthase - HMGR 3-Hydroxy-3-methylglutaryl coenzyme A reductase - HR Hypersensitive response - IPP Isopentenyl diphosphate - MVA Mevalonic acid - PR Pathogenesis related  相似文献   

13.
P. Schopfer 《Planta》1996,199(1):43-49
It has recently been proposed that H2O2-dependent peroxidative formation of phenolic cross-links between cell-wall polymers serves as a mechanism for fixing the viscoelastically extended wall structure and thus confers irreversibility to wall extension during cell growth (M. Hohl et al. 1995, Physiol. Plant. 94: 491–498). In the present paper the isolated cell wall (operationally, frozen/thawed maize coleoptile segments) was used as an experimental system to investigate H2O2-dependent cell-wall stiffening in vitro. Hydrogen peroxide inhibited elongation growth (in vivo) and decreased cell-wall extensibility (in vitro) in the concentration range of 10–10000 mol·1–1. In rheological measurements with a constant-load extensiometer the stiffening effect of H2O2 could be observed with both relaxed and stressed cell walls. In-vitro cell-wall stiffening was a time-dependent reaction that lasted about 60 min in the presence of saturating concentrations of H2O2. The presence of peroxidase in the growth-limiting outer epidermal wall of the coleoptile was shown by histochemical assays. Peroxidase inhibitors (azide, ascorbate) suppressed the wall-stiffening reaction by H2O2 in vitro. Hydrogen peroxide induced the accumulation of a fluorescent, insoluble material in the cell walls of living coleoptile segments. These results demonstrate that primary cell walls of a growing plant organ contain all ingredients for the mechanical fortification of the wall structure by H2O2-inducible phenolic cross-linking.Supported by Deutsche Forschungsgemeinschaft. I thank Ms. Bärbel Huvermann for expert technical assistance.  相似文献   

14.
Our previous results indicate that during protoplast isolation an oxidative burst occurs [A.K. Papadakis and KA Roubelakis-Angelakis (1999) Plant Physiol 127:197–205] and that suppression of totipotency is correlated with reduced antioxidant activity and low redox state [A.K. Papadakis et al. (2001b) Plant Physiol 126:434–444]. Polyamines are known to affect cell development and to act as antioxidants. Polyamines applied during isolation of tobacco (Nicotiana tabacum L.) protoplasts reduced the accumulation of O2· but not that of H2O2. This antioxidant effect is probably due to the inhibition of microsomal membrane NADPH oxidase, which occurred in a concentration-dependent manner, with spermine exerting the highest inhibitory effect. However, during protoplast culture, polyamine oxidase activity increased severalfold in spermidine- and spermine-treated protoplasts, concomitant with H2O2 titers. A cell death program was executed in untreated protoplasts, as documented by membrane malfunction, induced DNase activity, DNA fragmentation and a positive TUNEL reaction. Protoplast cell death was prevented in protoplasts treated with putrescine, but not by treatment with spermidine or spermine, which rather had the opposite effect. The data presented suggest that PAs may be implicated in the expression of plant protoplast totipotency.  相似文献   

15.
Krabet al. (1984) have recently tried to resolve the long-standing controversy as to whether the mechanistic H+/O coupling ratio for electrons passing through sites II and III of the mammalian electron transport chain to O2 is 6 or 8. Using a mathematical model they concluded that the higher number reported by Costaet al. (1984) was an overestimate because of the unaccounted for delayed response of the O2 electrode. Responding to criticisms of Lehningeret al. (1985), they have recently used (Krab and Wikström, 1986) an improved mathematical model which shows that the higher number found by Costaet al. was probably due to an inadequate accounting for the effects of the proton leak process which accompanies the translocation process. The impression is left that the situation is now resolved in favor of the lower number. We agree that the procedures of Costaet al. do not properly account for the leak process, and provide further evidence in this paper of the magnitude of the problem. However, we disagree that the number 6.0, favored by Wikströmet al., rests on any more solid experimental support. We provide evidence here for this conclusion and raise the question as to whether or not any unique, fixed, integral number exists for the H+/O ratio accompanying the oxidation of a particular substrate.  相似文献   

16.
Crosbie  Julie  Longnecker  Nancy  Davies  Fleur  Robson  Alan 《Plant and Soil》1993,(1):449-452
Seed of narrow-leafed lupin (Lupinus angustifolius L.) produced in Western Australia often has low manganese (Mn) concentration because of low Mn availability in the soil during grain filling. A major problem of lupin production is poor seedling establishment. We tested the hypothesis that low Mn concentration in lupin seeds decreases emergence.The experiment was a factorial design comparing emergence of lupins (cv. Gungurru) grown under glasshouse conditions from seed with 2 different internal Mn concentrations (7 or 35 mg Mn kg–1 DW) and with 2 external Mn fertiliser treatments (0 or 10 mg MnSO4.H2O kg–1 soil). There were no visible differences between the seeds. Emergence was monitored and plants were harvested 17 days after sowing.Emergence was approximately 60% in all pots sown with low Mn compared to 100% in pots sown with high Mn seed. Application of Mn did not increase the final emergence of low Mn seed. Seed viability was assessed by staining with tetrazolium chloride, a common test used in seed testing laboratories. All high Mn seed were viable while 34% of low Mn seed were completely or partly unstained and therefore were non-viable. We have shown that low Mn supply during seed filling may lead to production of non-viable seed that cannot be visually distinguished from viable seed..  相似文献   

17.
The effect of herbivory and resource availability on the competitive ability of different plant species has been an area of intense debate amongst plant ecologists for at least two decades, but the interactive effects of herbivory and plant competition between woody and herbaceous plants are rarely studied and theory is poorly developed. This study used experimental manipulations on transplanted and naturally occurring mountain beech (Nothofagus solandri var. cliffortioides) seedlings to show the effects of deer browsing and competition from deer-induced, herbaceous turf communities on mountain beech regeneration in New Zealand. Differences in the species composition of these turfs had little effect on mountain beech seedling establishment, but turf removal increased seedling growth and survivorship, showing that competition with other plants had direct effects on mountain beech regeneration. Deer browsing reduced the establishment and growth of seedlings, but the size of this effect did not vary with light and nutrient availability. There was no immediate compositional response of turf communities following the removal of deer browsing. The addition of nutrients appeared to reduce the intensity of belowground competition (stem growth increased relative to root growth) and increase seedling mortality, but there was no effect of changing levels of light. These results showed simple and direct negative effects of deer browsing on mountain beech regeneration. Indirect negative effects on regeneration were caused by deer-induced turf communities. We found little evidence for interactive effects between herbivory, plant competition and the availability of light or nutrients on seedling regeneration, which suggests that these factors acted independently. Nomenclature: Beever et al. (1992); Parsons et al. (1995); Edgar and Connor (2000); and Brownsey and Smith-Dodsworth (2000). Raukaua simplex is described by Mitchell et al. (1997). Coprosma “taylorae” is referred to by Eagle (1986) and Halocarpus biformis, Phyllocladus alpinus, Podocarpus hallii and Podocarpus nivalis by Wilson and Galloway (1993).  相似文献   

18.
Strain SR 1T was isolated under anaerobic conditions using elemental sulfur as electron acceptor and acetate as carbon and energy source from the Thiopaq bioreactor in Eerbeek (The Netherlands), which is removing H2S from biogas by oxidation to elemental sulfur under oxygen-limiting and moderately haloalkaline conditions. The bacterium is obligately anaerobic, using elemental sulfur, nitrate and fumarate as electron acceptors. Elemental sulfur is reduced to sulfide through intermediate polysulfide, while nitrate is dissimilatory reduced to ammonium. Furthermore, in the presence of nitrate, strain SR 1T was able to oxidize limited amounts of sulfide to elemental sulfur during anaerobic growth with acetate. The new isolate is mesophilic and belongs to moderate haloalkaliphiles, with a pH range for growth (on acetate and nitrate) from 7.5 to 10.25 (optimum 9.0), and a salt range from 0.1 to 2.5 M Na+ (optimum 0.4 M). According to phylogenetic analysis, SR 1T is a member of a deep bacterial lineage, distantly related to Chrysiogenes arsenatis (Macy et al. 1996). On the basis of the phenotypic and genetic data, the novel isolate is placed into a new genus and species, Desulfurispirillum alkaliphilum (type strain SRT = DSM 18275 = UNIQEM U250). Nucleotide sequence accession number: the GenBank/EMBL accession number of the 16S rRNA gene sequence of strain SR 1T is DQ666683.  相似文献   

19.
Evidence for the participation of reactive oxygen species (ROS) and antioxidant systems in ectomycorrhizal (ECM) establishment is lacking. In this paper, we evaluated ROS production and the activities of superoxide dismutase (SOD) and catalase (CAT) during the early contact of the ECM fungus Pisolithus tinctorius with the roots of Castanea sativa (chestnut tree). Roots were placed in contact with P. tinctorius mycelia, and ROS production was evaluated by determining the levels of H2O2 and O2 ·− during the early stages of fungal contact. Three peaks of H2O2 production were detected, the first two coinciding with O2 ·− bursts. The first H2O2 production peak coincided with an increase in SOD activity, whereas CAT activity seemed to be implicated in H2O2 scavenging. P. tinctorius growth was evaluated in the presence of P. tinctorius-elicited C. sativa crude extracts prepared during the early stages of fungal contact. Differential hyphal growth that matched the H2O2 production profile with a delay was detected. The result suggests that during the early stages of ECM establishment, H2O2 results from an inhibition of ROS-scavenging enzymes and plays a role in signalling during symbiotic establishment.  相似文献   

20.
NO (nitric oxide) and H2O2 (hydrogen peroxide) are important signaling molecule in plants. Brassica napus L. was used to understand oligochitosan inducing production of NO (nitric oxide) and H2O2 (hydrogen peroxide) and their physiological function. The result showed that the production of NO and H2O2 in epidermal cells of B. napus L. was induced with oligochitosan by fluorescence microscope. And it was proved that there was an interaction between NO and H2O2 with L-NAME (NG-nitro-l-arg-methyl eater), which is an inhibitor of NOS (NO synthase) in mammalian cells that also inhibits plant NO synthesis, and CAT (catalase), which is an important H2O2 scavenger, respectively. It was found that NO and H2O2 induced by oligochitosan took part in inducing reduction in stomatal aperture and LEA protein gene expression of leaves of B. napus L. All these results showed that oligochitosan have potential activities of improving resistance to water stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号