首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
The medieval period in Europe was a time of unprecedented social complexity that affected human diet. The diets of certain subgroups-for example, children, women, and the poor-are chronically underrepresented in historical sources from the medieval period. To better understand diet and the distribution of foods during the medieval period, we investigated stable carbon and nitrogen isotope ratios of 30 individuals from Trino Vercellese, Northern Italy (8th-13th c.). Specifically, we examined diet differences between subgroups (males and females, and high- and low-status individuals), and diet change throughout the life course among these groups by comparing dentine and bone collagen. Our results show a diet based on terrestrial resources with input from C(4) plants, which could include proso and/or foxtail millet. Diets of low-status males differ from those of females (both status groups) and of high-status males. These differences develop in adulthood. Childhood diets are similar among the subgroups, but sex- and status-based differences appear in adulthood. We discuss the possibility of cultural buffering and dietary selectivity of females and high-status individuals.  相似文献   

3.
1. We test two nutritional hypotheses for the ecological diversity of ungulates, the browser/grazer (diet type) and diet quality models, among free-ranging herbivores in a South African savanna, the Kruger National Park. Tests are based on assessment of relationships between diet type and diet quality with body mass and hypsodonty, two morphological features that have been associated with both elements. 2. We use stable carbon isotope ratios of faeces to reconstruct diet in terms of proportions of C(3) plants (browse) and C(4) plants (grass) consumed by different species in different seasons. These data are combined with proxies for diet quality (per cent nitrogen, neutral detergent fibre, acid detergent fibre, and acid detergent lignin) from faeces to track changes in diet quality. 3. Two statistical approaches are used in model selection, i.e. tests of significant correlations based on linear regression analyses, and an information-theory approach (Akaike's Information Criterion) providing insight into strength of evidence for models. 4. Results of both methods show that, contrary to many predictions, body mass and diet type are not related, but these data confirm predictions that diet quality decreases with increasing body size, especially during the dry season. Hypsodonty, as expected, varies with diet type, increasing with increased grass intake. 5. These findings support both a diet type and diet quality model, implying some degree of exclusivity. We propose that congruence between models may be achieved through addition of diet quality proxies not included here, because hypsodonty is more likely a reflection of the abrasive properties of consumed foods, i.e. related to food quality, rather than food type. This implies that adaptation to diets of varying quality, through changes in body size and dental features, has been the primary mechanism for diversification in ungulates. 6. Our interpretation contrasts with several recent studies advocating diet type as the primary factor, exemplifying that further reconciliation between the two models is needed. We discuss the implications of this study for future approaches to achieve a more cohesive understanding of the evolutionary outcomes of herbivore nutrition.  相似文献   

4.
5.
    
Paleodiet research traditionally interprets differences in collagen isotopic compositions (δ13C, δ15N) as indicators of dietary distinction even though physiological processes likely play some role in creating variation. This research investigates the degree to which bone collagen δ13C and δ15N values normally vary within the skeleton and examines the influence of several diseases common to ancient populations on these isotopic compositions. The samples derive from two medieval German cemeteries and one Swiss reference collection and include examples of metabolic disease (rickets/osteomalacia), degenerative joint disease (osteoarthritis), trauma (fracture), infection (osteomyelitis), and inflammation (periostitis). A separate subset of visibly nonpathological skeletal elements from the German collections established normal intraindividual variation. For each disease type, tests compared bone lesion samples to those near and distant to the lesions sites. Results show that normal (nonpathological) skeletons exhibit limited intraskeletal variation in carbon‐ and nitrogen‐isotope ratios, suggesting that sampling of distinct elements is appropriate for paleodiet studies. In contrast, individuals with osteomyelitis, healed fractures, and osteoarthritis exhibit significant intraskeletal differences in isotope values, depending on whether one is comparing lesions to near or to distant sites. Skeletons with periostitis result in significant intraskeletal differences in nitrogen isotope values only, while those with rickets/osteomalacia do not exhibit significant intraskeletal differences. Based on these results, we suggest that paleodiet researchers avoid sampling collagen at or close to lesion sites because the isotope values may be reflecting both altered metabolic processes and differences in diet relative to others in the population. Am J Phys Anthropol 153:598–604, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
    
Ecological and environmental evidence suggests that Rapa Nui was among the most marginally habitable islands in Eastern Polynesia, with only a fraction of the biotic diversity found on archipelagos to the west, and capable of sustaining many fewer cultigens traditionally transported by Polynesian colonizers. However, archaeological evidence for human dietary adaptations under such restrictions is limited. Little is known about the particulars of the subsistence base and dietary changes on Rapa Nui that may be associated with a hypothesized late prehistoric decline in the quality and diversity of food sources. To better understand prehistoric Rapa Nui diet we examined stable carbon and nitrogen isotope compositions of human teeth along with archaeological faunal material thought to comprise the Rapa Nui food web. Our results indicate that contrary to previous zooarchaeological studies diet was predominantly terrestrial throughout the entire sequence of occupation, with reliance on rats, chickens and C3 plants. While a few individuals may have had access to higher trophic level marine resources, this is evident only later in time (generally post–AD 1600). A decline in δ15N through time was observed, and may be attributed to declines in available terrestrial proteins; however, presently we cannot rule out the effect of changing soil and plant baseline δ15N. Our results also suggest differential access to higher trophic level marine resources among contemporaneous populations, but more research is required to clarify this observation. Am J Phys Anthropol 152:173–185, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Diagenetic shifts in the isotopic composition of collagen in prehistoric bones still remain a big problem in the reconstruction of ancient diets by stable carbon and nitrogen isotope analysis. Recently,DeNiro (1985) suggested the measurement of bone collagen C/N ratios as a means of estimating substantial alterations of stable isotope ratios. Bones with collagen C/N ratios lying within a range between 2.9 and 3.6 should have isotopic properties quite close to thein vivo conditions. It can be demonstrated that the C/N ratios are varying considerably with the duration of acid hydrolyzation of the bone samples. Even small changes of the hydrolyzation time cause shifts in the C/N ratios large enought to produce values far outside the range worked out byDeNiro. Besides, our experiments led us to recommend a hydrolyzation at reducing conditions.  相似文献   

8.
    
Proportions of marine vs. terrestrial resources in prehistoric human diets in the southern Mariana Islands (Guam, Rota, Saipan), Micronesia, have been estimated by analysis of stable isotope ratios of carbon and nitrogen in bone collagen and of carbon in apatite. The isotopic composition of marine and terrestrial food resources from the Marianas have also been determined. Experimental evidence shows that collagen carbon isotopes mainly reflect those of dietary protein sources and thus overestimate the contribution of marine animal foods. Marine protein consumption apparently ranges from ∼20% to ∼50% on these islands. Experiments also demonstrate the carbon isotope ratio of bone apatite carbonate accurately reflects that of the whole diet. Carbonate carbon isotope data suggest some individuals consumed significant amounts of 13C-enriched (C4) plants or seaweeds. Sugar cane is an indigenous C4 crop and seaweeds are eaten throughout the Pacific, but they have not been considered by archaeologists to have been prehistoric dietary staples. Apatite carbon isotope analysis has apparently identified previously unrecognized prehistoric dietary adaptations in the Mariana Islands, but this must be confirmed by archaeobotanical evidence. Am J Phys Anthropol 104:343–361, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

9.
10.
11.
    
Baboons are dietary generalists, consuming a wide range of food items in varying proportions. It is thus difficult to quantify and explain the dietary behavior of these primates. We present stable carbon (delta(13)C) and nitrogen (delta(15)N) isotopic data, and percentage nitrogen (%N), of feces from chacma baboons (Papio ursinus) living in two savanna environments of South Africa: the mountainous Waterberg region and the low-lying Kruger National Park. Baboons living in the more homogeneous landscapes of the Waterberg consume a more isotopically heterogeneous diet than their counterparts living in Kruger Park. Grasses and other C(4)-based foods comprise between approximately 10-20% (on average) of the bulk diet of Kruger Park baboons. Carbon isotopic data from the Waterberg suggest diets of approximately 30-50% grass, which is higher than generally reported for baboons across the African savanna. Based on observations of succulent-feeding, we propose that baboons in the Waterberg consume a mix of C(4) grasses and CAM-photosynthesizing succulents in combined proportions varying between approximately 5-75% (average, approximately 35%). Fecal delta(15)N of baboons is lower than that of sympatric ungulates, which may be due to a combination of low levels of faunivory, foraging on subterranean plant parts, or the use of human foods in the case of Kruger Park populations. Fecal N levels in baboons are consistently higher than those of sympatric ungulate herbivores, indicating that baboons consume a greater proportion of protein-rich foods than do other savanna mammals. These data suggest that chacma baboons adapt their dietary behavior so as to maximize protein intake, regardless of their environment.  相似文献   

12.
    
The weaning process was investigated at two Maya sites dominated by Postclassic remains: Marco Gonzalez (100 BC-AD 1350) and San Pedro (1400-AD 1650), Belize. Bone collagen and bioapatite were analyzed from 67 individuals (n < or = 6 years = 15, n > 6 years = 52). Five isotopic measures were used to reconstruct diet and weaning: stable nitrogen- and carbon-isotope ratios in collagen, stable carbon- and oxygen-isotope ratios in bioapatite, and the difference in stable carbon-isotope values of coexisting collagen and bioapatite. Nitrogen-isotope ratios in infant collagen from both sites are distinct from adult females, indicating a trophic level effect. Collagen-to-bioapatite differences in infant bone from both sites are distinct from adult females, indicating a shift in macronutrients. Oxygen-isotope ratios in infant bioapatite from both sites are also distinct from adult females, indicating the consumption of breast milk. Among infants, carbon- and nitrogen-isotope ratios vary, indicating death during different stages in the weaning process. The ethnohistoric and paleopathological literature on the Maya indicate cessation of breast-feeding between ages 3-4 years. Isotopic data from Marco Gonzalez and San Pedro also indicate an average weaning age of 3-4 years. Based on various isotopic indicators, weaning likely began around age 12 months. This data set is not only important for understanding the weaning process during the Postclassic, but also demonstrates the use of collagen-to-bioapatite spacing as an indicator of macronutrient shifts associated with weaning.  相似文献   

13.
Stable isotope analyses of a uranium-series-dated stalagmite from South Africa provide a record of climate changes for the periods 4400–4000 years and 800 years ago to recent, interrupted by a prolonged growth hiatus. Generally enriched stable oxygen isotope values, interpreted here to indicate more humid conditions, occurred around 800 years ago. Subsequently a marked depletion in oxygen and carbon isotope values occurred about 600 years ago, reflecting, we believe, shifts toward drier, cooler conditions as the regional indication of the Little Ice Age. This period with depleted, yet oscillating isotope values, is replaced by a period with enriched isotopes until recent times. The record is notable for sharp shifts in isotopic values, on the scale of decades, which reflect rapid oscillations in local climate conditions.  相似文献   

14.
    
The ecological importance of submerged macrophyte beds to fishes within estuaries was investigated through the example of the ubiquitous Cape stumpnose Rhabdosargus holubi, an omnivorous, vegetation and estuary-dependent species, using stable-isotope techniques and long-term abundance (catch-per-unit-effort) data from the East Kleinemonde Estuary, South Africa. Outputs from a Bayesian mixing model using δ(13) C and δ(15) N signatures indicated that the submerged macrophytes Ruppia cirrhosa and Potamogeton pectinatus were not a primary source of nutrition for R. holubi, confirming previous work that revealed that macrophytes are consumed but not digested. Long-term seine netting data showed reduced abundance of R. holubi during a prolonged period of macrophyte senescence, suggesting that submerged macrophyte habitats provide shelter that reduces mortality (predation risk) and a food-rich foraging area.  相似文献   

15.
The human cranium recovered at Florisbad in 1932 is compared with other Sub-Saharan African hominid remains from Broken Hill, the Omo and Klasies River Mouth. The Florisbad frontal is very broad, but despite this breadth and differences in zygomatic form, there is a definite resemblance to archaic Homo sapiens from Broken Hill. There is also some similarity to both Omo I and Omo II, while fragmentary remains from Klasies River are more lightly built and hence more modern in appearance. These impressions are strengthened by measurement and statistical analysis, which demonstrates that Florisbad and Broken Hill are distant from recent African populations. Even if Florisbad is less archaic than the earlier (Middle Pleistocene?) hominid, it is not noticeably Bushman-like. New dates suggestive of early Upper Pleistocene antiquity also place Florisbad securely in a lineage containing Broken Hill, and there is no evidence to support special ties with any one group of living Africans.  相似文献   

16.
    
Natural selection tends to favour optimal phenotypes either through directional or stabilizing selection; however, phenotypic variation in natural populations is common and arises from a combination of biotic and abiotic interactions. In these instances, rare phenotypes may possess a fitness advantage over the more common phenotypes in particular environments, which can lead to adaptation and ecological speciation. A recently radiated clade of dwarf chameleons (Bradypodion) restricted to southern KwaZulu‐Natal Province, South Africa, is currently comprised of two species (Bradypodion melanocephalum and Bradypodion thamnobates), yet three other phenotypic forms exist, possibly indicating the clade is far more speciose. Very little genetic differentiation exists between these five phenotypic forms; however, all are allopatric in distribution, occupy different habitats and vary in overall size and coloration, which may indicate that these forms are adapting to their local environments and possibly undergoing ecological speciation. To test this, we collected morphometric and habitat data from each form and examined whether ecological relevant morphological differences exist between them that reflect their differential habitat use. Sexual dimorphism was detected in four of the five forms. Yet, the degree and number of dimorphic characters was different between them, with size‐adjusted male‐biased dimorphism being much more pronounced in B. thamnobates. Habitat differences also existed between sexes, with males occupying higher perches in more closed canopy (forested) habitats than females. Clear morphological distinctions were detected between four of the five forms, with the head explaining the vast majority of the variation. Chameleons occupying forested habitats tended to possess proportionally larger heads and feet but shorter limbs than those in open canopy habitats (i.e. grassland). These results show that this species complex of Bradypodion is morphologically variable for traits that are ecologically relevant for chameleons, and that the variation among the five phenotypic forms is associated with habitat type, suggesting that this species complex is in the early stages of ecological speciation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 113–130.  相似文献   

17.
    
The availability of nitrogen (N) is an important determinant of ecosystem and community dynamics for grasslands and savannas, influencing factors such as biomass productivity, plant and herbivore composition, and losses of N to waters and the atmosphere. To better understand the controls over N availability at landscape to regional scales, we quantified a range of plant and soil characteristics at each of 330 sites in three regions of South Africa: Kruger National Park (KNP), private game reserves adjacent to KNP (private protected areas – PPAs) and Hluhluwe‐iMfolozi Park (HiP). In comparing regions and sites within regions, grazing appeared to have a strong influence on N availability. Sites in the PPAs adjacent to KNP as well as sodic and alluvial sites in general typically had the highest N availability. The high N availability of these sites was not generally associated with greater potential N mineralization, but instead with less grass biomass and more forb biomass that indicated greater grazing pressure. Whereas sodic sites had a long history of high N availability as evidenced by their high soil δ15N, the greater N availability in the PPAs over the two parks appeared to be relatively recent. Grazer biomass, average potential mineralization rates and grass biomass for HiP were greater than KNP, yet there were no differences in N availability as indexed by soil and foliar δ15N between sites in the two parks. Although the short‐term increase in N availability in PPAs is not necessarily deleterious, it is uncertain whether current productivity levels in those ecosystems is sustainable. With differences in management causing herbivore biomass to be 150% greater in the PPAs than the adjacent KNP, changes in plant communities and nitrogen cycling might lead to long‐term degradation of these ecosystems, their ability to sustain herbivore populations, and also serve as an economic resource for the region.  相似文献   

18.
19.
This study used naturally occurring carbon and nitrogen stable isotopes of teeth to study the diets of marine mammals. The isotopic ratios of nonchemically preserved teeth from eight species of marine mammals, representing 87 individuals that spanned the trophic continuum, were found to reflect nutritional sources. The δ13C signals distinguished animals that lived in waters dominated by different primary producers (e. g., seagrass, kelp, and phytoplankton), and δ15N values indicated the diet and trophic level of the species. This research suggests that isotopic signatures of teeth can be used in dietary studies to show differences and similarities among age classes, genders, geographic locations, and time periods.  相似文献   

20.
    
Food is well-known to encode social and cultural values, for example different social groups use different consumption patterns to act as social boundaries. When societies and cultures change, whether through drift, through population replacement or other factors, diet may also alter despite unchanging resource availability within a region. This study investigates the extent to which dietary change coincides with cultural change, to understand the effects of large-scale migrations on the populations' diets. Through stable carbon and nitrogen isotope analysis of Iron Age, Roman, and Early Medieval human bone collagen, we show that in Croatia large-scale cultural change led to significant changes in diet. The isotopic evidence indicates that Iron Age diet consisted of C(3) foodstuffs with no isotopic evidence for the consumption of C(4) or marine resources. With the Roman conquest, marine resources were added to the diet, although C(3) foodstuffs continued to play an important role. In the Early Medieval period, this marine component was lost and varying amounts of C(4) foodstuffs, probably millet, were added to the otherwise C(3) diet. In both of these transitions it is likely that the changes in diet are related to the arrival of a new people into the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号