首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Localization of 4.1 related proteins in cerebellar neurons   总被引:1,自引:0,他引:1  
Localization of 4.1 related proteins in neurons was studied with immunofluorescence microscopy and with immunoelectron microscopy on ultrathin cryosections. In rat cerebellum, 4.1 immunoreactive proteins were demonstrated in Purkinje cell bodies, dendrites and other neurons in the cerebellar cortex. Some glial cells showed staining, but no labeling was found in myelinated axons of the white matter and of the glomeruli in the granule cell layer. At the ultrastructural level, the 4.1 related proteins were localized mainly in the cytoplasmic matrix, while some labeling was found underneath the plasma membrane. To determine whether 4.1 related proteins in neuronal cytoplasm exist as part of the cytoskeleton or not, PC12 cells cultured in the presence of nerve growth factor were stained with the anti-4.1 antibody. Since cytoplasmic staining was retained after detergent treatment, the 4.1 related proteins seem to exist as a component of the neural cell cytoskeleton. Localization of 4.1 related proteins during the postnatal development of the cerebellum was also studied. In Purkinje cells, localization of 4.1 related proteins changed according to the stages of the postnatal development. The present data suggest that 4.1 related proteins in neurons localized mainly in the cytoplasm and may play some role in organizing cytoskeletal networks in the cytomatrix. Their distribution is developmentally regulated in some neurons, possibly in relationship to their maturation in the cytoskeleton.  相似文献   

4.
Chromatin repeat lengths in neuronal, glial, and liver nuclei of the rat were determined by micrococcal nuclease digestion followed by gel electrophoresis. The repeat length of cortex neurons decreased from 200 base pairs (bp) before birth to 170 bp at 14 days and all subsequent stages. Administration of [3H]thymidine to pregnant rats during the period of fetal neurogenesis allowed neurons differing in their time of origin to be labeled individually. This revealed that the shortening of the chromatin repeat length affected only neurons generated early during development, i.e., between gestational days 13/14 and 18/19, whereas neurons continuing to proliferate beyond gestational day 19 and up to birth (day 22) did not undergo shortening of their repeat length. In contrast to the cortex neurons, cerebellar neurons (granule cells) underwent lengthening of the repeat length from 165 bp at fetal and early post-natal stages (up to day 4) to 218 bp after day 30. Thus, in both cortex and cerebellar neurons the changes occurred temporally coincident with major developmental processes. No changes were detected in liver nuclei during the same period. Non-astrocytic glia cells of the adult cortex had 200 bp repeats.  相似文献   

5.
6.
7.
8.
9.
10.
11.
To relate the roles of Escherichia coli SSB in recombination in vivo and in vitro, we have studied the mutant proteins SSB-1 and SSB-113, the variant SSBc produced by chymotryptic cleavage, the partially homologous variant F SSB (encoded by the E. coli sex factor), and the protein encoded by gene 32 of bacteriophage T4. All of these, with the exception of SSB-1, augmented both the initial rate of homologous pairing and strand exchange promoted by RecA protein. From these and related observations, we conclude that SSB stimulates the initial formation of joint molecules by nonspecifically promoting the binding of RecA protein to single-stranded DNA; that SSB plays no role in synapsis of the RecA nucleoprotein filament with duplex DNA; that stimulation of strand exchange by SSB is similarly nonspecific; and that all members of the class of proteins represented by SSB, F SSB, and gene 32 protein may play equivalent roles in making single-stranded DNA more accessible to RecA protein.  相似文献   

12.
This experiment was conducted to assess the changing patterns and relative values of acute phase proteins and inflammatory cytokines in experimental caprine coccidiosis. Eighteen newborn kids were allocated to 3 equal groups. Two groups, A and B, were inoculated with a single dose of 1×10(3) and1×10(5) sporulated oocysts of Eimeria arloingi, respectively. The third group, C, received distilled water as the control. Blood samples were collected from the jugular vein of each kid in both groups before inoculation and at days 7, 14, 21, 28, 35, and 42 post-inoculation (PI), and the levels of haptoglobin (Hp), serum amyloid A (SAA), TNF-α, and IFN-γ were measured. For histopathological examinations, 2 kids were selected from each group, euthanized, and necropsied on day 42 PI. Mean Hp concentrations in groups A and B (0.34 and 0.68 g/L) at day 7 PI were 3.2 and 6.3 times higher than the levels before inoculation. The mean SAA concentrations in groups A and B (25.6 and 83.5 μg/ml) at day 7 PI were 4.2 and 13.7 times higher than the levels before inoculation. The magnitude and duration of the Hp and SAA responses correlated well with the inoculation doses and the severity of the clinical signs and diarrhea in kids. These results were consistent with the histopathological features, which showed advanced widespread lesions in group B. In both groups, significant correlations were observed for TNF-α and IFN-γ with SAA and Hp, respectively. In conclusion, Hp and SAA can be useful non-specific diagnostic indicators in caprine coccidiosis.  相似文献   

13.
14.
15.
Abstract— Measurements of nuclear DNA content with quantitative cytochemical methods for determining amounts in single nuclei reveal tetraploid quantities of DNA in cerebellar Purkinje neurons of the rat, or twice the amount of nuclear DNA of rat somatic cells in general. The findings suggest that tetraploidy is probably a universal phenomenon among rat Purkinje cells. Granule and basket cells have a diploid DNA content.  相似文献   

16.
This light and electron microscopic immunocytochemical study shows that the polypeptide PEP-19, a presumptive calcium binding protein specific to the nervous system, represents an excellent marker for cerebellar Purkinje cells and dorsal cochlear nucleus (DCoN) cartwheel cells. The polypeptide clearly reveals the entire populations of both types of neurons, including their complete dendritic and axonal arborizations. Other PEP-19 containing neurons in the two regions display weak immunoreactivity restricted to the cell body or to cell body and principal dendrites. Electron microscopic localization of PEP-19-like immunoreactivity reveals similarities between this polypeptide, parvalbumin, and a 28K vitamin D-dependent calcium binding protein. However, calmodulin, which is expressed in both Purkinje and granule cells, may differ from PEP-19. Similarities between the organization of the cerebellar cortex and the DCoN superficial layers have been known for some time, with several types of neurons in one system having their presumed homologue in the other. These data provide further support for the proposed structural and functional homology between Purkinje and cartwheel neurons, and establishes PEP-19 as a useful marker for examining degeneration of these two neuronal populations in murine cerebellar mutants.  相似文献   

17.
The submicroscopic investigation on developmental peculiarities of the dendritic spines in the piriform neurons of the cerebellar cortex has been performed during the human prenatal ontogenesis. The process of morphogenesis of the spines of the tertiary dendrites in the piriform neurons is demonstrated to start rather early--on the 24th week of embryogenesis and goes through three successive stages: 1) formation of a long cytoplasmic processes deprived of any membranous specialization; 2) formation of the terminal spinal head, making synapses with parallel fibers of the cerebellar cortex; 3) definitive stage. A suggestion is made that differentiation processes of the spines depend on inductive influence of the parallel fibers of the cerebellar cortex.  相似文献   

18.
19.
The method of histoautoradiography with the use of H3-thymidine was applied to the study; there were established the periods of appearance in the cerebellar anlage of albino rats of neuroblasts differentiated into the piriform neurones of the cerebellar cortex; dynamics of the proliferative activity of these cellular elements in the course of the pre- and postnatal periods of development of the experimental animals was investigated. On the basis of the material obtained a conclusion was drawn that the last cell divisions (the result of cell differentiation were Purkinje's cells of the cerebellar cortex) stopped by the 13th--15th day of the embryonic development. No incorporation of the labeled precursor into the DNA of the nuclei of the differentiating piriform neurons occurred later.  相似文献   

20.
A simplified method was developed for the bulk separation of neuronal perikarya and astroglial celis from adult rat brain without the involvement of density gradients. Activities of various enzymes involved in glutamate metabolism were estimated and compared with those of synaptosomes. The activities of glutamate dehydrogenase and aspartate aminotransferase were higher in synaptosomes than in neuronal perikarya or glia. Glutamine synthetase was distributed in all the three fractions while glutaminase activity was higher in astrocytes than in synaptosomes and was not detectable in neuronal perikarya. The significance of these results in relation to metabolic compartmentation was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号