首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructural study of the secretory cells type 1 and 2 confirmed the separate identities of two secretory cell types in the gut of female B. microplus. Secretory cell type 1 (s1) synthesized and secreted large, spherical, uniformly electrondense granules. Secretory cell type 2 (s2) synthesized smaller, irregularly shaped and more complex granules. Another cell type, the basophilic cell, was shown to be the reorganized basal remnant of secretory cell s2. A few of the basophilic cells retained remnant s2 granules within their cytoplasm. In these cells the reorganized cisternae of rough endoplasmic reticulum were arranged in whorls and parallel arrays. The cells synthesized granules with a different ultrastructure and position in the cell from the earlier granules. The new secretory material may be egg proteins which are released into the haemolymph, and transported to the ovary. Another secretory cell type with smaller spherical granules was seen in the gut caeca of only two female ticks and more evidence is needed to prove its separate identity.  相似文献   

2.
Binnington K.C. and Stone B.F. 1981. Developmental changes in morphology and toxin content of the salivary gland of the Australian paralysis tick Ixodes holocyclus.International Journal for Parasitology11: 343–351. Histological study of the salivary gland of female I. holocyclus has shown that 2 of the 4 cell types present are richest in granules in the unfed stage but have discharged these granules after an attachment period of 24 h. The presence of a toxin in homogenates of salivary glands from unfed females and its absence after 24 h of attachment may be associated with the loss of granules from these 2 cell types shortly after attachment. Another cell type shows a gradual increase in granule content throughout feeding and a fourth, a peak in granule content after an attachment period of 120 h. The latter cell type may produce the paralysing toxin since ticks do not paralyse the host until they have fed for about this time and homogenised glands are most toxic at 120–144 h.  相似文献   

3.
Localization of newly synthesized poly(3hydroxybutyrate) (PHB) granules was determined by confocal laser scanning fluorescence microscopy of Nile red-stained cells and by transmission electron microscopy (TEM). PHB granules of Nile red-stained living cells of Caryophanon latum at the early stages of PHB accumulation were frequently found at or close to the cytoplasmic membrane. TEM analysis of the same culture revealed electron-translucent globular structures resembling PHB granules that were nonrandomly distributed in the cell lumen but were frequently found at or close to the cytoplasmic membrane. Immunogold labeling using PHB-specific antiserum confirmed that the electron-translucent structures represented PHB granules. Electron microscopy examination of PHB granules after cell lysis revealed that PHB granules were often associated with membrane vesicles. Nonrandom localization of PHB granules was also found in Beijerinckia indica. Cells of this species harbored one PHB granule at each cell pole. Our results show that newly synthesized PHB granules often are close to or even in physical contact with the cytoplasmic membrane. Possible explanations for this unexpected finding and a hypothetical model of PHB granule formation in C. latum are discussed.  相似文献   

4.
Cellulin granules, the polysaccharide inclusions found uniquely in oomycetous fungi of the order Leptomitales, were isolated from Apodachlya sp. The granules were prepared free of cell wall and cytoplasmic contaminants. Biochemical analyses and X-ray diffraction studies demonstrated that the granules were composed of 60% chitin and 39% glucan consisting of β-1,3-and β-1,6-linked glucose units. A protein content of only 0.1% was attributed to an insignificant amount of cytoplasmic contamination. Isolated granules and those in situ showed no apparent differences in their microscopic form.  相似文献   

5.
In the suboesophageal ganglion of Bombyx mori the diapause-regulator producing cells which may give information to the diapause-factor cells were found by means of electron microscopy.The diapause-regulator producing cells had larger granules (200 to 500 mμ dia.) than did the diapause-factor cells which were partially surrounded by the former. Highly electron-dense material of lysosome in the diapause regulator producing cells was observed in the diapause-egg producer, but such lysosomes were not present in the non-diapause-egg producer. It was found that many cytoplasmic granules fuse with lysosome, and smaller granules arise from lysosomes. Some implications regarding the diapause-factor cell and the diapause regulator producing cell are discussed.  相似文献   

6.
《Insect Biochemistry》1990,20(8):785-792
A new type of pigment granule was found in the epidermal cells of the quail mutant of the silkworm, Bombyx mori. Electron microscopic observation shows this granule to be dense and distinct from the translucent pteridine granule. After the granules were isolated by sucrose density gradient centrifugation, the pigment was extracted and identified as xanthommatin.Xanthommatin localizes in the pigment granules binding with a protein. By SDS-polyacrylamide gel electrophoresis, the molecular weight of the pigment protein was estimated to be 13 kDa. The pigment granules may have a role in the biosynthesis and accumulation of xanthommatin.  相似文献   

7.
THE ULTRASTRUCTURE OF PORPHYRIDIUM CRUENTUM   总被引:14,自引:1,他引:13       下载免费PDF全文
An electron microscopic examination of Porphyridium cruentum revealed the presence of mitochondria which had been reported absent in this aerobic organism. The chloroplast in this red alga was found to contain small granules (about 320 A) regularly arranged along the parallel chloroplast lamellae. The chloroplast granules differ in size and staining intensity from the ribosomes located in the cytoplasm. Two tubular elements are described. One type (450 to 550 A) is associated with the Golgi bodies. Another type (350 A), in the cell periphery, is believed to connect the endoplasmic reticulum and the cell membrane. Daughter nuclei were found to be positioned at opposite ends of the cell prior to commencement of cell division. Cytokinesis is accomplished by an annular median constriction causing the gradual separation of the chloroplast, pyrenoid, and other cell organelles, resulting in two equal daughter cells. No appreciable differences were observed between cells grown in high light (400 ft-c) and low light (40 ft-c). Structural differences between young and old cells were compared.  相似文献   

8.
WhenHistoplasma capsulatum yeast cells were grown in the presence of partially inhibitory concentrations of saramycetin, electron microscopy revealed that the proportion of apparently damaged cells was a function of the concentration of the antibiotic. Evidence of early damage consisted of irregularity of outline, followed by progressive lysis of internal structures leading to residual dense granules, membranes, and the cell wall. Normal yeast cells of the strain studied were found to possess intranuclear bodies of a type apparently not previously described.  相似文献   

9.
The foregut, stomach, caecum, midgut, and rectum of the digestive tract of Nautilus pompilius L.were investigated with ultrastructural and enzyme-cytological methods. Three different cell types were identified within the lamina epithelialis mucosae: main cells, goblet cells, and cells with secretory granules. The main cell type is the epithelial cell with microvilli, a basal nucleus surrounded by dictyosomes, rough endoplasmic reticulum, mitochondria, and electron-dense granules identified as lysosomes in the apical part of the cell. In the caecum this cell type contains endosymbiotic bacteria. The presence of endocytotic vesicles and the storage of lipids in the caecum indicate that this organ is involved in the process of absorption. In the caecum and the longitudinal groove of the rectum the main cells are, in addition, ciliated, facilitating the transport of food particles and faeces. Two types of goblet cells are found in all organs except in the stomach, forming a gliding path for food particles and protecting the epithelium. In the foregut and rectum, cells with electron-dense granules were recognized as the third type. The conspicuous secretory cells of the rectum represent a delimited rectal gland; its possible biological function is discussed. The tunica muscularis in all organs of the digestive tract consists of obliquely striated muscle cells innervated by axons containing transparent, osmiophilic and dense-cored vesicles. Positive reactions for acid and alkaline phosphatase, monoamine oxidase, β-glucuronidase, and trypsin- and chymotrypsin-like enzymes are localized in the lamina epithelialis mucosae.  相似文献   

10.
The big and secondary islets of sea bass larvae were characterized ultrastructurally from, 25 to 60 days after hatching. From the 25th day, big islets consisted of inner type II and III, external type I and peripheral type IV cells. From the 55th day, type V cells appeared in limited peripheral areas. Secondary islets, first found in 32-day-old larvae, were made up of inner type II and III, external type I, and peripheral either type IV and V cells (type I islets), or only type V cells (type II islets). Type I cells contained secretory granules with a fine granular, low-medium electron-dense material, whereas the secretory granules of type II cells were smaller and had a high electron-dense core with diffused limits; needle and rod-like crystalloid contents were occasionally found. Type III secretory granules posessed a homogeneous, high or medium electron-dense material with or without a clear halo. Type IV cells had secretory granules with a polygonal dense core embedded in a granular matrix and granules containing a high or medium electron-dense material. Type V cells had secretory granules with a fine granular, high or medium electron-dense content. These cell-types correlated with cells previously identified immuno-cytochemically, as regards to their distribution in the islets, and related to those characterized ultrastructurally in adult specimens. Thus, types I, II, III, IV and V correspond to D1, B, D2, A and PP cells, respectively. From the 32nd day onwards, endocrine cells of all the different types were found grouped, type V cells also being observed in isolation close to pancreatic ducts and/or blood vessels. Small groups consisting of type I and II cells were found in 40-day-old larvae. A mitotic centroacinar ductular cell containing some secretory granules similar to those of type I cells, was seen adjacent to a type I cell. As the larvae grew older, the endoplasmic reticulum developed, the number of free ribosomes decreased, and the number and size of the secretory granules increased. Dark type I, II, III, IV and V cells were found in the islets and cell clusters from the 55th day onwards.  相似文献   

11.
Responses of cells in the tick salivary gland to parasitism by Theileria parva were studied by electron microscopy. The gland is composed of three distinct types of acini (I, II, III) which together include ten or more different cell types. Of some 30 infected cells observed in the present study, all were E-cells of acinus III. The parasite thus exhibits a high degree of selectivity for acinus and cell type. The glandular cell invaded undergoes massive hypertrophy and accumulates glycogen deposits in its cytoplasm which may serve as an energy source for the growing intracellular parasite. As synthesis of its secretory material declines the product is packaged in progressively smaller secretory granules. The extensive arrays of endoplasmic reticulum are dismantled and eliminated in autophagic vacuoles. Excess secretory granules are also broken down by crinophagy. After 4 days, sporogony is completed and the host cell contains 30,000–50,000 sporozoites in an electron-lucent cytoplasm largely devoid of cytomembranes and secretory granules. Mitochondria are still present and normal in appearance. The loss of basophilia and secretory granules observed heretofore by light microscopy have been attributed to ingestion and destruction of host organelles by the parasite. The pallid appearance of the cytoplasm has been interpreted as a sign of impending degeneration of the host cell. In electron micrographs no ingestion of organelles by the parasite or degenerative changes were found. The host cell clearly remains viable and metabolically active throughout sporogony. The striking changes in its ultrastructure result from active elimination of organelles and inclusions by the host cell itself in response to parasitism.  相似文献   

12.
In epidermal cells of Dysdercus species, two types of pigment granules were detected using both light and electron microscopic methods; the granules differed in colour, size, distribution and osmiophily. Red (D. intermedius) and yellow (D. nigrofasciatus) epidermal cells contained both types of granules, but in white cells only one type was present. Chromatographic analyses showed that the larger granules were more transparent to electrons, and contained uric acid, while the smaller ones contained erythropterin, became coloured later, and were osmiophilic. In accordance with these findings, in the testes of D. intermedius both granule types were present, but in the testes of D. nigrofasciatus only those containing erythropterin. The number of granules per cell varied with the species and developmental stage. Epidermal cells of D. intermedius contained more erythropterin granules than those of D. nigrofasciatus, the reverse occurring in the testes. This pattern corresponded to the visible colouration of the insects. As the development progressed, a decrease of the red and an increase of the white granules took place in the coloured epidermal cells. The main amount of pteridines, except isoxanthopterin, was accumulated in the integument of the insects studied. Chemical and histological data showed the influence of pterins on insect colouration. Orange, yellow and red colours were caused by different amounts of erythropterin containing special granules in the epidermal cells, and the white colour only by uric acid containing granules. A partial melanization of the cuticle resulted in dark spots below which pteridines were deposited additionally in the epidermal cells. Considering erythropterin, the quantitative chemical data are in accordance with the histological ones and also with the colouration externally visible. Intensively red coloured stages had a higher concentration of erythropterin and more corresponding granules than the light-red coloured ones; the lowest amount was found in yellow coloured insects. Therefore, the pigmentation effect of erythropterin, which reached from yellow to orange and red, depended on its concentration and played the most important role in the colouration of the Dysdercus species studied, uric acid was responsible for the colouration of the white parts of the integument.  相似文献   

13.
For the first time, a morphological study of haemocytes from the crab Carcinus aestuarii was carried out by means of light microscopy and differing cytochemical assays. Analysis of haemocyte size frequency distribution (performed by means of a Coulter Counter) revealed the presence of two distinct haemocyte fractions in C. aestuarii haemolymph, depending on cell size. The first fraction was of about 3–5 µm in diameter and 30–50 fL in volume, the second was of about 6–12 µm in diameter and over 200 fL in volume. Mean cell diameter and volume were 8.20±1.7 µm and 272.30±143.5 fL, respectively. Haemocytes observed under light microscope were distinguished in three cell types: granulocytes (28%; 11.94±1.43 µm in diameter) with evident cytoplasmic granules, semigranulocytes (27%; 12.38±1.76 µm in diameter) with less granules than granulocytes, and hyalinocytes (44%; 7.88±1.6 µm in diameter) without granules. In addition, a peculiar cell type was occasionally found (about 1%): it was 25–30 µm in diameter and had a great vacuole and a peripheral cytoplasm with granules. Granulocyte and semigranulocyte granules stained in vivo with Neutral Red, indicating that they were lysosomes. Giemsa’s dye confirmed that granulocytes and semigranulocytes were larger than hyalinocytes. Pappenheim’s panoptical staining and Ehrlich’s triacid mixture allowed to distinguish granule-containing cells (including semigranulocytes) in acidophils (64%), basophils (35%) and neutrophils (1%). Hyalinocytes showed always a basophilic cytoplasm. Haemocytes were positive to the PAS reaction for carbohydrates, even if cytoplasm carbohydrate distribution varied among cell types. Lastly, lipids were found on cell membrane and in cytoplasm of all haemocyte types in the form of black spots produced after Sudan Black B staining. The morphological characterisation of C. aestuarii haemocytes by light microscopy was necessary before performing both ultrastructural and functional studies of circulating cells.Key words: Carcinus aestuarii, crab, haemocytes, light microscopy, cytochemical assays, morphological characterisation.  相似文献   

14.
Summary In the gastric mucosa of two teleost species, the perch (Perca fluviatilis) and the catfish (Ameiurus nebulosus) three endocrine cell types were found, located predominantly between the mucoid cells of the gastric mucosa. A fourth cell type is present in the gastric glands of catfish. Each cell type was defined by its characteristic secretory granules. Type-I cells were predominant in both fish. These cells contained round or oval granules with a pleomorphic core. The average diameter of granules was 400 nm for the perch and 270 nm for the catfish. Type-II cells of both species displayed small, highly osmiophilic granules about 100 nm in diameter. The secretory granules of type-III cells (260 nm in the perch and 190 nm in the catfish) were round or slightly oval in shape and were filled with a finely particulate electron-dense material. Type-IV cells of the catfish were found in the gastric glands only. Their cytoplasm was filled with homogeneous, moderately electron-dense granules averaging 340 nm in diameter. The physiological significance of these different morphological types of gastric endocrine cells requires further investigation.  相似文献   

15.
The stratified epithelium of the central collecting duct of the elasmobranch(Scylliorhinus canicula, Galeorhinus galeus andRaja batis) rectal gland consists of 3 to 6 layers of cells: one superficial, and several basal cell layers. In the superficial layer normally three different types of cells can be distinguished (a) goblet cells, (b) cells with apical secretory granules and (c) flask-shaped cells. The superficial layer ofScylliorhinus canicula reveals a further cell type, so-called mitochondria-rich cells. The epithelial areas built by these cells are always single-layered. The goblet-cells are very similar to goblet cells found in the intestine of vertebrates. Their dominant structures are a well developed ergastoplasm, a large Golgi-apparatus and mucous granules compactly filling the apical cell region. The cells with apical secretory granules are columnar or dumbbell shaped. They contain a rough-surfaced endoplasmic reticulum and a well developed Golgi-apparatus. The secretory granules are loosely distributed within the Golgi-field and are arranged in one or more rows just below the cell apex. The flask shaped cells are characterized by a cytoplasm rich in small vesicles. They posses few dictyosomes and several small mitochondria. There is some evidence for endocytotic activity. The mitochondria-rich cells are characterized by lateral cell interdigitations, by a basal labyrinth and by numerous mitochondria. They are similar to the excretory cells of rectal gland parenchyma. The cells of the basal epithelium layers are differenciated only to a small extent. They are joined in a loose formation with white blood cells often found in the intercellular spaces. The function of the elasmobranch rectal gland is not restricted to the excretion of concentrated salt solutions. There is also a significant secretion of mucous substances. The tubule glands are primarily excretory, the epithelium cells of the central collecting duct mainly secretory in function.  相似文献   

16.
The pituitary pars intermedia of Camelus dromedarius is well developed and completely surrounds the pars nervosa. Two major groups of cells are present: endocrine (ec) and glial-like cells (glc). The ec group is composed of three morphologically distinct cell types. Type I, or polyhedral light cells (LC-I) and type II, or polyhedral dark cells (DC-II), have secretory granules of heterogeneous electron density whose size ranges from 170 to 300 nm. Type III cells are elongated with homogeneous electron-dense secretory granules of 80–200 nm. The glc make up an organized network, form follicles in the centrolobular zones and are positive for vimentin and S-100β immunolabelling. The nerve fibres penetrating the lobe are numerous, and can be classified into two types according to the membrane bound vesicles found in their endings (ne). Ultrastructural quantitative analysis revealed significant variations in PI elements between winter and summer seasons (F = 8.014, p = 0.006). DC-II cells characterized by developed biosynthetic machinery and a large pool of secretory granules storage are increased with the ne in winter. However, LC-I cells showing frequent cytoplasmic degranulation are predominant with glc in summer. Thus, important cellular remodelling occurs in the dromedary PI that may depend upon, or perhaps anticipate, external living conditions.  相似文献   

17.
Summary In the pancreas of Scyliorhinus stellaris large islets are usually found around small ducts, the inner surface of which is covered by elongated epithelial cells; thus the endocrine cells are never exposed directly to the lumen of the duct. Sometimes, single islet cells or small groups of endocrine elements are also incorporated into acini. Using correlative light and electron microscopy, eight islet cell types were identified:Only B-cells (type I) display a positive reaction with pseudoisocyanin and aldehyde-fuchsin staining. This cell type contains numerous small secretory granules (Ø280 nm). Type II- and III-cells possess large granules stainable with orange G and azocarmine and show strong luminescence with dark-field microscopy. Type II-cells have spherical (Ø700 nm), type III-cells spherical to elongated granules (Ø450 × 750 nm). Type II-cells are possibly analogous to A-cells, while type III-cells resemble mammalian enterochromaffin cells. Type IV- cells contain granules (Ø540 nm) of high electron density showing a positive reaction to the Hellman-Hellerström silver impregnation and a negative reaction to Grimelius' silver impregnation; they are most probably analogous to D-cells of other species. Type VI-cells exhibit smaller granules (Ø250 × 500 nm), oval to elongated in shape. Type VI-cells contain small spherical granules (Ø310 nm). Type VII-cells possess two kinds of large granules interspersed in the cytoplasm; one type is spherical and electron dense (Ø650 nm), the other spherical and less electron dense (Ø900 nm). Type VIII-cells have small granules curved in shape and show moderate electron density (Ø100 nm). Grimelius-positive secretory granules were not only found in cell types II and III, but also in types V, VI, and VII. B-cells (type I) and the cell types II to IV were the most frequent cells; types V to VII occurred occasionally, whereas type VIII-cells were very rare.This work was supported by a fellowship from the Ministry of Education of Japan and the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (La 229/8)  相似文献   

18.
Orbital glands are found in many tetrapod vertebrates, and are usually separate structures, consisting of individual glands lying in the eyelids and both canthi of the orbit. In cetaceans, however, the orbital glandular units are less distinct and have been described by numerous authors as a single, periorbital mass. There are few histochemical and immunhistochemical studies to date of these structures. In this study, we examined the orbital glandular region of both the bowhead whale (Balaena mysticetus: Mysticeti) and the beluga whale (Delphinapterus leucas: Odontoceti) using histological, histochemical, and immunohistochemical techniques. Histologically, in the bowhead, three glandular areas were noted (circumorbital, including Harderian and lacrimal poles), palpebral (midway in the lower eyelid), and rim (near the edge of the eyelid). In the beluga, there was only a large, continuous mass within the eyelid itself. Histochemical investigation suggests neither sexual dimorphism nor age-related differences, but both whales had two cell types freely intermingling with each other in all glandular masses. Large cells (cell type 1) were distended by four histochemically distinct intracellular secretory granules. Smaller cells (cell type 2) were not distended (fewer granules) and had two to three histochemically distinct intracellular secretory granules. The beluga orbital glands had additional lipid granules in cell type 1. Counterintuitively, both lipocalin and transferrin were localized to cell type 2 only. This intermingling of cell types is unusual for vertebrates in whom individual orbital glands usually have one cell type with one to two different secretory granules present. The heterogeneity of the orbital fluid produced by cetacean orbital glands implies a complex function, or series of functions, for these orbital glands and their role in producing the tear fluid.  相似文献   

19.
The neurosecretory cells of the supra- and suboesophageal ganglia of young, unmated, adult male midges, Chironomus riparius, have been examined by both light and electron microscopy. The 5 cell types recognized have been placed in three major categories on the basis of their ultrastructural characteristics:—α1 cells, of which there are 8 in each medial neurosecretory cell (MNC) group and 3 in each group of ventral neurosecretory cells (VNC), contain electron-dense granules, 150 to 200 nm in diameter; α2 cells containing irregular, electron-dense granules, 70 to 120 nm in diameter comprise the remaining 3 cells in each VNC group and the 2 or 3 cells in each outer neurosecretory cell (ONC) group; α3 cells, of which there are 1 or 2 on each side of the midline in the ventral cortex of the sub-oesophageal ganglion (SNC2), contain electron-lucent, spherical granules, 70 to 120 nm in diameter. The β cells contain spherical or ellipsoidal, electron-lucent granules, 80 to 100 nm in diameter, and make up the lateral neurosecretory cell (LNC) groups, each of three or four cells. The γ cells contain both spherical and flattened, electron-dense granules, 130 to 160 nm in diameter and 150 to 250 by 70 to 150 nm in size respectively, only 1 cell of this category being found in each half of the suboesophageal ganglion in the dorsal cortex (SNC1). Axons from the MNC and VNC form the nervi corporis cardiaci I (NCCI) and those of the LNC and ONC, the nervi corporis cardiaci II (NCCII). Those of the SNC1 appear to enter the wall of the stomodaeum but axons of the SNC2 could not be traced.  相似文献   

20.
The insulin-responsive glucose transporter GLUT-4 is found in muscle and fat cells in the transGolgi reticulum (TGR) and in an intracellular tubulovesicular compartment, from where it undergoes insulindependent movement to the cell surface. To examine the relationship between these GLUT-4–containing compartments and the regulated secretory pathway we have localized GLUT-4 in atrial cardiomyocytes. This cell type secretes an antihypertensive hormone, referred to as the atrial natriuretic factor (ANF), in response to elevated blood pressure. We show that GLUT-4 is targeted in the atrial cell to the TGR and a tubulo-vesicular compartment, which is morphologically and functionally indistinguishable from the intracellular GLUT-4 compartment found in other types of myocytes and in fat cells, and in addition to the ANF secretory granules. Forming ANF granules are present throughout all Golgi cisternae but only become GLUT4 positive in the TGR. The inability of cyclohexamide treatment to effect the TGR localization of GLUT-4 indicates that GLUT-4 enters the ANF secretory granules at the TGR via the recycling pathway and not via the biosynthetic pathway. These data suggest that a large proportion of GLUT-4 must recycle via the TGR in insulin-sensitive cells. It will be important to determine if this is the pathway by which the insulin-regulatable tubulo-vesicular compartment is formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号