首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the study of multiple failure time data with recurrent clinical endpoints, the classical independent censoring assumption in survival analysis can be violated when the evolution of the recurrent events is correlated with a censoring mechanism such as death. Moreover, in some situations, a cure fraction appears in the data because a tangible proportion of the study population benefits from treatment and becomes recurrence free and insusceptible to death related to the disease. A bivariate joint frailty mixture cure model is proposed to allow for dependent censoring and cure fraction in recurrent event data. The latency part of the model consists of two intensity functions for the hazard rates of recurrent events and death, wherein a bivariate frailty is introduced by means of the generalized linear mixed model methodology to adjust for dependent censoring. The model allows covariates and frailties in both the incidence and the latency parts, and it further accounts for the possibility of cure after each recurrence. It includes the joint frailty model and other related models as special cases. An expectation-maximization (EM)-type algorithm is developed to provide residual maximum likelihood estimation of model parameters. Through simulation studies, the performance of the model is investigated under different magnitudes of dependent censoring and cure rate. The model is applied to data sets from two colorectal cancer studies to illustrate its practical value.  相似文献   

2.
Molecular epidemiological studies confirm a substantial contribution of individual genes to variability in susceptibility to disease and death for humans. To evaluate the contribution of all genes to susceptibility and to estimate individual survival characteristics, survival data on related individuals (eg twins or other relatives) are needed. Correlated gamma-frailty models of bivariate survival are used in a joint analysis of survival data on more than 31,000 pairs of Danish, Swedish and Finnish male and female twins using the maximum likelihood method. Additive decomposition of frailty into genetic and environmental components is used to estimate heritability in frailty. The estimate of the standard deviation of frailty from the pooled data is about 1.5. The hypothesis that variance in frailty and correlations of frailty for twins are similar in the data from all three countries is accepted. The estimate of narrow-sense heritability in frailty is about 0.5. The age trajectories of individual hazards are evaluated for all three populations of twins and both sexes. The results of our analysis confirm the presence of genetic influences on individual frailty and longevity. They also suggest that the mechanism of these genetic influences may be similar for the three Scandinavian countries. Furthermore, results indicate that the increase in individual hazard with age is more rapid than predicted by traditional demographic life tables.  相似文献   

3.
Liang Li  Bo Hu  Tom Greene 《Biometrics》2009,65(3):737-745
Summary .  In many longitudinal clinical studies, the level and progression rate of repeatedly measured biomarkers on each subject quantify the severity of the disease and that subject's susceptibility to progression of the disease. It is of scientific and clinical interest to relate such quantities to a later time-to-event clinical endpoint such as patient survival. This is usually done with a shared parameter model. In such models, the longitudinal biomarker data and the survival outcome of each subject are assumed to be conditionally independent given subject-level severity or susceptibility (also called frailty in statistical terms). In this article, we study the case where the conditional distribution of longitudinal data is modeled by a linear mixed-effect model, and the conditional distribution of the survival data is given by a Cox proportional hazard model. We allow unknown regression coefficients and time-dependent covariates in both models. The proposed estimators are maximizers of an exact correction to the joint log likelihood with the frailties eliminated as nuisance parameters, an idea that originated from correction of covariate measurement error in measurement error models. The corrected joint log likelihood is shown to be asymptotically concave and leads to consistent and asymptotically normal estimators. Unlike most published methods for joint modeling, the proposed estimation procedure does not rely on distributional assumptions of the frailties. The proposed method was studied in simulations and applied to a data set from the Hemodialysis Study.  相似文献   

4.
We propose a joint analysis of recurrent and nonrecurrent event data subject to general types of interval censoring. The proposed analysis allows for general semiparametric models, including the Box–Cox transformation and inverse Box–Cox transformation models for the recurrent and nonrecurrent events, respectively. A frailty variable is used to account for the potential dependence between the recurrent and nonrecurrent event processes, while leaving the distribution of the frailty unspecified. We apply the pseudolikelihood for interval-censored recurrent event data, usually termed as panel count data, and the sufficient likelihood for interval-censored nonrecurrent event data by conditioning on the sufficient statistic for the frailty and using the working assumption of independence over examination times. Large sample theory and a computation procedure for the proposed analysis are established. We illustrate the proposed methodology by a joint analysis of the numbers of occurrences of basal cell carcinoma over time and time to the first recurrence of squamous cell carcinoma based on a skin cancer dataset, as well as a joint analysis of the numbers of adverse events and time to premature withdrawal from study medication based on a scleroderma lung disease dataset.  相似文献   

5.
Shared frailty models for recurrent events and a terminal event   总被引:1,自引:0,他引:1  
Liu L  Wolfe RA  Huang X 《Biometrics》2004,60(3):747-756
There has been an increasing interest in the analysis of recurrent event data (Cook and Lawless, 2002, Statistical Methods in Medical Research 11, 141-166). In many situations, a terminating event such as death can happen during the follow-up period to preclude further occurrence of the recurrent events. Furthermore, the death time may be dependent on the recurrent event history. In this article we consider frailty proportional hazards models for the recurrent and terminal event processes. The dependence is modeled by conditioning on a shared frailty that is included in both hazard functions. Covariate effects can be taken into account in the model as well. Maximum likelihood estimation and inference are carried out through a Monte Carlo EM algorithm with Metropolis-Hastings sampler in the E-step. An analysis of hospitalization and death data for waitlisted dialysis patients is presented to illustrate the proposed methods. Methods to check the validity of the proposed model are also demonstrated. This model avoids the difficulties encountered in alternative approaches which attempt to specify a dependent joint distribution with marginal proportional hazards and yields an estimate of the degree of dependence.  相似文献   

6.
Jiang H  Fine JP  Chappell R 《Biometrics》2005,61(2):567-575
Studies of chronic life-threatening diseases often involve both mortality and morbidity. In observational studies, the data may also be subject to administrative left truncation and right censoring. Because mortality and morbidity may be correlated and mortality may censor morbidity, the Lynden-Bell estimator for left-truncated and right-censored data may be biased for estimating the marginal survival function of the non-terminal event. We propose a semiparametric estimator for this survival function based on a joint model for the two time-to-event variables, which utilizes the gamma frailty specification in the region of the observable data. First, we develop a novel estimator for the gamma frailty parameter under left truncation. Using this estimator, we then derive a closed-form estimator for the marginal distribution of the non-terminal event. The large sample properties of the estimators are established via asymptotic theory. The methodology performs well with moderate sample sizes, both in simulations and in an analysis of data from a diabetes registry.  相似文献   

7.
There is a growing interest in the analysis of survival data with a cured proportion particularly in tumor recurrences studies. Biologically, it is reasonable to assume that the recurrence time is mainly affected by the overall health condition of the patient that depends on some covariates such as age, sex, or treatment type received. We propose a semiparametric frailty‐Cox cure model to quantify the overall health condition of the patient by a covariate‐dependent frailty that has a discrete mass at zero to characterize the cured patients, and a positive continuous part to characterize the heterogeneous health conditions among the uncured patients. A multiple imputation estimation method is proposed for the right‐censored case, which is further extended to accommodate interval‐censored data. Simulation studies show that the performance of the proposed method is highly satisfactory. For illustration, the model is fitted to a set of right‐censored melanoma incidence data and a set of interval‐censored breast cosmesis data. Our analysis suggests that patients receiving treatment of radiotherapy with adjuvant chemotherapy have a significantly higher probability of breast retraction, but also a lower hazard rate of breast retraction among those patients who will eventually experience the event with similar health conditions. The interpretation is very different to those based on models without a cure component that the treatment of radiotherapy with adjuvant chemotherapy significantly increases the risk of breast retraction.  相似文献   

8.
We develop a joint model for the analysis of longitudinal and survival data in the presence of data clustering. We use a mixed effects model for the repeated measures that incorporates both subject- and cluster-level random effects, with subjects nested within clusters. A Cox frailty model is used for the survival model in order to accommodate the clustering. We then link the two responses via the common cluster-level random effects, or frailties. This model allows us to simultaneously evaluate the effect of covariates on the two types of responses, while accounting for both the relationship between the responses and data clustering. The model was motivated by a study of end-stage renal disease patients undergoing hemodialysis, where we wished to evaluate the effect of iron treatment on both the patients' hemoglobin levels and survival times, with the patients clustered by enrollment site.  相似文献   

9.
Joint analysis of recurrent and nonrecurrent terminal events has attracted substantial attention in literature. However, there lacks formal methodology for such analysis when the event time data are on discrete scales, even though some modeling and inference strategies have been developed for discrete-time survival analysis. We propose a discrete-time joint modeling approach for the analysis of recurrent and terminal events where the two types of events may be correlated with each other. The proposed joint modeling assumes a shared frailty to account for the dependence among recurrent events and between the recurrent and the terminal terminal events. Also, the joint modeling allows for time-dependent covariates and rich families of transformation models for the recurrent and terminal events. A major advantage of our approach is that it does not assume a distribution for the frailty, nor does it assume a Poisson process for the analysis of the recurrent event. The utility of the proposed analysis is illustrated by simulation studies and two real applications, where the application to the biochemists' rank promotion data jointly analyzes the biochemists' citation numbers and times to rank promotion, and the application to the scleroderma lung study data jointly analyzes the adverse events and off-drug time among patients with the symptomatic scleroderma-related interstitial lung disease.  相似文献   

10.
Pennell ML  Dunson DB 《Biometrics》2006,62(4):1044-1052
Many biomedical studies collect data on times of occurrence for a health event that can occur repeatedly, such as infection, hospitalization, recurrence of disease, or tumor onset. To analyze such data, it is necessary to account for within-subject dependency in the multiple event times. Motivated by data from studies of palpable tumors, this article proposes a dynamic frailty model and Bayesian semiparametric approach to inference. The widely used shared frailty proportional hazards model is generalized to allow subject-specific frailties to change dynamically with age while also accommodating nonproportional hazards. Parametric assumptions on the frailty distribution are avoided by using Dirichlet process priors for a shared frailty and for multiplicative innovations on this frailty. By centering the semiparametric model on a conditionally conjugate dynamic gamma model, we facilitate posterior computation and lack-of-fit assessments of the parametric model. Our proposed method is demonstrated using data from a cancer chemoprevention study.  相似文献   

11.
Recurrent events could be stopped by a terminal event, which commonly occurs in biomedical and clinical studies. In this situation, dependent censoring is encountered because of potential dependence between these two event processes, leading to invalid inference if analyzing recurrent events alone. The joint frailty model is one of the widely used approaches to jointly model these two processes by sharing the same frailty term. One important assumption is that recurrent and terminal event processes are conditionally independent given the subject‐level frailty; however, this could be violated when the dependency may also depend on time‐varying covariates across recurrences. Furthermore, marginal correlation between two event processes based on traditional frailty modeling has no closed form solution for estimation with vague interpretation. In order to fill these gaps, we propose a novel joint frailty‐copula approach to model recurrent events and a terminal event with relaxed assumptions. Metropolis–Hastings within the Gibbs Sampler algorithm is used for parameter estimation. Extensive simulation studies are conducted to evaluate the efficiency, robustness, and predictive performance of our proposal. The simulation results show that compared with the joint frailty model, the bias and mean squared error of the proposal is smaller when the conditional independence assumption is violated. Finally, we apply our method into a real example extracted from the MarketScan database to study the association between recurrent strokes and mortality.  相似文献   

12.
This paper reports 11 cases of recurrence 10 years or more after primary treatment of clinically local cutaneous melanoma at the Peter MacCallum Cancer Institute. Using the product-limit method for estimating recurrence-free survival, two late recurrence rates have been calculated. The estimated late recurrence rate among all treated patients is 5 percent (95 percent confidence interval: 2 to 8 percent), and the estimated late recurrence rate for the group who survived the first 10 years without recurrence is 7 percent (95 confidence interval: 3 to 11 percent). No prognostic factors were found that could identify a patient subgroup significantly at risk of late recurrence. Recurrence-free survival curves show that most recurrences have presented by the end of 6 years, but later recurrences are seen, the latest in this series being 18.2 years following treatment. While patients probably do not require long-term follow-up in specialist clinics provided they are adequately educated in the nature of their disease, this paper shows the value of long-term statistical surveillance.  相似文献   

13.
Regression with frailty in survival analysis   总被引:5,自引:0,他引:5  
In studies of survival, the hazard function for each individual may depend on observed risk variables but usually not all such variables are known or measurable. This unknown factor of the hazard function is usually termed the individual heterogeneity or frailty. When survival is time to the occurrence of a particular type of event and more than one such time may be obtained for each individual, frailty is a common factor among such recurrence times. A model including frailty is fitted to such repeated measures of recurrence times.  相似文献   

14.
S. Mandal  J. Qin  R.M. Pfeiffer 《Biometrics》2023,79(3):1701-1712
We propose and study a simple and innovative non-parametric approach to estimate the age-of-onset distribution for a disease from a cross-sectional sample of the population that includes individuals with prevalent disease. First, we estimate the joint distribution of two event times, the age of disease onset and the survival time after disease onset. We accommodate that individuals had to be alive at the time of the study by conditioning on their survival until the age at sampling. We propose a computationally efficient expectation–maximization (EM) algorithm and derive the asymptotic properties of the resulting estimates. From these joint probabilities we then obtain non-parametric estimates of the age-at-onset distribution by marginalizing over the survival time after disease onset to death. The method accommodates categorical covariates and can be used to obtain unbiased estimates of the covariate distribution in the source population. We show in simulations that our method performs well in finite samples even under large amounts of truncation for prevalent cases. We apply the proposed method to data from female participants in the Washington Ashkenazi Study to estimate the age-at-onset distribution of breast cancer associated with carrying BRCA1 or BRCA2 mutations.  相似文献   

15.
The observation of repeated events for subjects in cohort studies could be terminated by loss to follow-up, end of study, or a major failure event such as death. In this context, the major failure event could be correlated with recurrent events, and the usual assumption of noninformative censoring of the recurrent event process by death, required by most statistical analyses, can be violated. Recently, joint modeling for 2 survival processes has received considerable attention because it makes it possible to study the joint evolution over time of 2 processes and gives unbiased and efficient parameters. The most commonly used estimation procedure in the joint models for survival events is the expectation maximization algorithm. We show how maximum penalized likelihood estimation can be applied to nonparametric estimation of the continuous hazard functions in a general joint frailty model with right censoring and delayed entry. The simulation study demonstrates that this semiparametric approach yields satisfactory results in this complex setting. As an illustration, such an approach is applied to a prospective cohort with recurrent events of follicular lymphomas, jointly modeled with death.  相似文献   

16.
This work is motivated by clinical trials in chronic heart failure disease, where treatment has effects both on morbidity (assessed as recurrent non‐fatal hospitalisations) and on mortality (assessed as cardiovascular death, CV death). Recently, a joint frailty proportional hazards model has been proposed for these kind of efficacy outcomes to account for a potential association between the risk rates for hospital admissions and CV death. However, more often clinical trial results are presented by treatment effect estimates that have been derived from marginal proportional hazards models, that is, a Cox model for mortality and an Andersen–Gill model for recurrent hospitalisations. We show how these marginal hazard ratios and their estimates depend on the association between the risk processes, when these are actually linked by shared or dependent frailty terms. First we derive the marginal hazard ratios as a function of time. Then, applying least false parameter theory, we show that the marginal hazard ratio estimate for the hospitalisation rate depends on study duration and on parameters of the underlying joint frailty model. In particular, we identify parameters, for example the treatment effect on mortality, that determine if the marginal hazard ratio estimate for hospitalisations is smaller, equal or larger than the conditional one. How this affects rejection probabilities is further investigated in simulation studies. Our findings can be used to interpret marginal hazard ratio estimates in heart failure trials and are illustrated by the results of the CHARM‐Preserved trial (where CHARM is the ‘Candesartan in Heart failure Assessment of Reduction in Mortality and morbidity’ programme).  相似文献   

17.
In a longitudinal study where the recurrence of an event and a terminal event such as death are observed, a certain portion of the subjects may experience no event during a long follow-up period; this often denoted as the cure group which is assumed to be the risk-free from both recurrent events and death. However, this assumption ignores the possibility of death, which subjects in the cure group may experience. In the present study, such misspecification is investigated with the addition of a death hazard model to the cure group. We propose a joint model using a frailty effect, which reflects the association between a recurrent event and death. For the estimation, an expectation-maximization (EM) algorithm was developed and PROC NLMIXED in SAS was incorporated under a piecewise constant baseline. Simulation studies were performed to check the performance of the suggested method. The proposed method was applied to leukemia patients experiencing both infection and death after bone marrow transplant.  相似文献   

18.
Ripatti S  Palmgren J 《Biometrics》2000,56(4):1016-1022
There exists a growing literature on the estimation of gamma distributed multiplicative shared frailty models. There is, however, often a need to model more complicated frailty structures, but attempts to extend gamma frailties run into complications. Motivated by hip replacement data with a more complicated dependence structure, we propose a model based on multiplicative frailties with a multivariate log-normal joint distribution. We give a justification and an estimation procedure for this generally structured frailty model, which is a generalization of the one presented by McGilchrist (1993, Biometrics 49, 221-225). The estimation is based on Laplace approximation of the likelihood function. This leads to estimating equations based on a penalized fixed effects partial likelihood, where the marginal distribution of the frailty terms determines the penalty term. The tuning parameters of the penalty function, i.e., the frailty variances, are estimated by maximizing an approximate profile likelihood. The performance of the approximation is evaluated by simulation, and the frailty model is fitted to the hip replacement data.  相似文献   

19.
Summary In many instances, a subject can experience both a nonterminal and terminal event where the terminal event (e.g., death) censors the nonterminal event (e.g., relapse) but not vice versa. Typically, the two events are correlated. This situation has been termed semicompeting risks (e.g., Fine, Jiang, and Chappell, 2001 , Biometrika 88, 907–939; Wang, 2003 , Journal of the Royal Statistical Society, Series B 65, 257–273), and analysis has been based on a joint survival function of two event times over the positive quadrant but with observation restricted to the upper wedge. Implicitly, this approach entertains the idea of latent failure times and leads to discussion of a marginal distribution of the nonterminal event that is not grounded in reality. We argue that, similar to models for competing risks, latent failure times should generally be avoided in modeling such data. We note that semicompeting risks have more classically been described as an illness–death model and this formulation avoids any reference to latent times. We consider an illness–death model with shared frailty, which in its most restrictive form is identical to the semicompeting risks model that has been proposed and analyzed, but that allows for many generalizations and the simple incorporation of covariates. Nonparametric maximum likelihood estimation is used for inference and resulting estimates for the correlation parameter are compared with other proposed approaches. Asymptotic properties, simulations studies, and application to a randomized clinical trial in nasopharyngeal cancer evaluate and illustrate the methods. A simple and fast algorithm is developed for its numerical implementation.  相似文献   

20.
Huang X  Wolfe RA 《Biometrics》2002,58(3):510-520
To account for the correlation between failure and censoring, we propose a new frailty model for clustered data. In this model, the risk to be censored is affected by the risk of failure. This model allows flexibility in the direction and degree of dependence between failure and censoring. It includes the traditional frailty model as a special case. It allows censoring by some causes to be analyzed as informative while treating censoring by other causes as noninformative. It can also analyze data for competing risks. To fit the model, the EM algorithm is used with Markov chain Monte Carlo simulations in the E-steps. Simulation studies and analysis of data for kidney disease patients are provided. Consequences of incorrectly assuming noninformative censoring are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号