首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The nucleotide sequences of chloroplast 5S rRNAs from cell suspension cultures of the liverworts Marchantia polymorpha and Jungermannia subulata were determined. Their nucleotide sequences, 119 nucleotides long, were highly homologous to each other (96% identity) and had high homology with those from chloroplast 5S rRNAs of two higher plants, tobacco (92% identity) and spinach (92-91% identity), but less homology (87-85% identity) with that from a lower plant, the fern Dryopteris acuminata.  相似文献   

3.
以烟草和拟南芥中的单拷贝抗病基因myb1和NDR1作探针,利用荧光原位杂交的方法分别对这两个基因在玉米(Zea mays L.)和烟草(Nicotiana tabacum L.)、玉米和拟南芥(Arabidopsis thaliana(L.)Heynh.)中的同源性做了研究。杂交结果表明myb1和NDR1的同源序列分别位于玉米第8、5染色体,单个信号位置表明0这两个基因的同源序列在玉米基因组中只有  相似文献   

4.
Using fluorescence in situ hybridization, the authors investigated the homology between three plant species, maize (Zea mays L.) and tobacco (Nicotiana tabacum L.), maize and Arabidopsis thaliana (L.) Heynh. at cytogenetic level using two probes corresponding to functional disease resistance genes myb1 and NDR1 in Arabidopsis and tobacco respectively. The hybridization signals of the tested probes were detected in maize chromosomes 8 and 5 respectively, and the single location of each of the two probes showed only single copy of them in maize genome. The results provided a valuable insight into searching for genes associated with programmed cell death in plants using heterologous probe with comparative genetic approach. In addition, the improvements of FISH technique using heterologous probes were discussed.  相似文献   

5.
红根甘肃桃根系MYB基因片段的克隆及序列分析   总被引:2,自引:0,他引:2  
为了明确MYB转录因子在红根甘肃桃抗性分子机制中的作用.通过RT-PCR从红根甘肃桃根系cDNA中克隆了14个MYB基因片段,序列分析表明这些片段与苹果、葡萄、拟南芥、番茄等植物的MYB转录因子高度同源;系统进化分析显示红根甘肃桃的11个PkMYB分别与拟南芥、番茄、杨树、柿等植物中已知功能的MYB转录因子聚在不同的亚类,据此推测它们可能有相似的功能.试验结果为进一步研究MYB基因在红根甘肃桃抗性机制中的作用奠定了基础.  相似文献   

6.
As an initial step to develop plants as systems to produce enzymes for the treatment of lysosomal storage disorders, Arabidopsis thaliana wild-type (Col-0) plants were transformed with a construct to express human alpha-l-iduronidase (IDUA; EC 3.2.1.76) in seeds using the promoter and other regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene. IDUA protein was easily detected on Western blots of extracts from the T(2) seeds, and extracts contained IDUA activity as high as 2.9 nmol 4-methylumbelliferone (4 MU)/min/mg total soluble protein (TSP), corresponding to approximately 0.06 microg IDUA/mg TSP. The purified protein reacted with an antibody specific for xylose-containing plant complex glycans, indicating its transit through the Golgi complex. In an attempt to avoid maturation of the N-linked glycans of IDUA, the same IDUA transgene was introduced into the Arabidopsis cgl background, which is deficient in the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of complex glycan biosynthesis. IDUA activity and protein levels were significantly higher in transgenic cgl vs. wild-type seeds (e.g. maximum levels were 820 nmol 4 MU/min/mg TSP, or 18 microg IDUA/mg TSP). Affinity-purified IDUA derived from cgl mutant seeds showed a markedly reduced reaction with the antibody specific for plant complex glycans, despite transit of the protein to the apoplast. Furthermore, gel mobility changes indicated that a greater proportion of its N-linked glycans were susceptible to digestion by Streptomyces endoglycosidase H, as compared to IDUA derived from seeds of wild-type Arabidopsis plants. The combined results indicate that IDUA produced in cgl mutant seeds contains glycans primarily in the high-mannose form. This work clearly supports the viability of using plants for the production of human therapeutics with high-mannose glycans.  相似文献   

7.
Cystine lyases catalyze the breakdown of l-cystine to thiocysteine, pyruvate, and ammonia. Until now there are no reports of the identification of a plant cystine lyase at a molecular level, and it is not clear what biological role this class of enzymes have in plants. A cystine lyase was isolated from Brassica oleracea (L.), and partial amino acid sequencing allowed the corresponding full-length cDNA (BOCL3) to be cloned. The deduced amino acid sequence of BOCL3 showed highest homology to the deduced amino acid sequences of several Arabidopsis thaliana genes annotated as tyrosine aminotransferase-like, including a coronatine, jasmonic acid, and salt stress-inducible gene, CORI3 (78.8% identity), and the unidentified rooty/superroot1 gene (44.8% identity). A full-length expressed sequence tag clone of CORI3 was obtained and recombinant CORI3 was synthesized in Escherichia coli. Isolated recombinant CORI3 catalyzed a cystine lyase reaction, but no aminotransferase reactions. The present study identifies, for the first time, a cystine lyase from plants at a molecular level and redefines the functional assignment of the only functionally identified member of a group of A. thaliana genes annotated as tyrosine aminotransferase-like.  相似文献   

8.
Purified spinach (Spinacea oleracea L.) and barley (Hordeum vulgare L.) ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase supported 50 to 100% activation of substrate-bound Rubisco from spinach, barley, wheat (Triticum aestivum L.), soybean (Glycine max L.), pea (Pisum sativum L.), Arabidopsis thaliana, maize (Zea mays L.), and Chlamydomonas reinhardtii but supported only 10 to 35% activation of Rubisco from three Solanaceae species, tobacco (Nicotiana tabacum L.), petunia (Petunia hybrida L.), and tomato (Lycopersicon esculentum L.). Conversely, purified tobacco and petunia Rubisco activase catalyzed 75 to 100% activation of substrate-bound Rubisco from the three Solanacee species but only 10 to 25% activation of substrate-bound Rubisco from the other species. Thus, the interaction between substrate-bound Rubisco and Rubisco activase is species dependent. The species dependence observed is consistent with phylogenetic relationships previously derived from plant morphological characteristics and from nucleotide and amino acid sequence comparisons of the two Rubisco subunits. Species dependence in the Rubisco-Rubisco activase interaction and the absence of major anomalies in the deduced amino acid sequence of tobacco Rubisco activase compared to sequences in non-Solanaceae species suggest that Rubisco and Rubisco activase may have coevolved such that amino acid changes that have arisen by evolutionary divergence in one of these enzymes through spontaneous mutation or selection pressure have led to compensatory changes in the other enzyme.  相似文献   

9.
利用抑制差减杂交技术分离马铃薯晚疫病抗性相关基因   总被引:15,自引:1,他引:15  
田振东  柳俊  谢从华 《遗传学报》2003,30(7):597-605
以晚疫病病原菌混合小种接种处理48h的马铃薯水平抗性材料(R-gene-free)叶片为目的材料,以未处理材料作为对照,用抑制差减杂交技术构建了一个富集晚疫病抗性相关基因的差减文库。应用反向Northern技术对840个克隆进行斑点杂交筛选,筛选出150个病原诱导后信号明显增强的克隆。26个片段测序结果表明:部分片段基因功能与抗病性明显相关。7个差异表达片段与GenBank EST数据库中已有晚疫病原诱导马铃薯叶片得到的EST有很高同源性(达95%~100%);部分片段核苷酸或氨基酸序列分别与番茄、烟草、拟南芥等的EST序列或氨基酸序列有较高同源性;另有4个基因片段在GenBank EST数据库中未找到明显的同源序列,可能为新发现的基因片段。  相似文献   

10.
C Palomino  Z Satovic  J I Cubero  A M Torres 《Génome》2006,49(10):1227-1237
A PCR approach with degenerate primers designed from conserved NBS-LRR (nucleotide binding site-leucine-rich repeat) regions of known disease-resistance (R) genes was used to amplify and clone homologous sequences from 5 faba bean (Vicia faba) lines and 2 chickpea (Cicer arietinum) accessions. Sixty-nine sequenced clones showed homologies to various R genes deposited in the GenBank database. The presence of internal kinase-2 and kinase-3a motifs in all the sequences isolated confirm that these clones correspond to NBS-containing genes. Using an amino-acid sequence identity of 70% as a threshold value, the clones were grouped into 10 classes of resistance-gene analogs (RGA01 to RGA10). The number of clones per class varied from 1 to 30. RGA classes 1, 6, 8, and 9 were comprised solely of clones isolated from faba bean, whereas classes 2, 3, 4, 5, and 7 included only chickpea clones. RGA10, showing a within-class identity of 99%, was the only class consisting of both faba bean and chickpea clones. A phylogenetic tree, based on the deduced amino-acid sequences of 12 representative clones from the 10 RGA classes and the NBS domains of 6 known R genes (I2 and Prf from tomato, RPP13 from Arabidopsis, Gro1-4 from potato, N from tobacco, L6 from flax), clearly indicated the separation between TIR (Toll/interleukin-1 receptor homology: Gro1-4, L6, N, RGA05 to RGA10)- and non-TIR (I2, Prf, RPP13, RGA01 to RGA04)-type NBS-LRR sequences. The development of suitable polymorphic markers based on cloned RGA sequences to be used in genetic mapping will facilitate the assessment of their potential linkage relationships with disease-resistance genes in faba bean and chickpea. This work is the first to report on faba bean RGAs.  相似文献   

11.
To examine the biological role of Al-stress-induced genes, nine genes derived from Arabidopsis, tobacco (Nicotiana tabacum L.), wheat (Triticum aestivum L.), and yeast (Saccharomyces cerevisiae) were expressed in Arabidopsis ecotype Landsberg. Lines containing eight of these genes were phenotypically normal and were tested in root elongation assays for their sensitivity to Al, Cd, Cu, Na, Zn, and to oxidative stresses. An Arabidopsis blue-copper-binding protein gene (AtBCB), a tobacco glutathione S-transferase gene (parB), a tobacco peroxidase gene (NtPox), and a tobacco GDP-dissociation inhibitor gene (NtGDI1) conferred a degree of resistance to Al. Two of these genes, AtBCB and parB, and a peroxidase gene from Arabidopsis (AtPox) also showed increased resistance to oxidative stress induced by diamide, while parB conferred resistance to Cu and Na. Al content of Al-treated root tips was reduced in the four Al-resistant plant lines compared with wild-type Ler-0, as judged by morin staining. All four Al-resistant lines also showed reduced staining of roots with 2',7'-dichloro fluorescein diacetate (H(2)DCFDA), an indicator of oxidative stress. We conclude that Al-induced genes can serve to protect against Al toxicity, and also provide genetic evidence for a link between Al stress and oxidative stress in plants.  相似文献   

12.
The sequences of three cDNA clones that include the complete coding region of hydroxycinnamoyl-CoA:tyramine N-hydroxycinnamoyltransferase (THT) from tobacco are reported. The three cDNAs were isolated by antibody screening of a cDNA expression library produced from poly(A)+RNA purified from tobacco leaves (Nicotiana tabacum cv. Bottom Special), previously infiltrated with an incompatible strain of Ralstonia solanacearum. The identity of these clones was confirmed by the detection of THT activity in extracts of transformed Escherichia coli and by matching the translated polypeptides with tryptic enzyme sequences. cDNA clones tht4 and tht11 differ only by their 5' leader and 3' UTRs and therefore encode the same protein, whereas tht10 and tht11 exhibit 95 and 99% sequence identity at the DNA and deduced amino acid levels, respectively. The three clones encode proteins of 226 amino acids with calculated molecular masses of 26 kDa. The deduced amino acid sequences show no similarity with the sequence of anthranilate hydroxycinnamoyl/benzoyltransferase from Dianthus caryophyllus, the only enzyme exhibiting hydroxycinnamoyltransferase activity to be cloned so far in plants. In contrast, comparison of the THT amino acid sequence with protein sequence databases revealed substantial homology with mammalian diamine acetyltransferases. The THT clones hybridized to a 0.95-kb mRNA from elicited tobacco cell-suspension cultures and also to a mRNA of similar size from wound-healing potato tubers. The messengers for THT were also found to be expressed at relatively high levels in tobacco root tissues. Southern hybridization of tobacco genomic DNA with THT cDNA suggests that several copies of the THT gene occur in the tobacco genome. Inhibition experiments using amino-acid-specific reagents demonstrated that both histidyl and cysteyl residues are required for THT activity. In the course of these experiments THT was also found to be inhibited by (2-hydroxyphenyl) amino sulfinyl acetic acid 1,1-dimethylethyl ester, an irreversible inhibitor of cinnamyl alcohol dehydrogenase.  相似文献   

13.
Mazur BJ  Chui CF  Smith JK 《Plant physiology》1987,85(4):1110-1117
Acetolactate synthase (ALS) is the first common enzyme in the biosynthetic pathways to valine, isoleucine, and leucine. It is the target of two structurally unrelated classes of herbicides, the sulfonylureas and the imidazolinones. Genomic clones encoding ALS have been isolated from the higher plants Arabidopsis thaliana and Nicotiana tabacum, using a yeast ALS gene as a heterologous hybridization probe. Clones were positively identified by the homology of their deduced amino acid sequences with those of yeast and bacterial ALS isozymes. The tobacco and Arabidopsis ALS genes have approximately 70% nucleotide homology, and encode mature proteins which are approximately 85% homologous. Little homology is seen between the amino acid sequences of the presumptive N-terminal chloroplast transit peptides. Both plant genes lack introns. The tobacco ALS gene was isolated from a line of tobacco which is resistant to the sulfonylurea herbicides due to an alteration in ALS. The tobacco gene which was isolated codes for an ALS that is sensitive to the herbicides, as assayed by transformation of the gene into sensitive tobacco cells.  相似文献   

14.
GDP-D-甘露糖焦磷酸化酶催化GDP-D-甘露糖的合成,是植物抗坏血酸生物合成途径中上游的关键酶。以马铃薯GDP-D-甘露糖焦磷酸化酶cDNA序列为信息探针,在GenBank dbEST数据库中找到65条高度同源的番茄EST序列,通过序列拼接及RACE-PCR得到了番茄该基因的全长cDNA序列,命名为LeGMP。LeGMP与马铃薯GDP-D-甘露糖焦磷酸化酶cDNA序列一致率为96%,推导的氨基酸序列与马铃薯、烟草、紫苜蓿、拟南芥的GDP-D-甘露糖焦磷酸化酶基因的一致率分别为99%、97%、91%、89%。经Northern杂交分析,LeGMP在番茄根、茎、叶、花、果实中都有表达,但表达水平有差异。利用75个番茄远缘杂交重组系(IL系)将LeGMP定位在番茄第3染色体上的D区段(3-D)。  相似文献   

15.
The cDNA sequence for CAP160, an acidic protein previously linked with cold acclimation in spinach (Spinacia oleracea L.), was characterized and found to encode a novel acidic protein of 780 amino acids having very limited homology to a pair of Arabidopsis thaliana stress-regulated proteins, rd29A and rd29B. The lack of similarity in the structural organization of the spinach and Arabidopsis genes highlights the absence of a high degree of conservation of this cold-stress gene across taxonomic boundaries. The protein has several unique motifs that may relate to its function during cold stress. Expression of the CAP160 mRNA was increased by low-temperature exposure and water stress in a manner consistent with a probable function during stresses that involve dehydration. The coding sequences for CAP160 and CAP85, another spinach cold-stress protein, were introduced into tobacco (Nicotiana tabacum) under the control of the 35S promoter using Agrobacterium tumefaciens-based transformation. Tobacco plants expressing the proteins individually or coexpressing both proteins were evaluated for relative freezing-stress tolerance. The killing temperature for 50% of the cells of the transgenic plants was not different from that of the wild-type plants. As determined by a more sensitive time/temperature kinetic study, plants expressing the spinach proteins had slightly lower levels of electrolyte leakage than wild-type plants, indicative of a small reduction of freezing-stress injury. Clearly, the heterologous expression of two cold-stress proteins had no profound influence on stress tolerance, a result that is consistent with the quantitative nature of cold-stress-tolerance traits.  相似文献   

16.
Chen G  Pan D  Zhou Y  Lin S  Ke X 《Journal of biosciences》2007,32(4):713-721
Most plant disease-resistance genes (R-genes) isolated so far encode proteins with a nucleotide binding site (NBS) domain and belong to a superfamily. NBS domains related to R-genes show a highly conserved backbone of an amino acid motif, which makes it possible to isolate resistance gene analogues (RGAs) by degenerate primers. Degenerate primers based on the conserved motif (P-loop and GLPL) of the NBS domain from R -genes were used to isolate RGAs from the genomic DNA of sweet potato cultivar Qingnong no.2. Five distinct clusters of RGAs (22 sequences) with the characteristic NBS representing a highly diverse sample were identified in sweet potato genomic DNA. Sequence identity among the 22 RGA nucleotide sequences ranged from 41.2% to 99.4%, while the deduced amino acid sequence identity from the 22 RGAs ranged from 20.6%to 100%. The analysis of sweet potato RGA sequences suggested mutation as the primary source of diversity. The phylogenetic analyses for RGA nucleotide sequences and deduced amino acids showed that RGAs from sweet potato were classified into two distinct groups--toll and interleukin receptor-1 (TIR)-NBS-LRR and non-TIR-NBS-LRR. The high degree of similarity between sweet potato RGAs and NBS sequences derived from R-genes cloned from tomato, tobacco, flax and potato suggest an ancestral relationship. Further studies showed that the ratio of non-synonymous to synonymous substitution within families was low. These data obtained from sweet potato suggest that the evolution of NBS-encoding sequences in sweet potato occur by the gradual accumulation of mutations leading to purifying selection and slow rates of divergence within distinct R-gene families.  相似文献   

17.
甘薯NBS类抗病基因类似物的分离与序列分析   总被引:12,自引:0,他引:12  
利用已克隆植物抗病基因NBS(Nucleotide binding site)序列中的保守模体(motif)“P-loop”和“GLPL”合成简并引物,以甘薯(Ipomoea batatas)栽培品种青农2号基因组DNA为模板进行PCR扩增,通过T/A克隆、测序和序列分析,共得到15条具有连续ORF的抗病基因类似物(Resistance gene analogues,RGAs)序列,它们之间核苷酸序列间的相似性系数在41.2%-99.4%之间,而相应推测的氨基酸序列间的相似性系数在20.6%-100%之间,同时对分离的RGAs的核苷酸和氨基酸序列进行系统发育树分析,表明甘薯RGAs可分为TIR(Drosophila Toll or human interleukin receptor-like)和nonTIR两类.对甘薯RGAs和5个已克隆植物NBS的氨基酸序列进行结构分析表明,它们包括“P-loop”、“Kinase-2”、“Kinase-3a”、“GLPL”4个抗病基因所共有的保守模体.这些表明甘薯与其它物种的NBS类RGAs可能具有同样的起源和进化机制.  相似文献   

18.
Ascorbate peroxidase (APX, EC 1.11.1.11) plays a major role in H(2)O(2)-scavenging in plants and can help to avoid reactive oxygen species (ROS) damage. A new cytosolic APX gene was cloned from tomato (designated LecAPX2) by RACE-PCR. The full-length cDNA of LecAPX2 contained a complete open reading frame (ORF) of 753 bp, which encoding 250 amino acid residues. Homology analysis of LecAPX2 showed a 94% identity with potato cAPX gene and 92% identity with another tomato cAPX gene (APX20), the deduced amino acid showed 88% homology with APX20 protein and 75-92% identity with cAPX from other plants such as potato, tobacco, broccoli, spinach, pea, rice, etc. LecAPX2 revealed the existence of a haem peroxidase and plant APX family signatures. Northern blot analysis showed that LecAPX2 was constitutively expressed in root, stem, leaf, flower and fruit of tomato, whereas the expression levels were different. LecAPX2 was mapped to 6-A using 75 tomato introgression lines (ILs), each containing a single homozygous RFLP-defined chromosome segment from the green-fruited species Lycopersicon pennellii.  相似文献   

19.
Non-redundant expressed sequence tags (ESTs) were generated from six different organs at various developmental stages of Chinese cabbage, Brassica rapa L. ssp. pekinensis. Of the 1,295 ESTs, 915 (71%) showed significantly high homology in nucleotide or deduced amino acid sequences with other sequences deposited in databases, while 380 did not show similarity to any sequences. Briefly, 598 ESTs matched with proteins of identified biological function, 177 with hypothetical proteins or non-annotated Arabidopsis genome sequences, and 140 with other ESTs. About 82% of the top-scored matching sequences were from Arabidopsis or Brassica, but overall 558 (43%) ESTs matched with Arabidopsis ESTs at the nucleotide sequence level. This observation strongly supports the idea that gene-expression profiles of Chinese cabbage differ from that of Arabidopsis, despite their genome structures being similar to each other. Moreover, sequence analyses of 21 Brassica ESTs revealed that their primary structure is different from those of corresponding annotated sequences of Arabidopsis genes. Our data suggest that direct prediction of Brassica gene expression pattern based on the information from Arabidopsis genome research has some limitations. Thus, information obtained from the Brassica EST study is useful not only for understanding of unique developmental processes of the plant, but also for the study of Arabidopsis genome structure.  相似文献   

20.
Under conditions of iron deficiency, graminaceous plants induce the expression of genes involved in the biosynthesis of mugineic acid family phytosiderophores. We previously identified the novel cis-acting elements IDE1 and IDE2 (iron-deficiency-responsive element 1 and 2) through promoter analysis of the barley (Hordeum vulgare L.) iron-deficiency-inducible IDS2 gene in tobacco (Nicotiana tabacum L.). To gain further insight into plant gene regulation under iron deficiency, we analyzed the barley iron-deficiency-inducible IDS3 gene, which encodes mugineic acid synthase. IDS3 promoter fragments were fused to the beta-glucuronidase (GUS) gene, and this construct was introduced into Arabidopsis thaliana L. and tobacco plants. In both Arabidopsis and tobacco, GUS activity driven by the IDS3 promoter showed strongly iron-deficiency-inducible and root-specific expression. Expression occurred mainly in the epidermis of Arabidopsis roots, whereas expression was dominant in the pericycle, endodermis, and cortex of tobacco roots, resembling the expression pattern conferred by IDE1 and IDE2. Deletion analysis revealed that a sequence within -305 nucleotides from the translation start site was sufficient for specific expression in both Arabidopsis and tobacco roots. Gain-of-function analysis revealed functional regions at -305/-169 and -168/-93, whose coexistence was required for the induction activity in Arabidopsis roots. Multiple IDE-like sequences were distributed in the IDS3 promoter and were especially abundant within the functional region at -305/-169. A sequence moderately homologous to that of IDE1 was also present within the -168/-93 region. These IDE-like sequences would be the first candidates for the functional iron-deficiency-responsive elements in the IDS3 promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号