首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
HTC rat hepatoma cells synthesize and secrete both tissue-type plasminogen activator (tPA) and type 1 plasminogen activator-inhibitor (PAI-1). Incubation with the synthetic glucocorticoid dexamethasone causes a rapid decrease in tPA activity which is secondary to a 5-fold increase in PAI-1 antigen and activity. Paradoxically, dexamethasone increases tPA antigen by 50%. We have analyzed HTC cell RNA by Northern and slot blot analysis, using as probes radiolabeled human PAI-1 and rat tPA cDNAs. HTC cells have a single species of PAI-1 mRNA of approximately 3.2 kilobases, which is increased 4-fold upon incubation with dexamethasone. Maximal induction occurs after 8-10 h of incubation. Half-maximal induction occurs at 5 nM dexamethasone. Dexamethasone also transiently increases the 2.8 kilobase tPA mRNA. The protein synthesis inhibitor cycloheximide does not affect accumulation of PAI-1 mRNA and does not block its induction by dexamethasone. In contrast, cycloheximide alone causes an increase in tPA mRNA, and in combination with dexamethasone, no further increase is observed. Induction of both mRNAs is prevented by actinomycin D. We conclude that the dexamethasone-induced increase in HTC cell PAI-1 activity and antigen is the result of a direct effect on accumulation of PAI-1 mRNA.  相似文献   

2.
3.
The conditions of primary culture for rat hepatocytes was investigated on the releasing effect of Plasminogen Activator (PA). The culture method using Collagen Coated Dish (CCD-method) which is currently available and the ordinary culture method using Plastic Culture Dish (PCD-method) were employed for that purpose in a comparative way. The effect of the addition of some supplements, that is FN, Aprotinin, EGF were also investigated. The following results were obtained. The dissociated rat hepatocytes formed a monolayer with pavementlike morphology at 24-48 hours after seeding. No difference was observed in the morphology of hepatocytes during the culture period between the two methods, although CCD-method allowed 120 hours culture, whereas PCD-method allowed 72 hours. The PA activity was demonstrated on the hepatocytes by either culture method according to the fibrinolysis autography. The cultured hepatocytes released PA into the medium continuously as long as the viability and morphology of the cells were maintained in good state. The PA activity reached the maximum after 96 hours culture in CCD-method, whereas it reached the maximum after 48 hours in PCD-method. The addition of Aprotinin to the culture medium was not necessary for PA release in CCD-method in contrast to PCD-method. When EGF was discontinued in the culture medium, the release of PA was reduced in association with the occurring of morphological disintegration of hepatocytes.  相似文献   

4.
Akao M  Ueshima S  Okada K  Fukao H  Seki T  Ariga T  Matsuo O 《Life sciences》2003,72(15):1695-1704
The liver produces a variety of proteins including plasminogen. Plasminogen is pro-enzyme that is converted into plasmin by plasminogen activator. Plasmin has a broad substrate spectrum and participates in several biological processes, such as fibrinolysis, tissue remodeling, cell migration, angiogenesis and embryogenesis. In the present study, the regulation of plasminogen expression in mouse hepatocytes was investigated in the primary culture system. Expression level of plasminogen mRNA in the culture at the low cell density condition (0.2 x 10(5) cells / cm(2)) was compared with that at the high cell density condition (1.0 x 10 (5) cells / cm(2)). In the low cell density culture, the expression level of plasminogen mRNA decreased by a time-dependent manner. However, mRNAs for albumin and alpha(2)-antiplasmin were not influenced by the low cell density culture. On the other hand, in the high cell density culture, plasminongen mRNA expressed constantly as well as albumin and alpha(2)-antiplasmin mRNAs. Thus, the decrease in plasminogen mRNA expression could specifically occur when the density of hepatocytes was low. The down-regulation of plasminogen mRNA in the low cell density culture is not observed in the presence of cycloheximide, suggesting that the de novo protein synthesis is required for the regulatory mechanism. These findings indicate that the expression of plasminogen mRNA from hepatocyte is dependent on the cell density and the stimulation by cell-cell contact may be an important factor for the constitutive expression of plasminogen gene in hepatocytes.  相似文献   

5.
In primary cultures of ovine thyroid cells, a high level of plasminogen activator (PA) activity was detected in the culture media. This level is much higher than in primary cultures of Sertoli cells, granulosa cells, and pituitary cells. PA activity increased with time in culture and was regulated by TSH and insulin. Activity gel analysis of the culture media revealed a major band of 43,000 daltons and a minor one of 70,000 daltons, suggesting the presence of both of the urokinase-type and the tissue-type PA in the media.  相似文献   

6.
7.
The mechanisms that regulate collagen gene expression in hepatic cells are poorly understood. Accelerated Ca2+ fluxes are associated with inhibiting collagen synthesis selectively in human fibroblasts (Flaherty, M., and Chojkier, M. (1986) J. Biol. Chem. 261, 12060-12065). In suspension cultures of isolated hepatocytes, the Ca2+ agonist vasopressin increases cytosolic levels of free Ca2+ (Thomas, A.P., Marks, J.S., Coll, K.E., and Williamson, J. R. (1983) J. Biol. Chem. 258, 5716-5725). However, whether vasopressin's interactions with plasma membrane V1 receptors attenuate hepatic collagen production is unknown. We investigated this problem by studying vasopressin's effects on collagen synthesis and Ca2+ efflux in long-term primary cultures of differentiated and proliferation-competent adult rat hepatocytes. Twelve-day-old quiescent cultures were exposed to test substances and labeled with [5-3H]proline. Determinations of radioactivity in collagenase-sensitive and collagenase-resistant proteins were used to calculate the relative levels of collagen production. Synthetic [8-arg]vasopressin stimulated 45Ca2+ efflux within 1 min and inhibited hepatocyte collagen production within 3 h by 50%; overall rates of protein synthesis were not affected significantly. In cultures labeled with [35S]methionine, vasopressin also decreased the levels of newly synthesized and secreted albumin, but not fibrinogen, detected in specific immunoprecipitates analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Northern blot analyses using specific [32P]cDNA probes revealed 70% decreases in hybridizable levels of collagen alpha 1(I) mRNA in hepatocyte cultures treated with either vasopressin or Ca2+ ionophore A23187; hybridizable levels of albumin mRNA also fell approximately 50% following vasopressin treatment. Vasopressin did not affect collagen production in quiescent cultures of mouse Swiss 3T3, human myofibroblast or rat smooth muscle cells; and hepatocyte collagen production was unaffected by treatment with glucagon or dibutyryl cAMP. Thus, accelerated Ca2+ fluxes induced by vasopressin are associated with decreased production of hepatocyte collagen and albumin in primary cultures that simulate quiescent adult rat liver.  相似文献   

8.
9.
10.
11.
Serum-free conditioned media and cell extracts from cultured human umbilical vein endothelial cells were analyzed for plasminogen activator by SDS-polyacrylamide gel electrophoresis and enzymography on fibrin-indicator gels. Active bands of free and complexed tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA) were identified by the incorporation of specific antibodies against, respectively, t-PA or u-PA in the indicator gel. The endothelial cells predominantly released a high-molecular-weight t-PA (95000–135000). This t-PA form was converted to Mr-72000 t-PA by 1.5 M NH4OH/39 mM SDS. A component with high affinity for both t-PA and u-PA could be demonstrated in serum-free conditioned medium and endothelial cell extract. The complex between this component and Mr-72000 t-PA comigrated with high-molecular-weight t-PA. From the increase in Mr of t-PA or u-PA upon complex formation, the Mr of the endothelial cell component was estimated to be 50000–70000. The reaction between t-PA or u-PA and the plasminogen activator-binding component was blocked by 5 mM p-aminobenzamidine, while the complexes, once formed, could be cleaved by 1.5 M NH4OH/39 mM SDS. These observations indicated that the active center of plasminogen activator was involed in the complex formation. It was further noted that serum-free conditioned medium of endothelial cell extract inhibited plasminogen activator activity when assayed by the fibrin-plate method. Evidence is provided that the plasminogen activator-binding component was different from a number of the known plasma serine proteinase inhibitors, the placenta inhibitor and the fibroblast surface protein, proteinase-nexin. We conclude that cultured endothelial cells produce a rapid inhibitor of u-PA and t-PA as well as a t-PA-inhibitor complex.  相似文献   

12.
cDNA and gene nucleotide sequence of porcine plasminogen activator.   总被引:13,自引:9,他引:13       下载免费PDF全文
  相似文献   

13.
14.
The capacity of the following peptides to stimulate steroidogenesis in suspensions of capsule (largely glomerulosa) and fasciculata/reticularis cells from rat adrenals was studied: ACTH1–24, ACTH1–13-amide, α-MSH, γ1-MSH, γ-MSH precursor, ACTH4–10, CLIP, and ovine and human β-lipotropin. Only α-MSH and ACTH1–13-amide stimulated glomerulosa cells alone, without effect on fasciculata/reticularis cells. Like ACTH1–24 the two samples of β-lipotropin stimulated both capsule and inner zone cell types in a similar manner. Their activity is attributable to slight ACTH1–39 contamination, as shown by HPLC fractionation. The other peptides lacked any activity. It is likely that the predicted specific glomerulosa stimulant from the pituitary closely resembles α-MSH.  相似文献   

15.
Hormonal and substrate regulation of hepatic glycogen accumulation was evaluated in primary cultures of hepatocytes prepared from 1-day-fasted rats. Hepatocytes were cultured in media containing 5 mM-glucose and 10 mM-lactate and then exposed to 100 nM-dexamethasone for 4 h before an increase in glucose concentration and the addition of insulin. When this protocol was used to mimic the post-prandial state in vivo, net glycogen accumulation (over 2 h) and insulin (10 nM) effects were linear at physiological (5-10 mM) and supraphysiological (20-30 mM) glucose concentrations. To define the role of substrates in glycogen accumulation, hepatocytes were incubated in a buffered salt solution containing 10 mM-glucose and either 10 mM-lactate or 5 mM-glutamine, or both. In the absence of hormones, net glycogen accumulation was increased by 59%, 83%, and 127% by the addition of lactate, glutamine, and lactate plus glutamine respectively, compared with incubations with glucose alone, and 6-fold in the presence of substrates, insulin and dexamethasone. Labelling with [3-3H]glucose and [U-14C]glucose showed that in the absence of hormones approx. 50% of glycogen formation came from glucose via the direct pathway and the remainder from glucose via the indirect pathway or from non-glucose precursors, or both. Insulin-dependent enhancement of glycogen formation is through stimulation of both the direct and indirect pathways, and dexamethasone-dependent stimulation occurs through stimulation of both these pathways of glycogen formation from glucose as well as from non-glucose precursors. Lactate serves as a gluconeogenic C3 precursor for the observed enhanced glycogen formation, whereas glutamine-dependent enhancement of glycogen accumulation occurs primarily through a stimulation of the direct and indirect pathways of glycogen formation from glucose.  相似文献   

16.
Hormonal regulation of plasminogen activator in rat hepatoma cells   总被引:11,自引:0,他引:11  
Plasminogen activators are membrane-associated, arginine-specific serine proteases which convert the inactive plasma zymogen plasminogen to plasmin, an active, broad-spectrum serine protease. Plasmin, the major fibrinolytic enzyme in blood, also participates in a number of physiologic functions involving protein processing and tissue remodelling, and may play an important role in tumor invasion and metastasis. In HTC rat hepatoma cells in tissue culture, glucocorticoids rapidly decrease plasminogen activator (PA) activity. We have shown that this decrease is mediated by induction of a soluble inhibitor of PA activity rather than modulation of the amount of PA. The hormonally-induced inhibitor is a cellular product which specifically inhibits PA but not plasmin. We have isolated variant lines of HTC cells which are selectively resistant to the glucocorticoid inhibition of PA but retain other glucocorticoid responses. These variants lack the hormonally-induced inhibitor; PA from these variants is fully sensitive to inhibition by inhibitor from steroid-treated wild-type cells. Cyclic nucleotides dramatically stimulate PA activity in HTC cells in a time- and concentration-dependent manner. Paradoxically, glucocorticoids further enhance this stimulation. Thus glucocorticoids exert two separate and opposite effects on PA activity. The availability of glucocorticoid-resistant variant cell lines, together with the unique regulatory interactions of steroids and cyclic nucleotides, make HTC cells a useful experimental system in which to study the multihormonal regulation of plasminogen activator.  相似文献   

17.
Heme oxygenase-1 (HO-1) gene expression is induced by various oxidative stress stimuli including sodium arsenite. Since mitogen-activated protein kinases (MAPKs) are involved in stress signaling we investigated the role of arsenite and MAPKs for HO-1 gene regulation in primary rat hepatocytes. The Jun N-terminal kinase (JNK) inhibitor SP600125 decreased sodium arsenite-mediated induction of HO-1 mRNA expression. HO-1 protein and luciferase activity of reporter gene constructs with -754 bp of the HO-1 promoter were induced by overexpression of kinases of the JNK pathway and MKK3. By contrast, overexpression of Raf-1 and ERK2 did not affect expression whereas overexpression of p38alpha, beta, and delta decreased and p38gamma increased HO-1 expression. Electrophoretic mobility shift assays (EMSA) revealed that a CRE/AP-1 element (-668/-654) bound c-Jun, a target of the JNK pathway. Deletion or mutation of the CRE/AP-1 obliterated the JNK- and c-Jun-dependent up-regulation of luciferase activity. EMSA also showed that an E-box (-47/-42) was bound by a putative p38 target c-Max. Mutation of the E-box strongly reduced MKK3, p38 isoform-, and c-Max-dependent effects on luciferase activity. Thus, the HO-1 CRE/AP-1 element mediates HO-1 gene induction via activation of JNK/c-Jun whereas p38 isoforms act through a different mechanism via the E-box.  相似文献   

18.
The bone resorbing agent, prostaglandin E2 (PGE2), was found to alter several components of the plasminogen activator (PA)/plasmin pathway in primary cultures of rat neonatal osteoblast-like cells. The mRNA and activities of both urokinase-type PA (uPA) and tissue-type PA (tPA) were enhanced by PGE2 treatment. The presence of mRNA for the uPA receptor (uPAR) has been demonstrated in these cells and steady-state levels shown to be greatly enhanced, the response being rapid and sustained for at least 24 hours. mRNA for plasminogen activator inhibitor 1 (PAI-1) was modulated in a biphasic manner, with inhibition of the constitutive level apparent at 4 hours of treatment and stimulation apparent at 12 hours and longer, while PAI-1 protein, measured by an ELISA assay for rat PAI-1, was diminished over this period. Neither PAI-2 mRNA nor mRNA for the broad spectrum protease inhibitor, protease nexin-1 (PN-1), was found to be modulated by PGE2. Therefore, PGE2 is likely to stimulate cell surface proteolytic activity, since uPA mRNA and cell-associated activity were elevated, as was mRNA for the cellular receptor for uPA. Although it was not possible to measure uPAR number and affinity it seems likely that elevated uPAR mRNA would translate into increased uPARs which would localize the increased uPA activity to the pericellular region. tPA mRNA and activity were also increased transiently with the activity inhibited with prolonged incubations, apparently by PAI-1. Elevation of tPA mRNA and activity may result in elevated activity within the extracellular matrix as tPA has been reported to associate with several matrix proteins. Thus the early effect of PGE2 would be to promote proteolysis, both pericellularly and in the extracellular matrix. The inhibition of PAI-1 mRNA and protein, which would contribute to the elevation of activity, is due to PGE2, but the later stimulatory effect on PAI-1 mRNA may be due to feedback regulation by transforming growth factor beta (TGFβ), secreted by osteoblasts and activated by elevated levels of PA. © 1995 Wiley-Liss Inc.  相似文献   

19.
The secretion of plasminogen activator by seminiferous tubules at defined stages of the epithelial cycle is influenced both by neighboring spermatogenic cells and by hormones. We have used cRNA probes for urokinase-type (uPA) and tissue-type (tPA) plasminogen activators to analyze their mRNA levels in different stages of the epithelial cycle. Urokinase-type PA mRNA was most abundant in stages VII-VIII, while tPA mRNA levels showed smaller variations between the different stages. Both FSH and (Bu)2cAMP increased the steady-state level of tPA mRNA and tPA production without affecting those of uPA in stages VII-IX in vitro, whereas retinoic acid treatment selectively increased the concentration uPA mRNA and uPA production in stages II-VI. The results show that the expression of the uPA and tPA genes is differentially regulated in specific stages of the rat seminiferous epithelium.  相似文献   

20.
The transport of histidine and glutamine via system N in cultured hepatocytes was found to be subject to hormonal control. This long-term regulation showed the following characteristics. The transport capacity for histidine and glutamine (system N) increased slowly in response to the combination of dexamethasone and insulin to about 4-fold that of controls after 18-30 h. A similar time course was found for the stimulation of system N (2.5-fold) by dexamethasone and glucagon. In contrast the uptake of alpha-aminoisobutyric acid (system A) was rapidly stimulated 3-fold by dexamethasone and insulin and 5-fold by dexamethasone and glucagon within 3-6 h but decreased towards control rates after 24 h of cultivation in minimal essential medium. Dexamethasone, insulin and glucagon each stimulated glutamine uptake about 2-fold in cultures maintained in W/AB 77 medium, while the combination of dexamethasone with either glucagon or insulin resulted in a 3-4-fold increase. Dexamethasone was most effective at about 0.1 microM. Higher concentrations were less efficient. Insulin reached its optimal effect at concentrations above 1 microM. Kinetic analysis revealed that the increased capacity of glutamine transport in response to hormones was due to an increase in Vmax, while Km was essentially unchanged. The hormone-induced stimulation of system N was prevented by cycloheximide. The induced uptake of glutamine was inhibited by excess amounts of asparagine and histidine but not of alpha-methylaminoisobutyric acid or cysteine. These results clearly differentiate the hormonal regulation of system N from that of system A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号