首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An Escherichia coli mutant, ts121, was isolated following random insertional mutagenesis using phage lambda Mu transposition. The mutant phenotype includes inability to form colonies at temperatures above 38 degrees C and inability to propagate phage lambda at all temperatures. A lambda i434 cI- (ts121)+ transducing phage was isolated on the basis of its ability to form plaques on ts121 mutant bacteria. Using this transducing phage, it was shown through complementation and protein analyses, that the ts121 mutation is located in the dnaB gene. The exact insertion event was identified by polymerase chain reaction amplification of the DNA sequences containing the insertion junction. The mutational insertion event in ts121 was mapped precisely between base pairs 1514 and 1515 of the dnaB gene. This result predicts that the mutant dnaB protein has lost its six terminal amino acids. The reading frame shifts into Mu-specific DNA sequences resulting in an additional 20 amino acid residues. The E. coli wild type dnaB protein participates in host replication and interacts with lambda P protein to initiate phage lambda DNA replication. Our results demonstrate that the extreme carboxyl end of the dnaB protein is required for productive interaction with the lambda P replication protein at all temperatures, and is important for dnaB function at temperatures above 38 degrees C. Cold-sensitive extragenic suppressors of the ts121 mutation were isolated on the basis of their ability to restore colony formation at 42 degrees C. One of these extragenic suppressors was mapped at 54 min on the E. coli genetic map and localized to the suhB gene, whose product may affect the expression of a number of genes at the translational level.  相似文献   

3.
Survivor clones with defects in gene functions that participate in the replicative killing of thermally induced Escherichia coli constructs with integrated lambda N through P or cIII through P gene fragments were selected at a frequency of about 10(-6). Among the population of survivors, clones were identified that exhibited normal lambda immunity at 30 degrees C, as shown by their ability to prevent the plating of lambda wild type and to support the plating of a nearly identical heteroimmune bacteriophage lambda imm434. However, when placed at 42 degrees C to inactivate the cIts857 repressor, these survivor isolates excluded the plating of both lambda wild-type and lambda imm434 phages, a phenotype designated nonimmune exclusion (Nie). Spontaneous mutants of lambda wild type were isolated that overcame the Nie phenotype and would plaque at 42 degrees C on cell lawns of these isolates. The acquired lambda se mutations suppressed nonimmune exclusion, prevented lysogenization by interrupting repressor expression from PRM, and made the phage insensitive to replicative inhibition. The se mutations were genetically mapped and sequenced within the rightward lambda operator site.  相似文献   

4.
Petit bacteriophage λ is a hollow λ head precursor which is found in λ-infected lysates, including lysates of phage λ carrying mutations in head genes. Wild-type petit λ has a protein composition similar to heads, except that it is missing pD 4, a major component of heads. About 95% of the mass of petit λ is pE, the major structural protein of heads, and in addition it has proteins pB, h3, X1, and X2. Tryptic fingerprint analysis shows that h3 is a proteolytic cleavage product of pB, and previous experiments have shown that X1 and X2 are protein fusion products, closely related to each other and containing amino acid sequences of both pC and pE. Petit lambdas derived from infection by phages defective in genes A or D are indistinguishable from wild-type petit λ. B, C, or groE defective petit lambdas show differences from wild-type in protein composition and in extent of protein processing. On the basis of the properties of mutant petit lambdas it is concluded that: (1) the protein processing reactions (cleavage of pB; fusion of pC with pE) occur on the petit λ structure; (2) cleavage of pB requires the functioning of genes C and groE but not A or D; (3) fusion of pC and pE requires gene groE but not A, B or D; (4) pNu3 participates directly in petit λ assembly but is lost from the structure by the time assembly is complete.Physical studies of petit λ show that wild-type, A, B and D petit lambdas sediment at 150 S, while C and groE petit lambdas sediment at 190 S. Purified petit λ of either class has an ultraviolet absorption spectrum characteristic of pure protein.  相似文献   

5.
Bacteriophage lambdahyp mutants have been isolated as survivors of Escherichia coli K-12 bacteria lysogenic for lambda Nam7am53cI857. The hyp mutants are characterized by (i) their localization in the y region very close to the imm lambda/imm434 boundary, (ii) polarity on O gene expression, (iii) immediate recovery of lambda immunity at 30 degrees C after prolonged growth of lambda Nam7am53cI857 hyp lysogens at 42 degrees C even in the presence of an active cro gene product, (iv) ability of phage lambda v2v3vs326 but not lambda v1v2v3 to propagate on lambda cI+hyp lysogens, (v) inability to express lambda exonuclease activity after prophage induction, and (vi) inviability at any temperature of phage carrying the hyp mutation. All these properties are referred to collectively as the Hyp phenotype. We show that the Hyp phenotype is due to cII-independent constitutive cI-gene-product synthesis originating in the y region, which results in the synthesis of anti-cro RNA species, and constitutive levels of cro gene product present even in lambda cI+hyp lysogens. A model is presented which is consistent with all the experimental observations.  相似文献   

6.
Escherichia coli mutants were isolated that supported the growth of a lambda Ots and, in at least one case, a lambda Bts phage at the normally nonpermissive temperature of 39 degrees C. In one such strain, Ots and Bts suppression ability appeared to be a function of the guaB gene. Ots suppression by the mutant guaB strain was prevented if high levels of guanine or xanthine were present in the medium. No other base had any effect on Ots suppression in this strain. Other strains carrying spontaneous mutations resulting in guanine or xanthine auxotrophy (guaA or guaB lesions, respectively) all allowed lambda Ots replication at 39 degrees C; Ots suppression in these strains was also abolished by addition of guanine to the medium. Thus, reduced intracellular guanine levels resulting from guaA or guaB mutations appeared to suppress the inability of lambda Ots and, at least in some cases, Bts bacteriophage to form plaques at 39 degrees C. In burst size experiments, a guaB mutant produced a larger phage yield per infected cell of both lambda Ots and lambda O+ phage at 39 degrees C than did a similar guaB+ strain. It appeared that a lower-than-normal level of guanine (or a guanine derivative) in these cells may permit unusually efficient lambda replication. The fact that O+ and lambda Ots bursts in the guaB mutant were reduced significantly by addition of exogenous guanine to the medium is consistent with this suggestion. Another strain that suppresses the Ots allele has no known auxotrophic requirements, and suppression in this strain was unaffected by addition of guanine to the medium; however, addition of cytidine to the medium specifically eliminated Ots suppression in this strain. The mutation responsible for allowing Ots replication in this strain is unknown.  相似文献   

7.
A bacteriophage T4 gene which functions to inhibit Escherichia coli Lon protease has been identified. This pin (proteolysis inhibition) gene was selected for its ability to support plaque formation by a lambda Ots vector at 40 degrees C. Southern blot experiments indicated that this T4 gene is included within the 4.9-kilobase XbaI fragment which contains gene 49. Subcloning experiments showed that T4 gene 49.1 (designated pinA) is responsible for the ability of the Ots vector to form plaques at 40 degrees C. Deficiencies in Lon protease activity are the only changes known in E. coli that permit lambda Ots phage to form plaques efficiently at 40 degrees C. lon+ lysogens of the lambda Ots vector containing pinA permitted a lambda Ots phage to form plaques efficiently at 40 degrees C. Furthermore, these lysogens, upon comparison with similar lysogens lacking any T4 DNA, showed reduced levels of degradation of puromycyl polypeptides and of canavanyl proteins. The lon+ lysogens that contained pinA exhibited other phenotypic characteristics common to lon strains, such as filamentation and production of mucoid colonies. Levels of degradation of canavanyl proteins were essentially the same, however, in null lon lysogens which either contained or lacked pinA. We infer from these data that the T4 pinA gene functions to block Lon protease activity; pinA does not, however, appear to block the activity of proteases other than Lon that are involved in the degradation of abnormal proteins.  相似文献   

8.
G Johnson  W Widner  W N Xin    M Feiss 《Journal of bacteriology》1991,173(9):2733-2738
Bacteriophage lambda development is blocked in cells carrying a plasmid that expresses the terminase genes of phage 21. The interference is caused by the small subunit of phage 21 terminase, gp1. Mutants of lambda able to form plaques in the presence of gp1 include sti mutants. One such mutation, sti30, is an A. T-to-G.C transition mutation at base pair 184 on the lambda chromosome. The sti30 mutation extends the length of the ribosome-binding sequence of the Nul gene that is complementary to the 3' end of the 16S rRNA from GGA to GGAG. The sti30 mutation causes a approximately 50-fold increase in the level of expression of a Nul-lacZ reporter gene, indicating that the sti30 mutation overcomes the gp1 inhibition by increasing the level of expression of gpNul. Although the Nul and A genes of lambda overlap, the sti30 mutation has little effect on the level of gpA expression, indicating that translational coupling does not occur.  相似文献   

9.
10.
A simple technique for the isolation of deletion mutants of phage lambda.   总被引:5,自引:0,他引:5  
We describe a simple technique for isolating deletion mutants of phage lambda and use it to dissect a cloned fragment of foreign DNA. The technique is based on our previous finding that the normally essential product of lambda head gene D is dispensible for phage growth if the DNA content of the phage is less than 82% that of lambda wild-type (Sternberg and Weisberg, 1977). A significant fraction of the few phage that form plaques when a D amber mutant is plated on a nonsuppressing host contains deletions that reduce the phage chromosome size to less than 82% that of wild-type. It is possible to isolate deletions ranging in size from less than 1.5 kb to 14 kb (3 to 27% of wild-type lambda), and the size range can be restricted by an appropriate choice of the DNA content of the starting phage. This method, unlike the older EDTA or heat resistance methods, permits the scoring of deletions because of the absence of phenotypic variants. We investigated the effect of several host and phage mutations on deletion frequency and type and have determined that a host polA mutation increases the frequency of deletions about 30-50-fold without changing the type of deletions. A host mutD mutation or thymine deprivation increases deletion frequency about 10-fold. In contrast, a host ligts mutation has no effect on the frequency of deletions. We have also determined that the size of the smallest lambda chromosome packageable in a plaque-forming phage particle is 72-73% that of lambda wild-type.  相似文献   

11.
S Finkel  C Halling  R Calendar 《Gene》1986,46(1):65-69
The old gene product of the P2 prophage interferes with plaque formation by lambda wild type phage but allows lambda phages whose red and gam genes have been deleted to form small, visible plaques (the lambda Spi- phenotype). The old gene product also kills Escherichia coli recB or recC mutants. We have cloned the old gene into the high-copy-number plasmid pBR322, where it prevents plaque formation by both lambda Spi+ and lambda Spi- phages. We transferred a DNA fragment that carries the old gene to the low-copy-number plasmid pSC101 and found that lambda Spi- phages can be selected on strains that carry this plasmid. The plasmid-borne old gene kills E. coli recB mutants, providing a selection for old- mutants.  相似文献   

12.
J M Tabor  V C Bode 《Gene》1979,5(4):255-274
The biological containment of the lambda gt family of cloning vectors has been enhanced by conditionally blocking DNA replication as well as head and tail morphogenesis. The vector, lambda gtALO.lambda B, was constructed by crossing the Oam29, Aama1 and Lam439 mutations into lambda gt.lambda B. The mutation blocking phage DNA replication, Oam29, is suppressed by suII+ or suIII+. The head gene mutation, Aama1, is suppressed by suIII+ but not by suII+ and the tail gene mutation, Lam439, is suppressed by suII+ but not by suIII+. This allows the option of increasing the biological containment by producing heads when a large amount of cloned DNA is being prepared from an individual isolate. A model recombinant, lambda gt Aama1 Lam439 Oam29.KmR' (lambda gtALO.KmR') was constructed and the containment of the vector was evaluated by the series of standardized experiments required for EK2 certification.  相似文献   

13.
Locations and amounts of major structural proteins in bacteriophage lambda   总被引:7,自引:0,他引:7  
The locations in the virion of the three major protein components of lambda, pE, pD and pV, have been determined by electron microscopic examination of complexes between virions and antisera specific for individual proteins. By this test both pE and pD are distributed over the entire surface of the phage head and pV is distributed along the length of the phage tail. Quantitation of sodium dodecyl sulfate-polyacrylamide gel patterns indicates that pE and pD are present in the head in equal numbers. The total amounts of pE and pD per phage are most consistent with a head structure of triangulation number 7, containing 420 subunits each of pE and pD.  相似文献   

14.
The kinetics of the lambda-phage major structural protein syntheses was determined during the lytic development by radioimmunoassay. For this purpose, the individual structural proteins such as pE, pV and pD were isolated in polyacrylamide gel by the preparative SDS-electrophoresis. The proper monospecific antisera were obtained. All the proteins were labelled with 125J in vitro by a chloramine method. The degree of nativity for iodinated proteins was determined by the electrophoretic and immunochemical methods. The concentrations of proteins pE, pV and pD were measured in lysates of E. coli W3350 cells infected with the phage lambda C1857 at various time intervals after infection using a competitive radioimmunoassay. The concentrations of all three proteins turned out to increase sharply between 20 and 40 minutes after infection, then the rate of synthesis of structual proteins declined gradually. On a cell basis the accumulation of major proteins of the head such as pE and pD exceeded by a factor of 10 or 20 the amount required for collection of the infected progeny or pahge; at the same time the primary component of the tail pV accumulated to a lesser extent. The autonomic regulation of the syntheses of major phage proteins is assumed to be exercised as a translation level in the lytic development of the phage lambda.  相似文献   

15.
Escherichia coli K-12 mutants that are resistant to bacteriophage chi, defective in motility, and unable to grow at high temperature (42 degrees C) were isolated from among those selected for rifampin resistance at low temperature (30 degrees C) after mutagenesis with N-methyl-N'-nitro-N-nitrosoguanidine. Genetic analysis of one such mutant indicated the presence of two mutations that probably affect the beta subunit of ribonucleic acid (RNA) polymerase: one (rif) causing rifampin resistance and the other (Ts-74) conferring resistance to phage chi (and loss of motility) and temperature sensitivity for growth. Observations with an electron microscope revealed that the number of flagella per mutant cell was significantly reduced, suggesting that the Ts-74 mutation somehow affected flagella formation at the permissive temperature. When a mutant culture was transferred from 30 to 42 degrees C, deoxyribonucleic acid synthesis accelerated normally, but RNA or protein synthesis was enhanced relatively little. The rate of synthesis of beta and beta' subunits of RNA polymerase was low even at 30 degrees C and was further reduced at 42 degrees C, in contrast to the parental wild-type strain. Expression of the lactose and other sugar fermentation operons, as well as lysogenization with phage lambda, occurred normally at 30 degrees C, suggesting that the mutation does not cause general shut-off of gene expression regulated by cyclic adenosine 3',5'-monophosphate.  相似文献   

16.
We investigated the capacity of Escherichia coli mutants defective in the single-strand deoxyribonucleic acid (DNA)-binding protein to amplify the synthesis of the recA protein, induce prophage lambda, and degrade their DNA after treatment with ultraviolet radiation, mitomycin C, or bleomycin. The thermosensitive ssbA1 strain induced recA protein and lambda phage normally at 30 degrees C, but no induction was observed at 42 degrees C when ultraviolet radiation or mitomycin C was used. The lexC113 mutant did not amplify recA protein synthesis or induce phage lambda at either 30 or 42 degrees C with those agents. Bleomycin was able to elicit induction of recA and phage lambda in both mutants at any temperature. After induction with ultraviolet radiation at the elevated temperature, no DNA degradation was observed for 40 min, but at later times there was increased degradation in the lexC113 strain, compared with the wild type, and even greater degradation in the ssbA1 mutant. We discuss the role of single-strand DNA-binding protein in induction and the possibility that the lexC product may exert its influence on recA and lambda induction at the level of the single-strand DNA gap.  相似文献   

17.
In Escherichia coli K-12, the receptor for phage lambda is an outer membrane protein which inactivates the phage in vitro. Lambda receptor activity was found in extracts from all wild strains of E. coli tested, although most of them fail to support growth of the phage. In some cases this failure is due to a masking of the receptor in vivo, the bacteria being unable to adsorb the phage or to react with antireceptor antibodies. In other cases, adsorption does occur, and the nature of the block in phage growth was not investigated. Most Mal+ strains of Shigella have lambda receptor, whereas most Mal- strains do not have it. Synthesis of the lambda receptor in Shigella is thus presumably controlled by the positive regulator gene of the maltose regulon as is the case in E. coli K-12. Phage lambda adsorbs on many Mal+ strains of Shigella and even yields plaques on some of them, although at a low frequency. No lambda receptor activity could be found in extracts of several strains of Salmonella and Levinea.  相似文献   

18.
19.
20.
Hybrid lambda phages which have the E lysis gene of the bacteriophage phi X174 in cis to defective nonsense and deletion alleles of the normal lambda lysis genes S and R have been constructed and shown to be fully competent for plaque-forming ability, which demonstrates that the single-gene, lysozyme-independent lysis system of phi X174 and related phages can serve the lytic function for large complex phages. These hybrid phages are unable to form plaques on a slyD host. Moreover, plaque morphology indicates that in E-mediated lysis the soluble lambda R endolysin can participate in lysis, indicating that the protein E-mediated lesions are not completely sealed off from the periplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号