首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of brood parasitism: the role of facultative parasitism   总被引:1,自引:0,他引:1  
The hypothesis that facultative brood parasitism may serve asan intermediate step in the evolutionary transition from purelyparental reproduction to obligate parasitism was investigated.The population dynamics of a host-parasite complex were computer-simulatedin a model that incorporated different intensities of parasitismand host defense and considered a simplified semelparous birdspecies living in a homogeneous habitat The individuals usetwo different breeding strategies: provide parental care orparasitize the nest of those providing parental care. Underobligate parasitism, the parasites appeared unsuccessful, drovethe host population to extinction, or coexisted with the hostin stable or oscillating proportions. The behavior of the systemdepended on both the effectiveness of the parasite and the defenseof the host. Under facultative parasitism (making the best ofa bad job), the parasites reduced host numbers but did not reducethe population size below the number of breeding sites. Thus,facultative parasitism provides a better opportunity for thedevelopment of defense in the host. The population of a hostthat shows a certain level of defense can be more successfullyinvaded by obligate parasites so that stable coexistence ofhosts and parasites is possible.  相似文献   

2.
The success of obligate endosymbiotic Wolbachia infections in insects is due in part to cytoplasmic incompatibility (CI), whereby Wolbachia bacteria manipulate host reproduction to promote their invasion and persistence within insect populations. The observed diversity of CI types raises the question of what the evolutionary pathways are by which a new CI type can evolve from an ancestral type. Prior evolutionary models assume that Wolbachia exists within a host individual as a clonal infection. While endosymbiotic theory predicts a general trend toward clonality, Wolbachia provides an exception in which there is selection to maintain diversity. Here, evolutionary trajectories are discussed that assume that a novel Wolbachia variant will co-exist with the original infection type within a host individual as a superinfection. Relative to prior models, this assumption relaxes requirements and allows additional pathways for the evolution of novel CI types. In addition to describing changes in the Wolbachia infection frequency associated with the hypothesized evolutionary events, the predicted impact of novel CI variants on the host population is also described. This impact, resulting from discordant evolutionary interests of symbiont and host, is discussed as a possible cause of Wolbachia loss from the host population or host population extinction. The latter is also discussed as the basis for an applied strategy for the suppression of insect pest populations. Model predictions are discussed relative to a recently published Wolbachia genome sequence and prior characterization of CI in naturally and artificially infected insects.  相似文献   

3.
Wolbachia are obligate, maternally inherited, intracellular bacteria that infect numerous insects and other invertebrates. Wolbachia infections have evolved multiple mechanisms to manipulate host reproduction and facilitate invasion of naive host populations. One such mechanism is cytoplasmic incompatibility (CI) that occurs in many insect species, including Aedes albopictus (Asian tiger mosquito). The multiple Wolbachia infections that occur naturally in A. albopictus make this mosquito a useful system in which to study CI. Here, experiments employ mosquito strains that have been introgressed to provide genetically similar strains that harbor differing Wolbachia infection types. Cytoplasmic incompatibility levels, host longevity, egg hatch rates, and fecundity are examined. Crossing results demonstrate a pattern of additive unidirectional cytoplasmic incompatibility. Furthermore, relative to uninfected females, infected females are at a reproductive advantage due to both cytoplasmic incompatibility and a fitness increase associated with Wolbachia infection. In contrast, no fitness difference was observed in comparisons of single- and superinfected females. We discuss the observed results in regard to the evolution of the Wolbachia/A. albopictus symbiosis and the observed pattern of Wolbachia infection in natural populations.  相似文献   

4.
We studied ecological correlates of body size (abundance and niche breadth) in gamasid mites parasitic on small mammals in 28 regions of the Palearctic. We predicted that smaller species would be characterized by higher abundance than larger species, all else (e.g. host species) being equal. We also predicted that host specificity of mites would decrease (that is, number of host species they use would increase) with an increase in their body size. We focused on mites collected from host bodies that include a) species that feed solely on host’s blood (obligate exclusive haematophages), b) species that feed on both host’s blood and small arthropods (obligate non‐exclusive haematophages), and c) facultative haematophages. We expected that the relationship between body size and abundance and/or host specificity would be more pronounced in obligate exclusively haematophagous mites than for obligate non‐exclusively and facultative haematophagous mites. Across all mite species across regions, mean abundance correlated negatively with body size. The same was true for obligate haematophagous species, but not for facultative haematophages. When mite communities on the same host in a location were considered, the negative body mass–abundance relationship was found in only 3 of 44 communities. Nevertheless, a meta‐analytic (across host species) estimate of the slope of this relationship appeared to be significantly negative. No significant relationship between mite body size and host specificity was found in the analyses across all mite species as well as in obligate exclusive or obligate non‐exclusive haematophages. However, the number of hosts used by facultative haematophagous mites decreased significantly with an increase in their body size. We explain the relationships between morphological (body size) and ecological (abundance and niche breadth) properties of ectoparasites by their interactions with hosts or physical environment.  相似文献   

5.
Wolbachia感染导致果蝇dHira基因表达下调   总被引:1,自引:0,他引:1  
Wolbachia是广泛存在于节肢动物体内的一类共生微生物,可通过宿主卵的细胞质传递给子代.  相似文献   

6.
Wolbachia are obligate intracellular bacteria which commonly infect arthropods. They are maternally inherited and capable of altering host development, sex determination, and reproduction. Reproductive manipulations include feminization, male-killing, parthenogenesis, and cytoplasmic incompatibility. The mechanism by which Wolbachia avoid destruction by the host immune response is unknown. Generation of antimicrobial peptides (AMPs) and reactive oxygen species (ROS) by the host are among the first lines of traditional antimicrobial defense. Previous work shows no link between a Wolbachia infection and the induction of AMPs. Here we compare the expression of protein in a cell line naturally infected with Wolbachia and an identical cell line cured of the infection through the use of antibiotics. Protein extracts of each cell line were analyzed by two dimensional gel electrophoresis and LC/MS/MS. Our results show the upregulation of host antioxidant proteins, which are active against ROS generated by aerobic cell metabolism and during an immune response. Furthermore, flow cytometric and microscopic analysis demonstrates that ROS production is significantly greater in Wolbachia-infected mosquito cells and is associated with endosymbiont-containing vacuoles located in the host cell cytoplasm. This is the first empirical data supporting an association between Wolbachia and the insect antioxidant system.  相似文献   

7.
Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila   总被引:3,自引:0,他引:3  
Wolbachia pipientis is a vertically transmitted, obligate intracellular symbiont of arthropods. The bacterium is best known for its ability to manipulate host reproductive biology where it can induce cytoplasmic incompatibility, parthenogenesis, feminization and male-killing. In addition to the various reproductive phenotypes it generates through interaction with host reproductive tissue it is also known to infect somatic tissues. However, relatively little is known about the consequences of infection of these tissues with the exception that in some hosts Wolbachia acts as a classical mutualist and in others a pathogen, dramatically shortening adult insect lifespan. Manipulation experiments have demonstrated that the severity of Wolbachia-induced effects on the host is determined by a combination of host genotype, Wolbachia strain, host tissue localization, and interaction with the environment. The recent completion of the whole genome sequence of Wolbachia pipientis wMel strain indicates that it is likely to use a type IV secretion system to establish and maintain infection in its host. Moreover, an unusual abundance of genes encoding proteins with eukaryotic-like ankyrin repeat domains suggest a function in the various described phenotypic effects in hosts.  相似文献   

8.
The density and regulation of microbial populations are important factors in the success of symbiotic associations. High bacterial density may improve transmission to the next generation, but excessive replication could turn out to be costly to the host and result in higher virulence. Moreover, differences in virulence may also depend on the diversity of symbionts. Using the maternally transmitted symbiont Wolbachia, we investigated how bacterial density and diversity are regulated and influence virulence in host insects subject to multiple infection. The model we used was the wasp Asobara tabida that naturally harbors three different Wolbachia strains, of which two are facultative and induce cytoplasmic incompatibility, whereas the third is necessary for the host to achieve oogenesis. Using insect lines infected with different subsets of Wolbachia strains, we show that: (i) some traits of A. tabida are negatively affected by Wolbachia; (ii) the physiological cost increases with the number of co-infecting strains, which also corresponds to an increase in the total bacterial density; and (iii) the densities of the two facultative Wolbachia strains are independent of one another, whereas the obligatory strain is less abundant when it is alone, suggesting that there is some positive interaction with the other strains.  相似文献   

9.
In vitro production of the obligate intracellular bacterium, Wolbachia pipientis, is essential to its manipulation as a genetic tool to spread transgenes within vector populations. We have adapted the Wolbachia-infected Aa23 Aedes albopictus mosquito cell line to Eagle's minimal medium, supplemented with nonessential amino acids, glutamine, and 20% fetal bovine serum. When plated at low densities, Aa23E cells grew as patchy monolayers, comprised of non-contiguous clusters of cells that gave rise to solid clumps of tightly adherent cells. Multicellular clumps eventually detached from the substrate and floated freely in the medium. Removal of Wolbachia by treatment with tetracycline did not alter the cytological properties of the host cells, which had a population doubling time of 4-5 d. The presence of Wolbachia was monitored by Giemsa staining of cytological preparations, polymerase chain reaction (PCR) amplification of Wolbachia 16S ribosomal DNA, and by simultaneous PCR amplification of ribosomal protein genes from Wolbachia and mosquito host cell genomes. Wolbachia morphology was pleomorphic, and Wolbachia DNA persisted in the culture medium for several weeks after degradation of PCR-amplifiable host cell DNA.  相似文献   

10.
Maternally transmitted bacteria of the genus Wolbachia are obligate, intracellular symbionts that are frequently found in insects and cause a diverse array of reproductive manipulations, including cytoplasmic incompatibility, male killing, parthenogenesis, and feminization. Despite the existence of a broad range of scientific interest, many aspects of Wolbachia research have been limited to laboratories with insect-rearing facilities. The inability to culture these bacteria outside of the invertebrate host has also led to the existing bias of Wolbachia research toward infections that occur in host insects that are easily reared. Here, we demonstrate that Wolbachia infections can be simply established, stably maintained, and cryogenically stored in vitro using standard tissue culture techniques. We have examined Wolbachia host range by introducing different Wolbachia types into a single tissue culture. The results show that an Aedes albopictus (Diptera: Culicidae) cell line can support five different Wolbachia infection types derived from Drosophila simulans (Diptera: Drosophilidae), Culex pipiens (Culicidae), and Cadra cautella (Lepidoptera: Phycitidae). These bacterial types include infection types that have been assigned to two of the major Wolbachia clades. As an additional examination of Wolbachia host cell range, we demonstrated that a Wolbachia strain from D. simulans could be established in host insect cell lines derived from A. albopictus, Spodoptera frugiperda (Lepidoptera: Noctuidae), and Drosophila melanogaster. These results will facilitate the development of a Wolbachia stock center, permitting novel approaches for the study of Wolbachia infections and encouraging Wolbachia research in additional laboratories.  相似文献   

11.
Insect-borne diseases exact a high public health burden and have a devastating impact on livestock and agriculture. To date, control has proved to be exceedingly difficult. One such disease that has plagued sub-Saharan Africa is caused by the protozoan African trypanosomes (Trypanosoma species) and transmitted by tsetse flies (Diptera: Glossinidae). This presentation describes the biology of the tsetse fly and its interactions with trypanosomes as well as its symbionts. Tsetse can harbor up to three distinct microbial symbionts, including two enterics (Wigglesworthia glossinidia and Sodalis glossinidius) as well as facultative Wolbachia infections, which influence host physiology. Recent investigations into the genome of the obligate symbiont Wigglesworthia have revealed characteristics indicative of its long co-evolutionary history with the tsetse host species. Comparative analysis of the commensal-like Sodalis with free-living enterics provides examples of adaptations to the host environment (physiology and ecology), reflecting genomic tailoring events during the process of transitioning into a symbiotic lifestyle. From an applied perspective, the extensive knowledge accumulated on the genomic and developmental biology of the symbionts coupled with our ability to both express foreign genes in these microbes in vitro and repopulate tsetse midguts with these engineered microbes now provides a means to interfere with the host physiological traits which contribute to vector competence promising a novel tool for disease management.  相似文献   

12.
Wolbachia are maternally inherited intracellular alpha-Proteobacteria found in numerous arthropod and filarial nematode species. They influence the biology of their hosts in many ways. In some cases, they act as obligate mutualists and are required for the normal development and reproduction of the host. They are best known, however, for the various reproductive parasitism traits that they can generate in infected hosts. These include cytoplasmic incompatibility (CI) between individuals of different infection status, the parthenogenetic production of females, the selective killing of male embryos, and the feminization of genetic males. Wolbachia infections of Drosophila melanogaster are extremely common in both wild populations and long-term laboratory stocks. Utilizing the newly completed genome sequence of Wolbachia pipientis wMel, we have identified a number of polymorphic markers that can be used to discriminate among five different Wolbachia variants within what was previously thought to be the single clonal infection of D. melanogaster. Analysis of long-term lab stocks together with wild-caught flies indicates that one of these variants has replaced the others globally within the last century. This is the first report of a global replacement of a Wolbachia strain in an insect host species. The sweep is at odds with current theory that cannot explain how Wolbachia can invade this host species given the observed cytoplasmic incompatibility characteristics of Wolbachia infections in D. melanogaster in the field.  相似文献   

13.
14.
Wolbachia infections are a model for understanding intracellular, bacterial symbioses. While the symbiosis is often studied from a binary perspective of host and bacteria, it is increasingly apparent that additional trophic levels can influence the symbiosis. For example, Wolbachia in arthropods harbor a widespread temperate bacteriophage, termed WO, that forms virions and rampantly transfers between coinfections. Here we test the hypothesis that temperatures at the extreme edges of an insect's habitable range alter bacteriophage WO inducibility and in turn, Wolbachia densities and the penetrance of cytoplasmic incompatibility. We report four key findings using the model wasp, Nasonia vitripennis: First, both cold treatment at 18 C and heat treatment at 30 C reduce Wolbachia densities by as much as 74% relative to wasps reared at 25 C. Second, in all cases where Wolbachia densities decline due to temperature changes, phage WO densities increase and inversely associate with Wolbachia densities. Heat has a marked effect on phage WO, yielding phage densities that are 552% higher than the room temperature control. Third, there is a significant affect of insect family on phage WO and endoysmbiont densities. Fourth, at extreme temperatures, there was a temperature-mediated adjustment to the density threshold at which Wolbachia cause complete cytoplasmic incompatibility. Taken together, these results demonstrate that temperature simultaneously affects phage WO densities, endosymbiont densities, and the penetrance of cytoplasmic incompatibility. While temperature shock enhances bacteriophage inducibility and the ensuing bacterial mortality in a wide range of medically and industrially-important bacteria, this is the first investigation of the associations in an obligate intracellular bacteria. Implications to a SOS global sensing feedback mechanism in Wolbachia are discussed.  相似文献   

15.
A recent study in the lepidopteran Ostrinia scapulalis shows that endosymbionts can actively manipulate the sex determination mechanism of their host. Wolbachia bacteria alter the sex-specific splicing of the doublesex master switch gene. In ZZ males of this female heterogametic system, the female isoform of doublesex is produced in the presence of the bacteria. The effect is a lethal feminization of genotypic males. Curing of ZW females leads to males that die, indicating that the bacteria have an obligate role in proper sex determination and development of their host. Microbial intervention with host sex determination may be a driving force behind the evolutionary turnover of sex determination mechanisms.  相似文献   

16.
Wolbachia pipientis is an obligate intracellular bacterium found in a wide range of invertebrate taxa. While over ecological timescales Wolbachia infections are maintained by strict maternal inheritance, horizontal transfer events are common over evolutionary time. To be horizontally transferred between organisms, Wolbachia bacteria must pass through and survive an extracellular phase. We used BacLight live-dead staining, PCR, and fluorescence in situ hybridization to assess the ability for purified Wolbachia bacteria to survive in cell-free media. We found that purified Wolbachia bacteria were able to survive extracellularly for up to 1 week with no decrease in viability. While no replication was observed in the extracellular phase, purified Wolbachia bacteria were able to reinvade cells and establish stable infections at all time points. The ability of Wolbachia bacteria to survive outside host cells may increase the probability of successful horizontal transfer and the exploitation of new ecological niches. Our development of methods to purify and maintain viable Wolbachia bacteria from cultured cells will be useful for other researchers studying Wolbachia biology.  相似文献   

17.
Wolbachia is a group of obligate symbiotic bacteria found in many insects and other arthropods. The presence of Wolbachia alters reproduction in the host, but the mechanisms are unknown. Molecular biological studies of Wolbachia have delayed significantly, and one of the reasons is the lack of transformation techniques of this bacterium. In the present study, bacteriophage particles were isolated from Wolbachia for the first time. The purified phage had an isometric head that was approximately 40 nm in diameter and contained linear double-stranded DNA of approximately 20 kbp. Partial sequence information (total of 20,484 bp) revealed that there were 24 open reading frames including a structural gene module, and genes for replication and lysogenic conversion. This bacteriophage is the only known mobile genetic element potentially used for transformation of Wolbachia.  相似文献   

18.
Symbiotic associations often enhance hosts' physiological capabilities, allowing them to expand into restricted terrains, thus leading to biological diversification. Stable maintenance of partners is essential for the overall biological system to succeed. The viviparous tsetse fly (Diptera: Glossinidae) offers an exceptional system to examine factors that influence the maintenance of multiple symbiotic organisms within a single eukaryotic host. This insect harbours three different symbionts representing diverse associations, coevolutionary histories and transmission modes. The enterics, obligate mutualist Wigglesworthia and beneficial Sodalis, are maternally transmitted to the intrauterine larvae, while parasitic Wolbachia infects the developing oocyte. In this study, the population dynamics of these three symbionts were examined through host development and during potentially disruptive events, including host immune challenge, the presence of third parties (such as African trypanosomes) and environmental perturbations (such as fluctuating humidity levels). While mutualistic partners exhibited well-regulated density profiles over different host developmental stages, parasitic Wolbachia infections varied in individual hosts. Host immune status and the presence of trypanosome infections did not impact the steady-state density levels observed for mutualistic microbes in either sex, while these factors resulted in an increase in Wolbachia density in males. Interestingly, perturbation of the maternal environment resulted in the deposition of progeny harbouring greater overall symbiont loads. The regulation of symbiont density, arising from coadaptive processes, may be an important mechanism driving inter-specific relations to ensure their competitive survival and to promote specialization of beneficial associations.  相似文献   

19.
Wolbachia is a genus of alpha-proteobacteria found in obligate intracellular association with a wide variety of arthropods, including an estimated 10-20% of all insect species [1]. Wolbachia represents one of a number of recently identified 'reproductive parasites' [2] which manipulate the reproduction of their hosts in ways that enhance their own transmission [3] [4] [5] [6] [7] [8] [9]. The influence of Wolbachia infection on the dynamics of host populations has focused considerable interest on its possible role in speciation through reproductive isolation [3] [10] [11] and as an agent of biological control [2] [12] [13]. Although Wolbachia normally undergoes vertical transmission through the maternal line of its host population [14], there is compelling evidence from molecular phylogenies that extensive horizontal (intertaxon) transmission must have occurred [1] [9] [15] [16] [17]. Some of the best candidate vectors for the horizontal transmission of Wolbachia are insect parasitoids [15], which comprise around 25% of all insect species and attack arthropods from an enormous range of taxa [18]. In this study, we used both fluorescence microscopy and PCR amplification with Wolbachia-specific primers to show that Wolbachia can be transmitted to a parasitic wasp (Leptopilina boulardi) from its infected host (Drosophila simulans) and subsequently undergo diminishing vertical transmission in this novel host species. These results are, to our knowledge, the first to reveal a natural horizontal transfer route for Wolbachia between phylogenetically distant insect species.  相似文献   

20.
Wolbachia spp. are obligate intracellular bacteria present in reproductive tissues of many arthropod species. Wolbachia infection status and roles in host reproduction were studied in the rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera, Curculionidae), an introduced species in China. We examined Wolbachia infection status in five populations in China where it reproduces parthenogenetically, and one native population in Southeast Texas, where it reproduces bisexually. All populations were infected by Wolbachia, and all specimens in each population were infected by Wolbachia of a single strain. Phylogenetic analyses based on multilocus sequence typing system indicated that Wolbachia in non-native L. oryzophilus weevils diverges evidently from those in native weevils. After treatments with tetracycline, parthenogenetic weevils reduced the fecundity significantly and eggs were not viable. Our results suggest that Wolbachia are necessary for oocyte production in L oryzophilus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号