首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viral capsids are dynamic protein assemblies surrounding viral genomes. Despite the high-resolution structures determined by X-ray crystallography and cryo-electron microscopy, their in-solution structure and dynamics can be probed by hydrogen exchange. We report here using hydrogen exchange combined with protein enzymatic fragmentation and mass spectrometry to determine the capsid structure and dynamics of a human rhinovirus, HRV14. Capsid proteins (VP1-4) were labeled with deuterium by incubating intact virus in D(2)O buffer at neutral pH. The labeled proteins were digested by immobilized pepsin to give peptides analyzed by capillary reverse-phase HPLC coupled with nano-electrospray mass spectrometry. Deuterium levels incorporated at amide linkages in peptic fragments were measured for different exchange times from 12 sec to 30 h to assess the amide hydrogen exchange rates along each of the four protein backbones. Exchange results generally agree with the crystal structure of VP1-4,with extended, flexible terminal and surface-loop regions in fast exchange and folded helical and sheet structures in slow exchange. In addition, three alpha-helices, one from each of VP1-3, exhibited very slow exchange, indicating high stability of the protomeric interface. The beta-strands at VP3 N terminus also had very slow exchange, suggesting stable pentamer contacts. It was noted, however, that the interface around the fivefold axis had fast and intermediate exchange, indicating relatively more flexibility. Even faster exchange rates were found in the N terminus of VP1 and most segments of VP4, suggesting high flexibilities, which may correspond to their potential roles in virus uncoating.  相似文献   

2.
Oxidation of methionine residues in biopharmaceuticals is a common and often unwanted modification that frequently occurs during their manufacture and storage. It often results in a lack of stability and biological function of the product, necessitating continuous testing for the modification throughout the product shelf life. A major class of biopharmaceutical products are monoclonal antibodies (mAbs), however, techniques for their detailed structural analysis have until recently been limited. Hydrogen/deuterium exchange mass spectrometry (HXMS) has recently been successfully applied to the analysis of mAbs. Here we used HXMS to identify and localise the structural changes that occurred in a mAb (IgG1) after accelerated oxidative stress. Structural alterations in a number of segments of the Fc region were observed and these related to oxidation of methionine residues. These included a large change in the hydrogen exchange profile of residues 247–253 of the heavy chain, while smaller changes in hydrogen exchange profile were identified for peptides that contained residues in the interface of the CH2 and CH3 domains.  相似文献   

3.
4.
C. glutamicum meso-diaminopimelate dehydrogenase is an enzyme of the L-lysine biosynthetic pathway in bacteria. The binding of NADPH and diaminopimelate to the recombinant, overexpressed enzyme has been analyzed using hydrogen/deuterium exchange and electrospray ionization/mass spectrometry. NADPH binding reduces the extent of deuterium exchange, as does the binding of diaminopimelate. Pepsin digestion of the deuterated enzyme and enzyme-substrate complexes coupled with liquid chromatography/mass spectrometry have allowed the identification of eight peptides whose deuterium exchange slows considerably upon the binding of the substrates. These peptides represent regions known or thought to bind NADPH and diaminopimelate. One of these peptides is located at the interdomain hinge region and is proposed to be exchangeable in the "open," catalytically inactive, conformation but nonexchangeable in the "closed," catalytically active conformation formed after NADPH and diaminopimelate binding and domain closure. Furthermore, the dimerization region has been localized by this method, and this study provides an example of detecting protein-protein interface regions using hydrogen/deuterium exchange and electrospray ionization.  相似文献   

5.
cAMP-dependent protein kinase (cAPK) is a heterotetramer containing a regulatory (R) subunit dimer bound to two catalytic (C) subunits and is involved in numerous cell signaling pathways. The C-subunit is activated allosterically when two cAMP molecules bind sequentially to the cAMP-binding domains, designated A and B (cAB-A and cAB-B, respectively). Each cAMP-binding domain contains a conserved Arg residue that is critical for high-affinity cAMP binding. Replacement of this Arg with Lys affects cAMP affinity, the structural integrity of the cAMP-binding domains, and cAPK activation. To better understand the local and long-range effects that the Arg-to-Lys mutation has on the dynamic properties of the R-subunit, the amide hydrogen/deuterium exchange in the RIIbeta subunit was probed by electrospray mass spectrometry. Mutant proteins containing the Arg-to-Lys substitution in either cAMP-binding domain were deuterated for various times and then, prior to mass spectrometry analysis, subjected to pepsin digestion to localize the deuterium incorporation. Mutation of this Arg in cAB-A (Arg230) causes an increase in amide hydrogen exchange throughout the mutated domain that is beyond the modest and localized effects of cAMP removal and is indicative of the importance of this Arg in domain organization. Mutation of Arg359 (cAB-B) leads to increased exchange in the adjacent cAB-A domain, particularly in the cAB-A domain C-helix that lies on top of the cAB-B domain and is believed to be functionally linked to the cAB-B domain. This interdomain communication appears to be a unidirectional pathway, as mutation of Arg230 in cAB-A does not effect dynamics of the cAB-B domain.  相似文献   

6.
A new method based on protein fragmentation and directly coupled microbore high-performance liquid chromatography-fast atom bombardment mass spectrometry (HPLC-FABMS) is described for determining the rates at which peptide amide hydrogens in proteins undergo isotopic exchange. Horse heart cytochrome c was incubated in D2O as a function of time and temperature to effect isotopic exchange, transferred into slow exchange conditions (pH 2-3, 0 degrees C), and fragmented with pepsin. The number of peptide amide deuterons present in the proteolytic peptides was deduced from their molecular weights, which were determined following analysis of the digest by HPLC-FABMS. The present results demonstrate that the exchange rates of amide hydrogens in cytochrome c range from very rapid (k > 140 h-1) to very slow (k < 0.002 h-1). The deuterium content of specific segments of the protein was determined as a function of incubation temperature and used to indicate participation of these segments in conformational changes associated with heating of cytochrome c. For the present HPLC-FABMS system, approximately 5 nmol of protein were used for each determination. Results of this investigation indicate that the combination of protein fragmentation and HPLC-FABMS is relatively free of constraints associated with other analytical methods used for this purpose and may be a general method for determining hydrogen exchange rates in specific segments of proteins.  相似文献   

7.
Unfolding and refolding of rabbit muscle triosephosphate isomerase (TIM), a model for (betaalpha)8-barrel proteins, has been studied by amide hydrogen exchange/mass spectrometry. Unfolding was studied by destabilizing the protein in guanidine hydrochloride (GdHCl) or urea, pulse-labeling with 2H2O and analyzing the intact protein by HPLC electrospray ionization mass spectrometry. Bimodal isotope patterns were found in the mass spectra of the labeled protein, indicating two-state unfolding behavior. Refolding experiments were performed by diluting solutions of TIM unfolded in GdHCl or urea and pulse-labeling with 2H2O at different times. Mass spectra of the intact protein labeled after one to two minutes had three envelopes of isotope peaks, indicating population of an intermediate. Kinetic modeling indicates that the stability of the folding intermediate in water is only 1.5 kcal/mol. Failure to detect the intermediate in the unfolding experiments was attributed to its low stability and the high concentrations of denaturant required for unfolding experiments. The folding status of each segment of the polypeptide backbone was determined from the deuterium levels found in peptic fragments of the labeled protein. Analysis of these spectra showed that the C-terminal half folds to form the intermediate, which then forms native TIM with folding of the N-terminal half. These results show that TIM folding fits the (4+4) model for folding of (betaalpha)8-barrel proteins. Results of a double-jump experiment indicate that proline isomerization does not contribute to the rate-limiting step in the folding of TIM.  相似文献   

8.
cAMP-dependent protein kinase (cAPK) is a key component in numerous cell signaling pathways. The cAPK regulatory (R) subunit maintains the kinase in an inactive state until cAMP saturation of the R-subunit leads to activation of the enzyme. To delineate the conformational changes associated with cAPK activation, the amide hydrogen/deuterium exchange in the cAPK type IIbeta R-subunit was probed by electrospray mass spectrometry. Three states of the R-subunit, cAMP-bound, catalytic (C)-subunit bound, and apo, were incubated in deuterated water for various lengths of time and then, prior to mass spectrometry analysis, subjected to digestion by pepsin to localize the deuterium incorporation. High sequence coverage (>99%) by the pepsin-digested fragments enables us to monitor the dynamics of the whole protein. The effects of cAMP binding on RIIbeta amide hydrogen exchange are restricted to the cAMP-binding pockets, while the effects of C-subunit binding are evident across both cAMP-binding domains and the linker region. The decreased amide hydrogen exchange for residues 253-268 within cAMP binding domain A and for residues 102-115, which include the pseudosubstrate inhibitory site, support the prediction that these two regions represent the conserved primary and peripheral C-subunit binding sites. An increase in amide hydrogen exchange for a broad area within cAMP-binding domain B and a narrow area within cAMP-binding domain A (residues 222-232) suggest that C-subunit binding transmits long-distance conformational changes throughout the protein.  相似文献   

9.
Although there is general agreement that native mitochondrial malate dehydrogenase (MDH) exists as a dimer at pH 7, its aggregation state at pH 5 is less certain. The present amide hydrogen exchange study was performed to determine whether MDH remains a dimer at pH 5. To detect pH-induced changes in solvent accessibility, MDH was exposed to D(2)O at pH 5 or 7, then fragmented with pepsin into peptides that were analyzed by mass spectrometry. Even after adjustments for the effect of pH on the intrinsic rate of hydrogen exchange, large increases in deuterium levels were found at pH 5 only in peptic fragments derived from the subunit binding surface of MDH. In parallel experiments, elevated deuterium levels were also found in the same regions of MDH monomer trapped inside a mutant form of the chaperonin GROEL: This selective increase in hydrogen exchange rates, which was attributed to increased solvent accessibility of these regions, provides new evidence that MDH is a monomer at pH 5.  相似文献   

10.
In the double-stranded DNA containing bacteriophages, hundreds of copies of capsid protein subunits polymerize to form icosahedral shells, called procapsids, into which the viral genome is subsequently packaged to form infectious virions. High assembly fidelity requires the assistance of scaffolding protein molecules, which interact with the capsid proteins to insure proper geometrical incorporation of subunits into the growing icosahedral lattices. The interactions between the scaffolding and capsid proteins are transient and are subsequently disrupted during DNA packaging. Removal of scaffolding protein is achieved either by proteolysis or alternatively by some form of conformational switch that allows it to dissociate from the capsid. To identify the switch controlling scaffolding protein association and release, hydrogen deuterium exchange was applied to Bacillus subtilis phage Ø29 scaffolding protein gp7 in both free and procapsid-bound forms. The H/D exchange experiments revealed highly dynamic and cooperative opening motions of scaffolding molecules in the N-terminal helix-loop-helix (H-L-H) region. The motions can be promoted by destabilizing the hydrophobic contact between two helices. At low temperature where high energy motions were damped, or in a mutant in which the helices were tethered through the introduction of a disulfide bond, this region displayed restricted cooperative opening motions as demonstrated by a switch in the exchange kinetics from correlated EX1 exchange to uncorrelated EX2 exchange. The cooperative opening rate was increased in the procapsid-bound form, suggesting this region might interact with the capsid protein. Its dynamic nature might play a role in the assembly and release mechanism.  相似文献   

11.
Protein amide hydrogen exchange (HDX) is a convoluted process, whose kinetics is determined by both dynamics of the protein and the intrinsic exchange rate of labile hydrogen atoms fully exposed to solvent. Both processes are influenced by a variety of intrinsic and extrinsic factors. A mathematical formalism initially developed to rationalize exchange kinetics of individual amide hydrogen atoms is now often used to interpret global exchange kinetics (e.g., as measured in HDX MS experiments). One particularly important advantage of HDX MS is direct visualization of various protein states by observing distinct protein ion populations with different levels of isotope labeling under conditions favoring correlated exchange (the so-called EX1 exchange mechanism). However, mildly denaturing conditions often lead to a situation where the overall HDX kinetics cannot be clearly classified as either EX1 or EX2. The goal of this work is to develop a framework for a generalized exchange model that takes into account multiple processes leading to amide hydrogen exchange, and does not require that the exchange proceed strictly via EX1 or EX2 kinetics. To achieve this goal, we use a probabilistic approach that assigns a transition probability and a residual protection to each equilibrium state of the protein. When applied to a small protein chymotrypsin inhibitor 2, the algorithm allows complex HDX patterns observed experimentally to be modeled with remarkably good fidelity. On the basis of the model we are now in a position to begin to extract quantitative dynamic information from convoluted exchange kinetics.  相似文献   

12.
Mutations of the receptor tyrosine kinase KIT are linked to certain cancers such as gastrointestinal stromal tumors (GISTs). Biophysical, biochemical, and structural studies have provided insight into the molecular basis of resistance to the KIT inhibitors, imatinib and sunitinib. Here, solution‐phase hydrogen/deuterium exchange (HDX) and direct binding mass spectrometry experiments provide a link between static structure models and the dynamic equilibrium of the multiple states of KIT, supporting that sunitinib targets the autoinhibited conformation of WT‐KIT. The D816H mutation shifts the KIT conformational equilibrium toward the activated state. The V560D mutant exhibits two low energy conformations: one is more flexible and resembles the D816H mutant shifted toward the activated conformation, and the other is less flexible and resembles the wild‐type KIT in the autoinhibited conformation. This result correlates with the V560D mutant exhibiting a sensitivity to sunitinib that is less than for WT KIT but greater than for KIT D816H. These findings support the elucidation of the resistance mechanism for the KIT mutants.  相似文献   

13.
14.
Viral capsids are dynamic structures which undergo a series of structural transformations to form infectious viruses. The dsDNA bacteriophage P22 is used as a model system to study the assembly and maturation of icosahedral dsDNA viruses. The P22 procapsid, which is the viral capsid precursor, is assembled from coat protein with the aid of scaffolding protein. Upon DNA packaging, the capsid lattice expands and becomes a stable virion. Limited proteolysis and biochemical experiments indicated that the coat protein consists of two domains connected by a flexible loop. To investigate the properties and roles of the sub-domains, we have cloned them and initiated structure and function studies. The N-terminal domain, which is made up of 190 amino acid residues, is largely unstructured in solution, while the C-terminal domain, which consists of 239 amino acid residues, forms a stable non-covalent dimer. The N-terminal domain adopts additional structure in the context of the C-terminal domain which might form a platform on which the N-terminal domain can fold. The local dynamics of the coat protein in both procapsids and mature capsids was monitored by hydrogen/deuterium exchange combined with mass spectrometry. The exchange rate for C-terminal domain peptides was similar in both forms. However, the N-terminal domain was more flexible in the empty procapsid shells than in the mature capsids. The flexibility of the N-terminal domain observed in the solution persisted into the procapsid form, but was lost upon maturation. The loop region connecting the two domains exchanged rapidly in the empty procapsid shells, but more slowly in the mature capsids. The global stabilization of the N-terminal domain and the flexibility encoded in the loop region may be a key component of the maturation process.  相似文献   

15.
Hydrogen/deuterium (H/D) exchange in combination with electrospray ionization mass spectrometry and near-ultraviolet (UV) circular dichroism (CD) was used to study the conformational properties and thermal unfolding of Escherichia coli thioredoxin and its Cys32-alkylated derivatives in 1% acetic acid (pH 2.7). Thermal unfolding of oxidized (Oxi) and reduced (Red) -thioredoxin (TRX) and Cys-32-ethylglutathionyl (GS-ethyl-TRX) and Cys-32-ethylcysteinyl (Cys-ethyl-TRX), which are derivatives of Red-TRX, follow apparent EX1 kinetics as charge-state envelopes, H/D mass spectral exchange profiles, and near-UV CD appear to support a two-state folding/unfolding model. Minor mass peaks in the H/D exchange profiles and nonsuperimposable MS- and CD-derived melting curves, however, suggest the participation of unfolding intermediates leading to the conclusion that the two-state model is an oversimplification of the process. The relative stabilities as measured by melting temperatures by both CD and mass spectral charge states are, Oxi-TRX, GS-ethyl-TRX, Cys-ethyl-TRX, and Red-TRX. The introduction of the Cys-32-ethylglutathionyl group provides extra stabilization that results from additional hydrogen bonding interactions between the ethylglutathionyl group and the protein. Near-UV CD data show that the local environment near the active site is perturbed to almost an identical degree regardless of whether alkylation at Cys-32 is by the ethylglutathionyl group, or the smaller, nonhydrogen-bonding ethylcysteinyl group. Mass spectral data, however, indicate a tighter structure for GS-ethyl-TRX.  相似文献   

16.
Protein kinase A (PKA), a central locus for cAMP signaling in the cell, is composed of regulatory (R) and catalytic (C) subunits. The C-subunits are maintained in an inactive state by binding to the R-subunit dimer in a tetrameric holoenzyme complex (R(2)C(2)). PKA is activated by cAMP binding to the R-subunits which induces a conformational change leading to release of the active C-subunit. Enzymatic activity of the C-subunit is thus regulated by cAMP via the R-subunit, which toggles between cAMP and C-subunit bound states. The R-subunit is composed of a dimerization/docking (D/D) domain connected to two cAMP-binding domains (cAMP:A and cAMP:B). While crystal structures of the free C-subunit and cAMP-bound states of a deletion mutant of the R-subunit are known, there is no structure of the holoenzyme complex or of the cAMP-free state of the R-subunit. An important step in understanding the cAMP-dependent activation of PKA is to map the R-C interface and characterize the mutually exclusive interactions of the R-subunit with cAMP and C-subunit. Amide hydrogen/deuterium exchange mass spectrometry is a suitable method that has provided insights into the different states of the R-subunit in solution, thereby allowing mapping of the effects of cAMP and C-subunit on different regions of the R-subunit. Our study has localized interactions with the C-subunit to a small contiguous surface on the cAMP:A domain and the linker region. In addition, C-subunit binding causes increased amide hydrogen exchange within both cAMP-domains, suggesting that these regions become more flexible in the holoenzyme and are primed to bind cAMP. Furthermore, the difference in the protection patterns between RIalpha and the previously studied RIIbeta upon cAMP-binding suggests isoform-specific differences in cAMP-dependent regulation of PKA activity.  相似文献   

17.
Recoverin is a calcium-binding protein that regulates the vertebrate photoresponse by inhibiting rhodopsin kinase in response to high calcium concentrations. It is heterogeneously N-acylated by myristoyl and related fatty acyl residues that are thought to act as "calcium-myristoyl switches," whereby, in the presence of Ca2+, the N-terminal acyl group is extended away from recoverin and, in the absence of calcium, it is more closely associated with the protein. Here we use electrospray ionization mass spectrometry (ESI/MS) to examine hydrogen isotopic exchange rates for specific regions of both acylated and nonacylated recoverin in the presence and absence of calcium. The deuterium exchange rates of three regions in the hydrophobic myristoyl binding pocket of acylated recoverin decreased in the absence of calcium. This effect is most likely due to the closer association of the acyl group with the protein under these conditions. In contrast, rates of deuterium incorporation increased in the absence of calcium for other regions, including the two functional calcium-binding sites. In addition to supporting the calcium-myristoyl switch hypothesis, a comparison of the behavior of acylated and unacylated recoverin revealed that the N-acyl group (N-lauroyl or N-myristoyl) exerts a significant stabilizing influence on the dynamics of recoverin. We demonstrate that the new technique of monitoring hydrogen isotopic exchange by ESI/MS can be used to obtain useful information concerning protein structures in solution using smaller amounts of protein and under more physiologically relevant conditions than is typically possible with NMR or X-ray crystallography.  相似文献   

18.
The extent of deuterium labeling of hen lysozyme, its three-disulfide derivative, and the homologous alpha-lactalbumins, has been measured by both mass spectrometry and NMR. Different conformational states of the proteins were produced by varying the solution conditions. Alternate protein conformers were found to contain different numbers of 2H atoms. Furthermore, measurement in the gas phase of the mass spectrometer or directly in solution by NMR gave consistent results. The unique ability of mass spectrometry to distinguish distributions of 2H atoms in protein molecules is exemplified using samples prepared to contain different populations of 2H-labeled protein. A comparison of the peak widths of bovine alpha-lactalbumin in alternate solution conformations but containing the same average number of 2H atoms showed dramatic differences due to different 2H distributions in the two protein conformers. Measurement of 2H distributions by ESI-MS enabled characterization of conformational averaging and structural heterogeneity. In addition, a time course for hydrogen exchange was examined and the variation in distributions of 2H atom compared with simulations for different hydrogen exchange models. The results clearly show that exchange from the native state of bovine alpha-lactalbumin at 15 degrees C is dominated by local unfolding events.  相似文献   

19.
alpha-Actinin is an actin bundling protein that regulates cell adhesion by directly linking actin filaments to integrin adhesion receptors. Phosphatidylinositol (4,5)-diphosphate (PtdIns (4,5)-P(2)) and phosphatidylinositol (3,4,5)-triphosphate (PtdIns (3,4,5)-P(3)) bind to the calponin homology 2 domain of alpha-actinin, regulating its interactions with actin filaments and integrin receptors. In this study, we examine the mechanism by which phosphoinositide binding regulates alpha-actinin function using mass spectrometry to monitor hydrogen-deuterium (H/D) exchange within the calponin homology 2 domain. The overall level of H/D exchange for the entire protein showed that PtdIns (3,4,5)-P(3) binding alters the structure of the calponin homology 2 domain increasing deuterium incorporation, whereas PtdIns (4,5)-P(2) induces changes in the structure decreasing deuterium incorporation. Analysis of peptic fragments from the calponin homology 2 domain showed decreased local H/D exchange within the loop region preceding helix F with both phosphoinositides. However, the binding of PtdIns (3,4,5)-P(3) also induced increased exchange within helix E. This suggests that the phosphate groups on the fourth and fifth position of the inositol head group of the phosphoinositides constrict the calponin homology 2 domain, thereby altering the orientation of actin binding sequence 3 and decreasing the affinity of alpha-actinin for filamentous actin. In contrast, the phosphate group on the third position of the inositol head group of PtdIns (3,4,5)-P(3) perturbs the calponin homology 2 domain, altering the interaction between the N and C terminus of the full-length alpha-actinin antiparallel homodimer, thereby disrupting bundling activity and interaction with integrin receptors.  相似文献   

20.
Oligomeric proteins generally undergo unfolding through a dissociation/denaturation mechanism wherein the subunits first dissociate and then unfold. This mechanism can be detected by the fact that the proteins exhibit a concentration dependence of the denaturation curve. However, the concentration dependence does not answer the question of whether there are thermally induced conformational changes that facilitate subunit dissociation. To fully probe these mechanisms it is desirable to have an analytical approach that is capable of measuring both subunit dissociation and protein denaturation in a highly sensitive manner. In this article, we demonstrate that the combined use of native mass spectrometry to detect subunit mixing, and amide hydrogen/deuterium exchange to detect transient unfolding events can provide a very unique insight into the pre‐melting transitions in a protein oligomer. Both methods keep an isotopic record of each transformation event, without the dependence on equilibrium of the unfolding reaction. Here, we use a combined form of H/D exchange/mass spectrometry and isotopic labeling/native electrospray mass spectrometry to study the pre‐unfolding events of Bacillus subtilis NAD+ synthetase, a symmetrical dimer protein, which plays a vital role in the lifecycle of the bacteria. In the experimental outcome provided, we were able to clearly illustrate that at elevated temperatures, the NAD synthetase dimer undergoes reversible dissociation without monomer unfolding, while at temperatures where monomer unfolding is observed to take place, the rate of dimer dissociation still yet exceeds the rate of unfolding. Information provided by combining these two mass spectrometric methods was found to be very robust, and allowed us to establish an NAD synthetase unfolding model, where primary dissociation occurs prior to the complete unfolding of the NAD+ synthetase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号