首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukotriene D4 reduces coronary blood flow in the anesthetized dog   总被引:1,自引:0,他引:1  
We studied the effects of intracoronary administration of leukotriene (LT)D4 on coronary blood flow and myocardial function in chloralose anesthetized dogs. For comparison, the effects of injections of U-46619 were examined in the same dogs. Both LTD4 and U-46619 decreased coronary blood flow, left ventricular dP/dt and cardiac output. LTD4 was ten times more potent than U-46619 in decreasing coronary blood flow. The effects of neither drug were different after indomethacin administration.  相似文献   

2.
The left anterior descending coronary artery in anaesthetized greyhounds was perfused at constant pressure with blood pumped from the carotid artery. Phasic and mean coronary flow, left ventricular pressure, dP/dt, cardiac output, ECG, heart rate and systemic pressure were measured. Leukotriene (LT) D4 was administered into the left anterior descending coronary artery as a bolus injection. LTD4 caused dose-related reductions in coronary flow. Other parameters showed little immediate change although a gradual decrease in left ventricular pressure, dP/dt, cardiac output and systemic pressure occurred after administration of LTD4. Following intracoronary administration of LTD4 small surface haemorrhages were observed over the area perfused. The reduction in coronary flow was not inhibited by indomethacin.  相似文献   

3.
The effects of leukotriene C4 (LTC4) and leukotriene D4 (LTD4) in the feline mesenteric vascular bed were investigated under conditions of controlled blood flow so that changes in perfusion pressure directly reflect changes in vascular resistance. Intra-arterial injections of LTC4 and LTD4 (0.3–3.0 μg) increased perfusion pressure in a dose-related fashion. Vasoconstrictor responses to LTC4 and LTD4 were similar to norepinephrine (NE) whereas mesenteric vasoconstrictor response to the thromboxane analog, U46619, was markedly greater than were responses to LTC4 and LTD4. Meclofenamate in a dose that greatly attenuated the systemic depressor response to arachidonic acid was without effect on vasoconstrictor responses to LTC4 and LTD4, NE and U46619 in the mesenteric vascular bed. The present data show that LTC4 and LTD4 possess significant vasoconstrictor activity in the feline mesenteric vascular bed. In addition, the present data suggest that products of the cyclooxygenase pathway do not mediate vasoconstrictor responses to LTC4 and LTD4 in the intestinal circulation of the cat.  相似文献   

4.
Leukotriene D4 (LTD4)-induced bronchoconstriction in guinea-pig airways has a cyclooxygenase (COX)-dependent component. The main objective of this study was to establish if prostaglandin (PG) D2-induced bronchoconstriction also was modulated by COX products. The effects of non-selective and selective COX-1 and COX-2 inhibitors on bronchoconstriction induced by LTD4 and PGD2 were investigated in the perfused and ventilated guinea-pig lung (IPL). Both LTD4-induced bronchoconstriction and thromboxane (TX) A2 release was suppressed by COX inhibitors or by TX synthesis inhibition. The release of additional COX products following CysLT1 receptor activation by LTD4 was established by measurements of immunoreactive 6-keto PGF (a stable metabolite of PGI2) and PGE2. In contrast, TP receptor-mediated bronchoconstriction by PGD2 was somewhat enhanced by COX inhibitors, and there was no measurable release of COX products after TP receptor activation with U-46619. PGE2 was bronchoprotective in IPL as it inhibited the histamine-induced bronchoconstriction. In the isolated guinea-pig trachea, neither PGD2 nor U-46619 actively released PGE2, but continuous production of PGE2 and PGI2 was established, and the response to PGD2 was enhanced also in the trachea by COX inhibition. The study documented that bronchoconstriction induced by LTD4 and PGD2 in IPL was modulated differently by COX products. Whereas bronchoconstriction induced by LTD4 was amplified predominantly by secondarily released TXA2, that induced by PGD2 was attenuated by bronchoprotective PGE2 and PGI2, presumably tonically produced in the airways.  相似文献   

5.
Isolated coronary arteries from diabetic dogs presented different contractile response to U-46619 to prostacyclin (PGI2) and to arachidonic acid (AA) than those of normal dogs. The stimulatory effect of the synthetic endoperoxide analogue U-46619, was significantly higher in the diabetic condition than in preparations from normal animals. On the other hand, while PGI2 evoked a dose-dependent relaxation of normal coronary arteries, diabetic vessels were not relaxed by low concentration of PGI2 whereas higher ones produced a distinct constrictor effect. Additionally, inhibitors of prostaglandins and thromboxane (TX) biosynthesis such as corticosterone, indomethacin, acetylsalicylic acid, imidazole and L-8027, abolished the stimulatory effect of PGI2 in coronary arteries from diabetic dogs. AA relaxed coronaries from normal dogs and constricted those from diabetic animals, this action being inhibited by imidazol and L-8027.The present results suggests that: a) coronary vessels from diabetic dogs are more reactive to an endoperoxide analogue than normal preparations and b) PGI2 and AA probably contract diabetic coronary arteries via the participation of a TX like material. It is then plausible that this effect could be tentatively ascribed to the production of a prostaglandin constricting substance including als the probable generation of a TXA2-like agonist.  相似文献   

6.
U-46619, a stable "functional" thromboxane/endoperoxide receptor agonist, produced potent contractile responses in isolated canine, rhesus monkey and human left circumflex coronary arteries (EC50 = 9.11 x 10(-9)M, 1.98 x 10(-8)M and 3.50 x 10(-9)M, respectively). Canine intrapulmonary veins were also contracted potently by U-46619 (EC50 = 1.22 x 10(-9)M). SK&F 88046, a thromboxane A2 (TxA2) end-organ receptor antagonist, blocked the vasoconstrictor effects of U-46619 in the canine circumflex artery (KB = 1.33 x 10(-8)M), canine intrapulmonary vein (KB = 1.46 x 10(-9)M), monkey circumflex artery (KB = 8.47 x 10(-8)M), and human circumflex artery (KB = 8.49 x 10(-7)M). SK&F 88046 was 10-60 times more potent in the canine and rhesus monkey coronary vasculature than in the human coronary preparations. Intracoronary administration of U-46619 to anesthetized, open chest dogs produced a dose-related decrease in left circumflex coronary artery blood flow which resulted in decreases in left ventricular developed pressure, left ventricular positive and negative dP/dt, ascending aortic blood flow, and an increase in left ventricular end-diastolic pressure. The decrease in coronary blood flow and the hemodynamic changes were either attenuated or completely inhibited by i.v. administration of SK&F 88046 (2.5 mg/kg + 0.05 mg/kg/min or 5.0 mg/kg + 0.1 mg/kg/min). SK&F 88046 was compared to two other TxA2 receptor antagonists in canine isolated intrapulmonary veins. SQ 29,548 was approximately 2-times more potent than SK&F 88046 as an antagonist of U-44619 mediated contractions (KB = 7.0 x 10(-10)M). In contrast, BM 13.177 was 150-fold less potent (KB = 2.19 x 10(-7)M) than SK&F 88046. Thus, the present study demonstrates species variability in response to TxA2 agonists and antagonists and reconfirms the relative importance of species selection in studying these agents.  相似文献   

7.
The leukotriene-dependent component of C5adesArg-induced contractile activity on guinea pig lung parenchymal strips is inhibited by cyclooxygenase inhibitors. Indomethacin simultaneously increased leukotriene release while inhibiting both cyclooxygenase-dependent mediator release and the contractile force generated. Tissue responses to LTC4 and LTD4 are also inhibited by cyclooxygenase blockade, while contractions induced by the thromboxane A2 analog, U-46619, histamine or acetylcholine are not affected. These data indicate a functional role for cyclooxygenase metabolites in leukotriene-induced contractile responses in lung.  相似文献   

8.
In view of the likely production of monohydroxyeicosatetraenoic acid (HETE's) in bronchial asthma, the role of these lipoxygenase products in the development of a classical clinical element of airway disease, namely airway hyperreactivity, has been investigated. Tracheas removed from guinea-pigs actively sensitized to ovalbumin produced, upon antigenic challenge (0.01 μg/ml), a 17-fold increase (0.97 ± 0.34 ng/ml to 16.73 ± 1.58 ng/ml) in the amount of 5-hydroxyeicosatetraenoic acid (5-HETE) as measured by radioimmunoassay of the tissue-bath fluid, indicating that this tissue is capable of producing 5-HETE. While 5-HETE alone, at concentrations equal to or greater than those found during the above antigenic response (0.001 to 1.0 μM), failed to produce intrinsic contractions of normal, nonsensitized guinea-pig trachea, a 30 min pretreatment with 5-HETE (1.0 μM) enhanced subsequent LTD4-induced contractions. Pretreatment with either 12- or 15-HETE, at similar concentrations and conditions, failed to potentiate LTD4 concentration-response curves. The effect of 5-HETE was time-dependent, since pretreatment for either 15 or 60 min had little or no effect on subsequent LTD4 responses. Also, the 5-HETE-induced enhancement seemed specific fot LTD4, since contractions to LTC4 (in the presence of l-serine borate), acetylcholine, histamine, PGD2 or U-46619 were unaffected by 5-HETE. Therefore, 5-HETE may have a role in the development of airway hyperreactivity by interacting with released LTD4 to exacerbate airway smooth muscle contraction in asthma.  相似文献   

9.
The effects of leukotriene D4 (LTD4) on pulmonary mechanics were investigated in anesthetized, paralyzed cats under conditions of controlled ventilation. Intravenous injections of LTD4 in doses of 3, 10, and 30 μg caused significant increases in transpulmonary pressure (PTP) and lung resistance (RL) while decreasing dynamic compliance (Cdyn). LTD4 also increased systemic arterial pressure (PA0). The changes in PTP, RL, and Cdyn in response to LTD4 were blocked by sodium meclofenamate, a cyclooxygenase inhibitor. However, there was no significant change in the increase in PA0 following cyclooxygenase blockade. U 46619, a thromboxane mimic, was 30 to 100 times more potent than LTD4 in increasing PTP, RL and decreasing Cdyn in the cat. These data show that LTD4 has significant smooth muscle constrictor activity in central airways as well as peripheral portions of the feline lung. In addition, these data suggest that in the cat the actions of intravenously administered LTD4 on lung mechanics are mediated by release of cyclooxygenase products while the systemic pressor effects are not dependent upon the integrity of the cyclooxygenase pathway.  相似文献   

10.
Experiments were conducted in the anesthetized rabbit to investigate mechanisms for arrhythmias that occur after left atrial injection of the thromboxane A(2) (TxA(2)) mimetic U-46619. Arrhythmias were primarily of ventricular origin, dose dependent in frequency, and TxA(2) receptor mediated. The response was receptor specific since arrhythmias were absent after pretreatment with a specific TxA(2) receptor antagonist (SQ-29548) and did not occur in response to another prostaglandin, PGF(2alpha). Alterations in coronary blood flow were unlikely the cause of these arrhythmias because coronary blood flow (as measured with fluorescent microspheres) was unchanged after U-46619, and there were no observable changes in the ECG-ST segment. In addition, arrhythmias did not occur after administration of another vasoconstrictor (phenylephrine). The potential involvement of autonomic cardiac efferent nerves in these arrhythmias was also investigated because TxA(2) has been shown to stimulate peripheral nerves. Pretreatment of animals with the beta-adrenergic receptor antagonist propranolol did not reduce the frequency of these arrhythmias. Pretreatment with atropine or bilateral vagotomy resulted in an increased frequency of arrhythmias, suggesting that parasympathetic nerves may actually inhibit the arrhythmogenic activity of TxA(2). These experiments demonstrate that left atrial injection of U-46619 elicits arrhythmias via a mechanism independent of a significant reduction in coronary blood flow or activation of the autonomic nervous system. It is possible that TxA(2) may have a direct effect on the electrical activity of the heart in vivo, which provides significant implications for cardiac events where TxA(2) is increased, e.g., after myocardial ischemia or administration of cyclooxygenase-2 inhibitors.  相似文献   

11.
There are a variety of non-prostaglandin pathways for conversion of arachidonic acid, including lipoxygenase enzymes and epoxygenase enzymes such as cytochrome P-450. In a manner similar to that in which the cyclooxygenase pathways lead to the prostanoid family, ‘lipoxynoids’ refers to the family of products arising from this alternative group of pathways.Leukotrienes (LT's) are members of the lipoxynoid family arising from the action of 5-lipoxygenase enzymes. In the canine kidney, injections of leukotrienes C4, D4 and E4 into the renal artery produced weak vasodilation at doses of 3–30 ug. Responses to LTC4 and LTD4 were similar and greater than responses to LTE4, and responses were not different in animals which had received ibuprofen to inhibit prostaglandin synthesis. In contrast, these leukotrienes were potent vasoconstrictors of the mesenteric vascular bed in these same animals at doses of 0.01–0.3 ug. The order of potency was LTD4 LTC4 LTE4. Effects of these LT's were not changed in the presence of ibuprofen. Responses to LTC4 and LTD4, but not LTE4 were diminished approximately 50% after administration of FPL-55712 (2 mg/kg). Neither LTB4 nor 5-HETE produced any change in renal or mesenteric blood flow at doses up to 30 ug.However, indirect evidence has been obtained suggesting that an endogenous lipoxynoid pathway can be activated in the canine kidney which results in the formation of a vasoconstrictor product. Injections of 1–4 mg AA into the renal artery of water-replete dogs leads to vasodilation which can be blocked by inhibitors of cyclooxygenase enzymes. However, when dogs were water deprived for 16–20 hours before the experiment, biphasic changes in renal blood flow were found. Ibuprofen blocked the vasodilator phase of the response but neither ibuprofen or the thromboxane synthesis inhibitor OKY-1581 had any inhibitory effect on the constrictor phase. The constrictor phase was blocked only following administration of ETYA or BW-755C, suggesting that the metabolites responsible for the constriction were lipoxynoids. Since LT's produce renal vasodilation, it appears that the pathway involved is not the 5-lipoxygenase system. These data suggest that other lipoxynoid pathways (e.g. 12-lipoxygenase, 15-lipoxygenase or cytochrome p-450) may play a role in the renal response to water deprivation. At present, however, it may not be possible to distinguish between these possible pathways .  相似文献   

12.
G Kito  H Okuda  S Ohkawa  S Terao  K Kikuchi 《Life sciences》1981,29(13):1325-1332
Leukotrienes C4 (LTC4) and D4 (LTD4), major components of slow-reacting substances of anaphylaxis (SRS-A), caused dose-dependent contractions of rabbit coronary arteries in concentrations of 10?9 to 10?7 M and 10?10 to 10?7 M, respectively. The potency of LTC4 and LTD4, when compared with the concentration that elicits half of the contraction induced by 25 mM KCl, was 17 and 76 times, respectively, greater than that of histamine. In contrast, other blood vessels from rabbits were either unresponsive (renal artery and vein, mesenteric artery and thoracic aorta) or only weakly responsive (pulmonary artery and vein and portal vein) to both leukotrienes even at 10?7 M. The LTD4-induced coronary contraction was inhibited by FPL 55712 (10?7 and 10?6 M), a selective SRS-A inhibitor, in a dose-dependent manner, but not by diphenhydramine (10?7 M), a histamine H1-receptor blocker or by indomethacin (10?5 M), a prostaglandin synthetase inhibitor, suggesting that LTD4 has a direct effect on the coronary arteries. These results indicate that the leukotrienes may act as potent, selective coronary vasoconstrictors and that SRS-A responsive receptors exist in the rabbit coronary artery.  相似文献   

13.
Recent experiments indicate that prostaglandin E2 potentiates the vasodilatory properties of leukotrienes in the skin microcirculation. The present experiments were undertaken to study the effect of leukotriene D4 and prostaglandin E2 on renal hemodynamics and urinary electrolytes in the dog. Experiments were performed in three groups of anesthetized Mongrel dogs: the first group was studied under hydropenia, whereas the two remaining groups were studied during water diuresis with (Group 3) or without indomethacin (Group 2). LTD4 (100ng/min) and PGE2 (3ug/min) were infused in the left renal artery to minimize systemic effects of these compounds. LTD4 alone failed to influence urinary sodium excretion in all 3 groups. In Group 1, urinary sodium increased from 77 ± 6 to 393 ± 74uEq/min during PGE2, and further increased to 511 ± 52uEq/min during LTD4 + PGE2. No change occured in the contralateral right kidney. In this group, glomerular filtration as well as renal plasma flow were not statistically influenced. In Group 2, the same phenomenon was observed for urinary sodium. The combined infusion of LTD4 + PGE2 increased urinary sodium without significant changes in glomerular filtration and renal plasma flow. Finally, in Group 3, indomethacin was shown to reduce the natriuretic effects of LTD4 and PGE2: during PGE2 alone, urinary sodium increased from 90 ± 14 to 260 ± 66uEq/min, and only rose from 80 ± 10 to 175 ± 19uEq/min during the combined infusion of LTD4 and PGE2. In groups 2 and 3, free water clearance was utilized as an index of sodium chloride reabsorption in the thick ascending limb: this parameter increased from 2.35 ± 0.25 to 4.70 ± 0.30ml/min, while urinary volume was increasing from 3.55 ± 0.25 to 10.05 ± 0.65ml/min, during LTD4 + PGE2. Indomethacin, administered in Group 3, (3mg/kg/hr) again abolished the effect of combined PGE2 + LTD4. These results indicate a potentiating effect of leukotriene D4 on the PGE2-induced natriuresis in the anesthetized dog. These phenomena occured in the absence of significant changes in renal hemodynamics, therefore suggesting a direct tubular effect of these arachidonic acid metabolites. Finally, the water diuresis experiments suggest a proximal site of action of PGE2 and LTD4.  相似文献   

14.
Seven analogs of arachidonic acid were tested for their coronary vasoactivity and their ability to inhibit LTC4 and LTD4 synthesis by lung tissue and to antagonize LTD4 induced coronary constriction. None of the seven arachidonic acid analogs significantly altered peptide leukotriene production by minced cat lung. Two of the analogs (i.e., 7, 13-diethanoarachidonic acid and 7, 10, 13-triethanoarachidonic acid) exerted modest but significant coronary vasodilation in isolated cat coronary arteries, and significantly antagonized the coronary vasoconstrictor response to LTD4. These analogs may be of interest in modulating leukotriene actions.  相似文献   

15.
The effects of chemically-synthesised leukotrienes C4 and D4 (5(S) hydroxy-6(R)-δ-glutamylcysteinylglycinyl-7,9,11,14-eicosa-4tetraenoic acid, LTC4; 5(S) hydroxy-6(R)-cysteinylglycinyl-7,9,11,14-eicosatetraenoic acid, LTD4) on the microvasculature have been measured in guinea-pig skin using [125I]-albumin accumulation to measure plasma exudation and 133Xe clearance to measure blood flow changes. As previously shown using biosynthetic material, LTD4 caused vasoconstriction resulting in reduced blood flow. Similarly, LTC4 was found to have vasoconstrictor activity but was more potent and had a steeper dose-response curve than LTD4. There was no evidence of conversion of exogenous arachidonic acid to vaso-constrictor activity in the skin in vivo (in the absence of another stimulus): intradermally injected arachidonic acid produced vasodilatation, but induced little change in blood flow in animals pretreated with indomethacin. The vasodilator effect of arachidonic acid is presumed to be due to conversion to either PGE2 or PGI2. These results suggest that cyclo-oxygenase is normally active in the skin, whilst lipoxygenase requires activation in some way. As reported in a previous study, LTD4 induced plasma exudation when injected into the skin, but pronounced responses could only be induced by LTD4 mixed with a vasodilator prostaglandin such as PGE2. In contrast, LTC4 induced no exudation when tested alone and little when PGE2 was added. However, evidence was obtained that LTC4 has some permeability-increasing activity which is marked by its potent vasoconstrictor activity.  相似文献   

16.
The sensitivity of sheep myometrial tissue to prostaglandin F (PGF), PGE2, the thromboxane analog U-44069, and leukotrienes C4 (LTC4) and LTD4 was investigated in a superfusion system. Tissues were obtained from eight oophorectomized ewes, with or without pretreatment with estradiol-17β. After equilibration, spontaneous activity was abolished by adding indomethacin to the superfusion fluid. The dose needed to induce a contraction with a peak level of 50% of the median peak level of spontaneous contractions increased from PGE2 to PGF, U-44069, LTC4, and LTD4. The differences between the doses required were significant for all compounds, except between LTC4 and LTD4. Estradiol-17β pretreatment caused an increase in the required dose of PGF. The results of this study do not support the hypothesis that leukotrienes are involved in the regulation of myometrial activity.  相似文献   

17.
Thromboxane A2/prostaglandin H2 (TP)-receptor activation has been reported to participate in some of the response to peptide leukotrienes (LT). We examined the effect of TP-receptor antagonism on LT-induced mesenteric vasoconstriction and hemoconcentration in anesthetized rats. The antagonist used in these studies, SQ 30,741, was shown to have high selectivity and potency for vascular TP-receptors in the rat. Arterial (i.a) injection of LTC4 and D4 elicited dose-dependent and transient reductions in mesenteric blood flow without changes in arterial blood pressure. These responses were unaffected by a dose of SQ 30,741 which produced 99% inhibition of similar responses to U-46,619. In contrast, LT-induced mesenteric vasoconstriction was inhibited 90% by two LT antagonists, LY 171,883 and SKF 104,353. In other experiments i.v. infusion of LTD4 caused increases in hematocrit and reductions in arterial blood pressure that were not influenced by SQ 30,741. These data suggest that increases in mesenteric vascular resistance and hemoconcentration in response to LTs are not the result of TP-receptor activation.  相似文献   

18.
Leukotrienes (LT's) and prostaglandins (PG's) have been proposed as mediators of vascular permeability change in inflammatory reactions. Also, prostaglandins, especially of the E-type, have been shown to enhance pain responses. In the present studies in rat, the effects of LTB4 and LTD4 on edema and pain thresholds were examined in combination with PGE1 and/or brewer's yeast. Subplantar injections of LTD4 or LTB4 induced small increases in paw thickness which were potentiated by the co-administration of PGE1. LTD4 alone had no significant effect on the development of the yeast paw edema. LTB4 was found to reduce significantly the yeast edema and this reduction could be reserved by administration PGE1. A small but significant decrease in pain threshold was caused by PGE1 and this was significant enhanced in the presence of LTD4. LTB4, like PGE1, was found to cause slight hyperalgesia but no synergy between the two agents was observed. LTD4 was found to have no effect on the initial hypoalgesia or subsequent development of hyperalgesia caused by brewer's yeast. Both LTB4 and PGE1, however, prevented the initial hypoalgesia and significantly reduced tha latency for development of yeast induced hyperalgesia. These effects of LTB4 are discussed in terms of possible release of cyclooxygenase products.  相似文献   

19.
Injection of leukotriene D4 (LTD4, 20 μg/kg, i.a.) to conscious spontaneous hypertensive (SHR) rats produces a short-lasting pressor and tachycardic response followed by prolonged hypotension and bradycardia. Plasma norepinephrine and epinephrine were elevated at the peak pressor/tachycardic phase as well as at the hypotensive phase. Injection of thyrotropin-releasing hormone (TRH, 2 or 5 mg/kg) at the peak of the LTD4-induced hypotension resulted in prompt reversal of the hypotension and bradycardia in a dose-related manner. Naloxone (5 mg/kg) had no effect on blood pressure and heart rate LTD4- treated SHR rats. Pretreatment with TRH (5 mg/kg) did not prevent the depressor effect of LTD4, but attenuated the bradycardic effect of this leukotriene. In addition, TRH had no effect on LTD4-induced hypotension in the pithed SHR rat. These results suggest that TRH might exert beneficial effects in hypotensive states mediated by leukotrienes or other mediators of anaphylactic reactions.  相似文献   

20.
Platelet-activating factor (PAF), modulates vascular tone by influencing prostaglandin release and vascular permeability. To determine its coronary effects we administered RAF (0.3 to 10 ug) into the left main coronary artery of anesthetized dogs with patent left circumflex (LCx) and narrowed left anterior descending (LAD) coronary arteries. RAF produced an initial increase followed by a decrease in coronary blood flow (CBF). The CBF increase was greater in the patent LCx than in the narrowed LAD, but the decrease was similar in both. These effects of RAF on CBF were dose-dependent, and associated with an increase in prostacyclin and thromboxane A2 metabolites. To examine the contribution of prostaglandin release in coronary effects of PAF, dogs were pretreated with indomethacin (5 mg/kg) followed by administration of PAF. In indomethacin-pretreated animals, the coronary effects of RAF were significantly attenuated. This study shows that RAF has biphasic effects on CBF in the normal coronary artery, but the major effect in the narrowed coronary is decrease in CBF. These effects of RAF can be attenuated by prior treatment of dogs with indomethacin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号