首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Prolonged exposure to hypoxia (10% O(2)) enhanced quantal catecholamine release evoked from O(2)-sensing pheochromocytoma (PC12) cells, as monitored using single-cell amperometric recordings. The enhancement of exocytosis was apparent after 12 h of hypoxia and was maximal at 24 h. Elevated levels of secretion were due to the emergence of a Ca(2+) influx pathway that persisted during complete blockade of known voltage-gated Ca(2+) channels. Secretion triggered by this Ca(2+) influx was severely reduced by known inhibitors of Alzheimer's amyloid beta-peptides (AbetaPs), including an N terminus-directed monoclonal antibody. The enhancing effect on secretion of chronic hypoxia was mimicked closely by direct application of AbetaP to cells under normoxic conditions, although the effects of AbetaP were more rapid at onset, being maximal after only 6 h. The present results suggest that prolonged hypoxia can induce formation of Ca(2+)-permeable AbetaP channels and that such induction can lead directly to excessive neurosecretion. This is a potential contributory factor to AbetaP pathophysiology following cerebral ischemia.  相似文献   

3.
Sustained central hypoxia predisposes individuals to dementias such as Alzheimer's disease, in which cells are destroyed in part by disruption of Ca2+ homeostasis. Here, we show that exposure of astrocytes to hypoxia in vitro causes inhibition of plasmalemmal Na+/Ca2+ exchange and excessive mitochondrial Ca2+ loading. Both factors disrupt normal agonist-evoked Ca2+ signalling. Moreover, hypoxia increases the levels of presenilin-1, a major component of a key enzyme involved in Alzheimer's disease. Inhibition of this enzyme partially reverses the effects of hypoxia on Ca2+ signalling. These findings provide an initial cellular basis for understanding the clinical association of hypoxia with Alzheimer's disease.  相似文献   

4.
The effects of 30 s to 10 min hypoxia (PO2-10 mmHg) on glutamate receptor activity were studied in murine cortical neurons. Receptor activity was assessed as a rise in intracellular calcium concentration ([Ca2+]i) following a 10 s application of 1 mm glutamate or 100 micro mN-methy-d-aspartate (NMDA) in the presence of 0.1 mm Mg2+ and 10 micro m glycine. Change in [Ca2+]i elicited by glutamate increased 26% (n = 192, p < 0.001) and that to NMDA by 74% (n = 9, p < 0.01) during a 100-s period of hypoxia. After 10 min hypoxia, responses to glutamate were 62% smaller than those in normoxia, with increased basal intracellular [Ca2+]i predicting reduced receptor activity. When neurons were exposed to NMDA after 10 min of hypoxia, [Ca2+]i increases were 12% smaller than after 100 s hypoxia, but still 53% larger than in oxygenated neurons (n = 9, p = 0.01). Neurons expressed relatively similar amounts of NR2A, -B, -C, and -D subunits. The phosphorylation of NMDA NR1 subunits increased during hypoxia. Pre-treatment of neurons with a protein kinase C (PKC) inhibitor (chelerythrine, 10 micro m) prevented increases in N-methy-d-aspartate receptor (NMDAR) activity during hypoxia and reduced the phosphorylation of NR1 subunits. These results suggest that enhancement of glutamate receptor activity during the first minutes of hypoxia is mediated by phosphorylation of NMDARs by PKC and that other mechanisms, possibly involving intracellular calcium, limit glutamate receptor-mediated calcium influx during longer periods of hypoxia.  相似文献   

5.
Fiekers JF 《Life sciences》2001,70(6):681-698
Single cell calcium microfluorimetry was used to examine the regulation of [Ca2+]i homeostasis in a clonal cell line of corticotropes (AtT-20 cells). Single cells, loaded with fura-2/AM, were exposed briefly to elevated potassium chloride (KCI, 40 mM, 5 sec). The time constant of decay of the [Ca2+]i signal was used as an index of [Ca2+]i extrusion and/or sequestration. Substitution of extracellular sodium with lithium, N-methyl-D-glucamine (NMDG), or Tris, increased resting levels of [Ca2+]i and significantly increased the time constant of [Ca2+]i decay by 40% compared to control indicating the participation of Na+-Ca2+-exchange. Prior exposure of single cells to thapsigargin (1 microM) or BuBHQ (10 microM). inhibitors of the SERCA Ca2+-ATPases, and/or the mitochondrial uncoupler FCCP (1 microM) did not significantly change the time constant of [Ca2+]i decay following KCl. Lanthanum ions (La3+), applied during the decay of the KCI-induced increase in [Ca2+]i, significantly increased the time constant of the return of [Ca2+]i to resting levels by 70% compared to control. Brief exposure of cells to sodium orthovanadate, an inhibitor of ATP-dependent pump activity, slowed and longer exposures prevented, the return of [Ca2+]i to resting levels. We conclude that neither intracellular SERCA pumps nor mitochondrial uptake contribute significantly to [Ca2+]i sequestration following a [Ca2+]i load and that the plasma membrane Ca2+-ATPase contributes to a greater extent than the Na+-Ca2+-exchanger to the return of [Ca2+]i to resting levels following a [Ca2+]i load under these experimental conditions.  相似文献   

6.
Clinical studies indicate that neurodegeneration caused by Alzheimer's amyloid beta peptide (AbetaP) formation can be triggered or induced by prolonged (chronic) hypoxia. Here, we demonstrate that 24-h culture of PC12 cells in 10% O(2) leads to induction of a Cd(2+)-resistant Ca(2+) influx pathway and selective potentiation of L-type Ca(2+) current. Both effects were suppressed or prevented by a monoclonal antibody raised against the N'-terminus of AbetaP, and were fully mimicked by AbetaP(1-40 and) AbetaP(1-42), but not by AbetaP(40-1). Potentiation of L-type currents was also induced by exposure to AbetaP(25-35). Our results indicate that hypoxia induces enhancement of Ca(2+) channels, which is mediated by increased AbetaP formation.  相似文献   

7.
The effects of hypoxia (pO2 approximately 25 mm Hg) on Ca2+ signaling stimulated by extracellular ATP in human saphenous vein endothelial cells were investigated using fluorimetric recordings from Fura-2 loaded cells. In the absence of extracellular Ca2+, ATP-evoked rises of cytosolic Ca2+ concentration ([Ca2+]i) because of mobilization from the endoplasmic reticulum (ER). These responses were reduced by prior exposure to hypoxia but potentiated during hypoxia. Hypoxia itself liberated Ca2+ from the ER, but unlike the effects of ATP this effect was not inhibited by blockade of the inositol trisphosphate receptor. By contrast, ryanodine blocked the effects of hypoxia but not those of ATP. Antioxidants abolished the effects of hypoxia but potentiated the effects of ATP. Inhibition of NADPH oxidase also augmented ATP-evoked responses but was without effect on hypoxia-evoked rises of [Ca2+]i. However, either uncoupling mitochondrial electron transport or inhibiting complex I markedly suppressed the actions of hypoxia yet exerted only small inhibitory effects on ATP-evoked rises of [Ca2+]i. Both hypoxia and ATP were able to activate capacitative Ca2+ entry. Our results indicate that hypoxia regulates intracellular Ca2+ signaling via two distinct pathways. First, it modulates agonist-evoked liberation of Ca2+ from the ER primarily through regulation of reactive oxygen species generation from NADPH oxidase. Second, it liberates Ca2+ from the ER via ryanodine receptors, an effect requiring mitochondrial reactive oxygen species generation. These findings suggest that local O2 tension is a major determinant of Ca2+ signaling in the vascular endothelium, a finding that is likely to be of both physiological and pathophysiological importance.  相似文献   

8.
Reactive oxygen species, such as the superoxide anion, H2O2, and the hydroxyl radical, have been considered as cytotoxic by-products of cellular metabolism. However, recent studies have provided evidence that H2O2 serves as a signaling molecule modulating various physiological functions. Here we investigated the effect of H2O2 on the regulation of intracellular Ca2+ signaling in rat cortical astrocytes. H2O2 triggered the generation of oscillations of intracellular Ca2+ concentration ([Ca2+]i) in a concentration-dependent manner over the range 10-100 microM. The H2O2-induced [Ca2+]i oscillations persisted in the absence of extracellular Ca2+ and were prevented by depletion of intracellular Ca2+ stores with thapsigargin. The H2O2-induced [Ca2+]i oscillations were not inhibited by pretreatment with ryanodine but were prevented by 2-aminoethoxydiphenyl borate and caffeine, known antagonists of inositol 1,4,5-trisphosphate receptors. H2O2 activated phospholipase C (PLC) gamma1 in a dose-dependent manner, and U73122, an inhibitor of PLC, completely abolished the H2O2-induced [Ca2+]i oscillations. In addition, RNA interference against PLCgamma1 and the expression of the inositol 1,4,5-trisphosphate-sequestering "sponge" prevented the generation of [Ca2+]i oscillations. H2O2-induced [Ca2+]i oscillations and PLC1 phosphorylation were inhibited by pretreatment with dithiothreitol, a sulfhydryl-reducing agent. Finally, epidermal growth factor induced H2O2 production, PLCgamma1 activation, and [Ca2+]i increases, which were attenuated by N-acetylcysteine and diphenyleneiodonium and by the overexpression of peroxiredoxin type II. Therefore, we conclude that low concentrations of exogenously applied H2O2 generate [Ca2+]i oscillations by activating PLCgamma1 through sulfhydryl oxidation-dependent mechanisms. Furthermore, we show that this mechanism underlies the modulatory effect of endogenously produced H2O2 on epidermal growth factor-induced Ca2+ signaling in rat cortical astrocytes.  相似文献   

9.
The effect of ketoconazole on cytosolic free Ca2+ concentrations ([Ca2+]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2+ levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 microM and above increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The ketoconazole-induced Ca2+ influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 50 microM ketoconazole, thapsigargin-(1 microM)-induced [Ca2+]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change ketoconazole-induced [Ca2+]i rises. At concentrations between 5 and 100 microM, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 microM ketoconazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2+]i rise.  相似文献   

10.
Increase in extracellular Mg2+ concentration ([Mg2+]o) reduces Ca2+ accumulation during reoxygenation of hypoxic cardiomyocytes and exerts protective effects. The aims of the present study were to investigate the effect of increased [Mg(2+)](o) on Ca2+ influx and efflux, free cytosolic Ca2+ ([Ca2+]i) and Mg2+ concentrations ([Mg2+]i), Ca2+ accumulation in the presence of inhibitors of mitochondrial or sarcoplasmatic reticulum Ca2+ transport, and finally mitochondrial membrane potential (Delta(psi)m). Isolated adult rat cardiomyocytes were exposed to 1 h of hypoxia and subsequent reoxygenation. Cell Ca2+ was determined by 45Ca2+ uptake, and the levels of [Mg2+]i and [Ca2+]i were determined by flow cytometry as the fluorescence of magnesium green and fluo 3, respectively. Ca2+ influx rate was significantly reduced by approximately 40%, whereas Ca2+ efflux was not affected by increased [Mg2+]o (5 mM) during reoxygenation. [Ca2+]i and [Mg2+]i were increased at the end of hypoxia, fell after reoxygenation, and were unaffected by increased [Mg2+]o. Clonazepam, a selective mitochondrial Na+/Ca2+ exchange inhibitor (100 microM), significantly reduced Ca2+ accumulation by 70% and in combination with increased [Mg2+]o by 90%. Increased [Mg2+]o, clonazepam, and the combination of both attenuated the hypoxia-reoxygenation-induced reduction in Delta(psi)m, determined with the cationic dye JC-1 by flow cytometry. A significant inverse correlation was observed between Delta(psi)m and cell Ca2+ in reoxygenated cells treated with increased [Mg2+]o and clonazepam. In conclusion, increased [Mg2+]o (5 mM) inhibits Ca2+ accumulation by reducing Ca2+ influx and preserves Delta(psi)m without affecting [Ca2+]i and [Mg2+]i during reoxygenation. Preservation of mitochondria may be an important effect whereby increased [Mg2+]o protects the postischemic heart.  相似文献   

11.
A number of lines of evidence indicate that the Ca2+ and cyclic AMP signalling systems interact in NCB-20 cells. However, to date, the regulation of [Ca2+]i homeostasis has not been studied in this cell line. The present study aimed to clarify our understanding of [Ca2+]i homeostasis in these cells and to evaluate tools that manipulate [Ca2+]i, independently of protein kinase C effects. Bradykinin, by a B2-receptor, elevated [Ca2+]i by a pertussis-toxin-insensitive mechanism. The BK-stimulated [Ca2+]i rise originated from intracellular sources, without a contribution from Ca2+ entry mechanisms. The effect of BK was precluded by pretreatment with thapsigargin and ionomycin--compounds that elevated [Ca2+]i independent of phospholipase C activation. Both compounds, however, exerted effects in addition to stimulating release of Ca2+ from BK-sensitive stores; the BK-sensitive Ca2+ pool was a subset of the thapsigargin-sensitive pool; ionomycin strongly stimulates Ca2+ entry. Activation of protein kinases A and C attenuated the duration of the BK-induced rise in [Ca2+]i, without affecting the peak [Ca2+]i, suggesting interference with the BK response at a step downstream of the activation of phospholipase C. Application of these approaches should enhance the delineation of the consequences of Ca2+ mobilization on cyclic AMP accumulation.  相似文献   

12.
The effect of the antidepressant sertraline on cytosolic-free Ca2+ concentrations ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells is unclear. This study explored whether sertraline changed basal [Ca2+]i levels in suspended MDCK cells by using fura-2 as a Ca2+-sensitive fluorescent dye. Sertraline at concentrations between 1and 100 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+ implicating Ca2+ entry and release both contributed to the [Ca2+]i rise. Sertraline induced Mn2+ influx, leading to quench of fura-2 fluorescence, suggesting Ca2+ influx. This Ca2+ influx was inhibited by suppression of phospholiapase A2 but not by store-operated Ca2+ channel blockers and protein kinase C/A modulators. In Ca2+-free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitors nearly abolished sertraline-induced Ca2+ release. Conversely, pretreatment with sertraline partly reduced inhibitor-induced [Ca2+]i rise, suggesting that sertraline released Ca2+ from endoplasmic reticulum. Inhibition of phospholipase C did not much alter sertraline-induced [Ca2+]i rise. Collectively, in MDCK cells, sertraline induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive Ca2+ channels.  相似文献   

13.
Alzheimer's disease (AD) is the most prevalent form of dementia among the elderly and is a complex disorder that involves altered proteolysis, oxidative stress and disruption of ion homeostasis. Animal models have proven useful in studying the impact of mutant AD-related genes on other cellular signaling pathways, such as Ca2+ signaling. Along these lines, disturbances of intracellular Ca2+ ([Ca2+]i) homeostasis are an early event in the pathogenesis of AD. Here, we have employed microfluorimetric measurements of [Ca2+]i to investigate disturbances in Ca2+ homeostasis in primary cortical neurons from a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). Application of caffeine to mutant presenilin-1 knock-in neurons (PS1KI) and 3xTg-AD neurons evoked a peak rise of [Ca2+]i that was significantly greater than those observed in non-transgenic neurons, although all groups had similar decay rates of their Ca2+ transient. This finding suggests that Ca2+ stores are greater in both PS1KI and 3xTg-AD neurons as calculated by the integral of the caffeine-induced Ca2+ transient signal. Western blot analysis failed to identify changes in the levels of several Ca2+ binding proteins (SERCA-2B, calbindin, calsenilin and calreticulin) implicated in the pathogenesis of AD. However, ryanodine receptor expression in both PS1KI and 3xTg-AD cortex was significantly increased. Our results suggest that the enhanced Ca2+ response to caffeine observed in both PS1KI and 3xTg-AD neurons may not be attributable to an alteration of endoplasmic reticulum store size, but to the increased steady-state levels of the ryanodine receptor.  相似文献   

14.
Intracytoplasmic sperm injection (ICSI) into mammalian eggs induces repetitive rises in intracellular Ca2+ concentration ([Ca2+]i) which are the pivotal signal in fertilization. Spatiotemporal aspects of [Ca2+]i rises following ICSI into the periphery of mouse eggs were investigated with high-speed confocal microscopy. The first Ca2+ response was generated 25-30 min after ICSI, when [Ca2+]i increased slowly and reached a certain level. The [Ca2+]i rise occurred synchronously over the ooplasm, attained the peak in 40-70 s, and lasted for 5-7 min. Succeeding Ca2+ responses occurred at intervals of 20-30 min, associated with the faster rate of [Ca2+]i rise and the shorter duration as Ca2+ oscillations progressed. The [Ca2+]i rises took the form of a wave that started from an arbitrary cortical region, but not from the vicinity of the injected sperm head. The Ca2+ wave became more pronounced and propagated across the egg faster in the later Ca2+ responses. An artifactual [Ca2+]i rise was inevitably produced during the ICSI procedure. The larger artifact affected the subsequent first Ca2+ response, resulting in the faster [Ca2+]i rise (time to peak, 10-20 s), slight spatial heterogeneity of [Ca2+]i rise in the ooplasm (but not a wave) and the shorter duration (3-4 min). The artifact slightly affected the amplitude of the second Ca2+ response, but little affected the later Ca2+ responses. It is suggested that the factor(s) that leaked out of the injected spermatozoon diffuses to a wide area and sensitizes Ca2+ channels of the endoplasmic reticulum to induce Ca2+ release synchronously over the ooplasm. The enhanced sensitization leads to propagating Ca2+ release initiated from the cortex that is more sensitive to the sperm factor.  相似文献   

15.
Hypoxic pulmonary vasoconstriction (HPV) requires influx of extracellular Ca2+ in pulmonary arterial smooth muscle cells (PASMCs). To determine whether capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCCs) contributes to this influx, we used fluorescent microscopy and the Ca2+-sensitive dye fura-2 to measure effects of 4% O2 on intracellular [Ca2+] ([Ca2+]i) and CCE in primary cultures of PASMCs from rat distal pulmonary arteries. In PASMCs perfused with Ca2+-free Krebs Ringer bicarbonate solution (KRBS) containing cyclopiazonic acid to deplete Ca2+ stores in sarcoplasmic reticulum and nifedipine to prevent Ca2+ entry through L-type voltage-operated Ca2+ channels (VOCCs), hypoxia markedly enhanced both the increase in [Ca2+]i caused by restoration of extracellular [Ca2+] and the rate at which extracellular Mn2+ quenched fura-2 fluorescence. These effects, as well as the increased [Ca2+]i caused by hypoxia in PASMCs perfused with normal salt solutions, were blocked by the SOCC antagonists SKF-96365, NiCl2, and LaCl3 at concentrations that inhibited CCE >80% but did not alter [Ca2+]i responses to 60 mM KCl. In contrast, the VOCC antagonist nifedipine inhibited [Ca2+]i responses to hypoxia by only 50% at concentrations that completely blocked responses to KCl. The increased [Ca2+]i caused by hypoxia was completely reversed by perfusion with Ca2+-free KRBS. LaCl3 increased basal [Ca2+]i during normoxia, indicating effects other than inhibition of SOCCs. Our results suggest that acute hypoxia enhances CCE through SOCCs in distal PASMCs, leading to depolarization, secondary activation of VOCCs, and increased [Ca2+]i. SOCCs and CCE may play important roles in HPV.  相似文献   

16.
Trains of action potentials evoked rises in presynaptic Ca2+ concentration ([Ca2+]i) at the squid giant synapse. These increases in [Ca2+]i were spatially nonuniform during the trains, but rapidly equilibrated after the trains and slowly declined over hundreds of seconds. The trains also elicited synaptic depression and augmentation, both of which developed during stimulation and declined within a few seconds afterward. Microinjection of the Ca2+ buffer EGTA into presynaptic terminals had no effect on transmitter release or synaptic depression. However, EGTA injection effectively blocked both the persistent Ca2+ signals and augmentation. These results suggest that transmitter release is triggered by a large, brief, and sharply localized rise in [Ca2+]i, while augmentation is produced by a smaller, slower, and more diffuse rise in [Ca2+]i.  相似文献   

17.
Kang TM  Park MK  Uhm DY 《Life sciences》2002,70(19):2321-2333
We have investigated the effects of hypoxia on the intracellular Ca2+ concentration ([Ca2+]i) in rabbit pulmonary (PASMCs) and coronary arterial smooth muscle cells with fura-2. Perfusion of a glucose-free and hypoxic (PO2<50 mmHg) external solution increased [Ca2+]i in cultured as well as freshly isolated PASMCs. However it had no effect on [Ca2+]i in freshly isolated coronary arterial myocytes. In the absence of extracellular Ca2+, hypoxic stimulation elicited a transient [Ca2+]i increase in cultured PASMCs which was abolished by the simultaneous application of cyclopiazonic acid and ryanodine, suggesting the involvement of sarcoplasmic reticulum (SR) Ca2+ store. Pretreatment with the mitochondrial protonophore, carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) enhanced the [Ca2+]i rise in response to hypoxia. A short application of caffeine gave a transient [Ca2+]i rise which was prolonged by CCCP. Decay of the caffeine-induced [Ca2+]i transients was significantly slowed by treatment of CCCP or rotenone. After full development of the hypoxia-induced [Ca2+]i rise, nifedipine did not decrease [Ca2+]i. These data suggest that the [Ca2+]i increase in response to hypoxia may be ascribed to both Ca2+ release from the SR and the subsequent activation of nifedipine-insensitive capacitative Ca2+ entry. Mitochondria appear to modulate hypoxia induced Ca2+ release from the SR.  相似文献   

18.
The present study tested the hypothesis that chronic hypoxia alters pregnancy-mediated adaptation of Ca2+ homeostasis and contractility in the uterine artery. Uterine arteries were isolated from nonpregnant and near-term pregnant ewes of normoxic control or high-altitude (3820 m) hypoxic (oxygen pressure in the blood [PaO2], 60 mm Hg) treatment for 110 days. Contractions and intracellular-free Ca2+ concentration ([Ca2+]i) were measured simultaneously in the same tissue. In normoxic animals, pregnancy increased norepinephrine (NE), but not 5-hydroxy-thymide (5-HT) or KCl, contractile sensitivity in the uterine artery. Chronic hypoxia significantly attenuated NE-induced contractions in the pregnant, but not nonpregnant, uterine arteries. Similarly, 5-HT-mediated contractions of nonpregnant arteries were not changed. In the pregnant uterine artery, chronic hypoxia significantly increased NE-mediated Ca2+ mobilization, but decreased the Ca2+ sensitivity. In addition, hypoxia increased the calcium ionophore A23187-induced relaxation in pregnant, but not nonpregnant, uterine arteries. However, the A23187-mediated reduction of [Ca2+]i was significantly impaired in hypoxic arteries. In contrast, hypoxia significantly increased the slope of the [Ca2+]i-tension relationship of A23187-induced reductions in [Ca2+]i and tension in the pregnant uterine artery. The results suggest that the contractility of nonpregnant uterine artery is insensitive to moderate chronic hypoxia, but the adaptation of sympathetic tone that normally occurs in the uterine artery during pregnancy is inhibited by chronic hypoxia. In addition, changes in Ca2+ sensitivity of myofilaments play a predominant role in the adaptation of uterine artery contractility to pregnancy and chronic hypoxia.  相似文献   

19.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

20.
The effect of the synthetic estrogen diethylstilbestrol (DES) on cytosolic free Ca2+ concentrations ([Ca2+]i) and cell viability was explored in Chinese hamster ovary (CHO-K1). [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. DES at concentrations>or=1 proportional, variant increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. In Ca2+-free medium, after pretreatment with 50 proportional, variant DES, 1 proportional, variant thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor)-induced [Ca2+]i rises were abolished. Conversely, thapsigargin pretreatment abolished DES-induced [Ca2+]i rises. Inhibition of phospholipase C with U73122 did not alter DES-induced [Ca2+]i rises. At a concentration of 5 proportional, variant, DES increased cell viability. At concentrations of 100-200 microM, DES decreased viability in a concentration-dependent manner. The effect of 5 and 100 microM DES on viability was partly reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N' -tetraacetic acid (BAPTA). DES-induced cell death was induced via apoptosis as demonstrated by propidium iodide staining. DES (100 microM)-induced [Ca2+]i rises were largely inhibited by pretreatment with the estrogen receptor antagonist ICI-182,780 (100 microM). ICI-182,780 did not affect 5 microM DES-induced increase in viability but partly reversed 100 microM DES-induced cell death. Collectively, in CHO-K1 cells, DES induced [Ca2+]i rises by stimulating estrogen receptors leading to Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent manner, and Ca2+ influx. DES-caused cytotoxicity was mediated by an estrogen receptor- and Ca2+-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号