首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the movement's parameters and the motor output during the execution of certain intentional motor tasks subsequent to a ballistically initiated movement is determined. The two tasks considered are to arrest the movement and to accelerate it as fast as possible. These experiments are the same as described in the preceding paper (Viviani and Terzuolo, 1973). It is shown that the motor output is dependent on sensory input in normal subjects and that this dependence is absent in cerebellar patients. The phase relations between motor output and angular displacement in normal subjects indicate the likelihood of fusimotor dynamic activity to the muscle spindles when the task is to arrest the movement. Instead, when normal subjects are instructed to accelerate the movement, an appropriately timed fusimotor static activity, i.e. alpha-gamma linkage, is indicated. The appropriately timed switching of fusimotor static and dynamic activation is attributed to the presence of cerebellar activities.  相似文献   

2.
It has been argued that perception, decision making, and movement planning are in reality tightly interwoven brain processes. However, how they are implemented in neural circuits is still a matter of debate. We tested human subjects in a temporal categorization task in which intervals had to be categorized as short or long. Subjects communicated their decision by moving a cursor into one of two possible targets, which appeared separated by different angles from trial to trial. Even though there was a 1 second-long delay between interval presentation and decision communication, categorization difficulty affected subjects’ performance, reaction (RT) and movement time (MT). In addition, reaction and movement times were also influenced by the distance between the targets. This implies that not only perceptual, but also movement-related considerations were incorporated into the decision process. Therefore, we searched for a model that could use categorization difficulty and target separation to describe subjects’ performance, RT, and MT. We developed a network consisting of two mutually inhibiting neural populations, each tuned to one of the possible categories and composed of an accumulation and a memory node. This network sequentially acquired interval information, maintained it in working memory and was then attracted to one of two possible states, corresponding to a categorical decision. It faithfully replicated subjects’ RT and MT as a function of categorization difficulty and target distance; it also replicated performance as a function of categorization difficulty. Furthermore, this model was used to make new predictions about the effect of untested durations, target distances and delay durations. To our knowledge, this is the first biologically plausible model that has been proposed to account for decision making and communication by integrating both sensory and motor planning information.  相似文献   

3.
The mechanisms of perceptual decision-making are frequently studied through measurements of reaction time (RT). Classical sequential-sampling models (SSMs) of decision-making posit RT as the sum of non-overlapping sensory, evidence accumulation, and motor delays. In contrast, recent empirical evidence hints at a continuous-flow paradigm in which multiple motor plans evolve concurrently with the accumulation of sensory evidence. Here we employ a trial-to-trial reliability-based component analysis of encephalographic data acquired during a random-dot motion task to directly image continuous flow in the human brain. We identify three topographically distinct neural sources whose dynamics exhibit contemporaneous ramping to time-of-response, with the rate and duration of ramping discriminating fast and slow responses. Only one of these sources, a parietal component, exhibits dependence on strength-of-evidence. The remaining two components possess topographies consistent with origins in the motor system, and their covariation with RT overlaps in time with the evidence accumulation process. After fitting the behavioral data to a popular SSM, we find that the model decision variable is more closely matched to the combined activity of the three components than to their individual activity. Our results emphasize the role of motor variability in shaping RT distributions on perceptual decision tasks, suggesting that physiologically plausible computational accounts of perceptual decision-making must model the concurrent nature of evidence accumulation and motor planning.  相似文献   

4.
The objective of this paper was to examine the relationship between body balancing functions and body characteristics, motor abilities and reaction time. Subjects were 33 university students and 11 professional basketball players sorted into four groups of athletic and non-athletic women and men. Each group consisted of eleven subjects. The body height, weight was measured and the body mass index (BMI) calculated. A bioelectrical device computed the body fat (%). Static and dynamic motor tests, as well as static and dynamic balance tests were used. The reaction time (RT) to sound and light stimuli was measured. The regression analysis of the data revealed significant linear relationship between the amplitude of body sways (BS) and BMI in all groups. Also high correlation was found between back muscle strength and BS in all groups except the non-athletic women. Negative correlation was found between endurance capacity and BS in basketball players, i.e. at higher endurance capacity smaller amplitude BS occurred (r = -0.620, p < 0.04). The RT values showed significant correlations with BS only in the basketball players (r = 0.620, p < 0.04). It is concluded that increase in BMI, back muscle strength and endurance capacity is associated with better postural stability. Some motor abilities (hip flexibility, vertical jumping) show no significant correlations with body balancing, while other motor performances (static hanging) and RT values correlate well with BS only in the well-trained elite basketball players.  相似文献   

5.
Xie P  Dou SX  Wang PY 《Biophysical chemistry》2006,120(3):225-236
A hand-over-hand model is presented for the processive movement of myosin-V based on previous biochemical experimental results and structural observations of nucleotide-dependent conformational changes of single-headed myosins. The model shows that the ADP-release rate of the trailing head is much higher than that of the leading head, thus giving a 1 : 1 mechanochemical coupling for the processive movement of the motor. It explains well the previous finding that some 36-nm steps consist of two substeps, while other 36-nm steps consist of no substeps. Using the model, the calculated kinetic behaviors of myosin-V such as the main and intermediate dwell time distributions, the load dependence of the average main and intermediate dwell time and the load dependence of occurrence frequency of the intermediate state under various nucleotide conditions show good quantitative agreement with previous experimental results.  相似文献   

6.
In this paper, a model is employed that describes handwriting behaviors activated by curvilinear and angular velocity generators postulated to initiate and regulate pen tip velocity profiles. This model accounts for the observed differences between straight and curved line production and the effect of movement precues on these responses. Of particular interest is the observed interaction between precue information and line execution type for reaction time. It is shown that differences in reaction time can be explained by the model as a function of the number of parameters that need to be specified. Moreover, there is some evidence that the biomechanical system reacts in a privileged manner to command pulses for specific directions, and that the central nervous system attempts to compensate for these asymmetries. These data are some of the first to show that the benefits of precue extend beyond reaction time and that movement execution characteristics are influenced by motor preparation.  相似文献   

7.
During the foreperiod of a forewarned reaction time (RT) task reflexes in the executing limb increase to a lesser extent than those in the contralateral limb. This is possibly due to input modulation. The present study investigates the possibility of cutaneous sensory modulation during motor preparation by studying the amplitudes of somatosensory evoked potentials (SEPs). Eighteen subjects performed a forewarned RT task with the same fingers as the ones which were electrically stimulated. SEPs evoked during the 4 sec preparatory period were compared to those evoked during movement execution and during the resting period after the motor response respectively. During response execution most SEP components showed smaller amplitudes, i.e., they were gated, which agrees with other studies. In the first part of the foreperiod no SEP modulation was observed. Towards the end of the foreperiod, 500 msec before the response stimulus (RS), the amplitude of the contralateral parietal N70-P100 was significantly decreased, while the P45-N70 showed a similar tendency. However, at the same time the P100-N140 was increased in amplitude. The decrease of the intermediate latency components towards the end of the foreperiod is discussed in terms of gating, while the increase in the long latency component is discussed with respect to a decrease in RT on trials where the fingers were stimulated just before the RS, pointing to the role of attentional mechanisms.  相似文献   

8.
The coordination between breathing and other motor activities usually implies that the respiratory rhythm has become entrained by the rhythm of the simultaneous movement. Our hypothesis was that by increasing the respiratory drive, e.g. by hypercapnia, we would be able to reduce the subordination of breathing to other movements and, on the other hand, enhance effects of breathing on those movements. We investigated interactions between breathing and finger flexion movements in a visually controlled step-tracking procedure which allowed us to distinguish the mutual effects and to detect the dependence of these effects on the phase-relationship between breathing and movement. In contrast to our hypothesis, we found no large increase of the respiratory influences on finger movements during hypercapnia. A noteworthy difference to normocapnia was a shortening of the finger flexion time during the final stage of expiration which was associated with an increased frequency of coincidence between the end of flexion time and the transition from expiration to inspiration. On the other hand, the response of breathing to the finger movement increased when the tracking signal was presented at the beginning of inspiration. The results of the study disproved our hypothesis and demonstrated that, during hypercapnia, breathing can be even more susceptible to influences originating from motor control. Thus, they are in agreement with the findings of a previous study that the coordination between breathing and rhythmic limb movements becomes closer during hypercapnia.  相似文献   

9.
It takes longer to accomplish difficult tasks than easy ones. In the context of motor behaviour, Fitts'' famous law states that the time needed to successfully execute an aiming movement increases linearly with task difficulty. While Fitts'' explicit formulation has met criticism, the relation between task difficulty and movement time is invariantly portrayed as continuous. Here, we demonstrate that Fitts'' law is discontinuous in reciprocal aiming owing to a transition in operative motor control mechanisms with increasing task difficulty. In particular, rhythmic movements are implemented in easy tasks and discrete movements in difficult ones. How movement time increases with task difficulty differs in both movement types. It appears, therefore, that the human nervous system abruptly engages a different control mechanism when task difficulty increases.  相似文献   

10.
11.
This paper examines changes in the variability of electromyographic (EMG) activity and kinematics as a result of practicing a maximal performance task. Eight subjects performed rapid elbow flexion to a target in the horizontal plane. Four hundred trials were distributed equally over four practice sessions. A potentiometer at the elbow axis of rotation of a manipulandum recorded the angular displacement. The EMG activity of the biceps and the triceps brachii was monitored using Beckman surface electrodes. Limb speed increased while both target error and trajectory (velocity versus position) variability decreased. There was an increase in the absolute measure of total EMG variability (the first standard deviation at each point of the biceps and triceps waveform multiplied together). However, the coefficient of variation (the first standard deviation divided by the mean and the result multiplied by 100) of the mean amplitude value of the individual EMG bursts decreased. The variability of triceps motor time also decreased while the variability biceps motor time remained unchanged. The results demonstrated a clear relationship between kinematic and EMG variability. The EMG and the trajectory data suggest that practice resulted in greater central nervous system control over both the spatial-temporal aspects of movement and the magnitude of the biceps and triceps muscle force-impulses.  相似文献   

12.
Gait analysis has provided important information concerning gait patterns and variability of gait in patients with knee osteoarthritis (OA) of varying severity. The objective of this study was to clarify how the variability of gait parameters is influenced by the severity of knee OA. Gait analysis was performed at three different controlled walking speeds in three groups of subjects with varying degrees of knee OA (20 healthy subjects with no OA and 90 patients with moderate or severe OA). The variability of gait parameters was characterized by the coefficient of variance (CV) of spatial-temporal parameters, as well as by the mean coefficient variance (MeanCV) of angular parameters. Based on our results, we conclude that the complexity of gait decreases if the walking speed differs from the self-selected speed. In patients with knee OA, the decreased variability of angular parameters on the affected side represents decreased joint flexibility. This leads to decreased consistency in movements of the lower limbs from stride-to-stride, as shown by increased variability of spatial-temporal parameters. Decreased joint flexibility and consistency of movement can be associated with decreased complexity of movement. Other joints of the kinetic chain, such as joints of the non-affected side and the pelvis, play an important role in compensation and adaptation of step-by step motion and in the ability of secure gait. Results suggest that the variability of gait associated with knee osteoarthritis is gender-dependent. During rehabilitation, particular attention must be paid to improving gait stability and proprioception and gender differences should be taken into account.  相似文献   

13.
Recent studies suggest that motor adaptation is the result of multiple, perhaps linear processes each with distinct time scales. While these models are consistent with some motor phenomena, they can neither explain the relatively fast re-adaptation after a long washout period, nor savings on a subsequent day. Here we examined if these effects can be explained if we assume that the CNS stores and retrieves movement parameters based on their possible relevance. We formalize this idea with a model that infers not only the sources of potential motor errors, but also their relevance to the current motor circumstances. In our model adaptation is the process of re-estimating parameters that represent the body and the world. The likelihood of a world parameter being relevant is then based on the mismatch between an observed movement and that predicted when not compensating for the estimated world disturbance. As such, adapting to large motor errors in a laboratory setting should alert subjects that disturbances are being imposed on them, even after motor performance has returned to baseline. Estimates of this external disturbance should be relevant both now and in future laboratory settings. Estimated properties of our bodies on the other hand should always be relevant. Our model demonstrates savings, interference, spontaneous rebound and differences between adaptation to sudden and gradual disturbances. We suggest that many issues concerning savings and interference can be understood when adaptation is conditioned on the relevance of parameters.  相似文献   

14.
Preparing a goal directed movement often requires detailed analysis of our environment. When picking up an object, its orientation, size and relative distance are relevant parameters when preparing a successful grasp. It would therefore be beneficial if the motor system is able to influence early perception such that information processing needs for action control are met at the earliest possible stage. However, only a few studies reported (indirect) evidence for action-induced visual perception improvements. We therefore aimed to provide direct evidence for a feature-specific perceptual modulation during the planning phase of a grasping action. Human subjects were instructed to either grasp or point to a bar while simultaneously performing an orientation discrimination task. The bar could slightly change its orientation during grasping preparation. By analyzing discrimination response probabilities, we found increased perceptual sensitivity to orientation changes when subjects were instructed to grasp the bar, rather than point to it. As a control experiment, the same experiment was repeated using bar luminance changes, a feature that is not relevant for either grasping or pointing. Here, no differences in visual sensitivity between grasping and pointing were found. The present results constitute first direct evidence for increased perceptual sensitivity to a visual feature that is relevant for a certain skeletomotor act during the movement preparation phase. We speculate that such action-induced perception improvements are controlled by neuronal feedback mechanisms from cortical motor planning areas to early visual cortex, similar to what was recently established for spatial perception improvements shortly before eye movements.  相似文献   

15.
Seated subjects were instructed to react to an auditory cue by simultaneously contracting the tibialis anterior (TA) muscle of each ankle isometrically. Focal transcranial magnetic stimulation of the leg area of the motor cortex (MCx) was used to determine the time course of changes in motor-evoked potential amplitude (MEP) during the reaction time (RT). In one condition the voluntary contraction was superimposed on tonic EMG activity maintained at 10% of maximal voluntary contraction. In the other condition the voluntary contraction was made starting from rest. MEPs in the TA contralateral to the stimulation coil were evoked at various times during the RT in each condition. These were compared to the control MEPs evoked during tonic voluntary activity or with the subject at rest. The RT was measured trial by trial from the EMG activity of the TA ipsilateral to the magnetic stimulus, taking into account the nearly constant time difference between the two sides. The MEPs became far greater than control MEPs during the RT (mean = 332%, SD = 44 %, of control MEPs, P < 0.001) without any measurable change in the background level of EMG activity. The onset of this facilitation occurred on average 12.80 ms (SD = 7.55 ms) before the RT. There was no difference in the onset of facilitation between the two conditions. Because MEPs were facilitated without a change in the background EMG activity, it is concluded that this facilitation is specifically due to an increase of MCx excitability just before voluntary muscle activation. This conclusion is further reinforced by the observation that MEPs evoked by near-threshold anodal stimuli to the MCx were not facilitated during the RT, in contrast to those evoked by near-threshold transcranial magnetic stimulation. However, several observations in the present and previous studies indicate that MEP amplitude may be more sensitive to alpha-motoneuron activity than to motor cortical neuron activity, an idea that has important methodological implications.  相似文献   

16.
Kinematic parameters of cats local manipulating movements have been studied in the process of formation and stabilization of precise habit of moving and holding the lever in the zone of "working" space signalled by sound. It is shown that change of activity of the motor control system in the course of training is connected with the transfer from current correction of performed reaction to optimization of controlled parameters of pre-paired movements. It has been established that the formed precise coordination is realized owing to rapid movements with monomodal asymmetric profile of speed. During habit stabilization time to peak velocity significantly dropped from 274.6 +/- 84.7 to 211.0 +/- 22.9 ms and its value increased from 119.5 +/- 27.8 to 182.2 +/- 44.4 degrees/s. The stabilized habit is provided by uniform movements of ballistic type and characterized by independence from sound indication of final position, its reaching time becoming a function of amplitude-temporal values of speed maximum. It has been found that in the process of motor learning the relation of the duration of acceleration growth to the beginning of movement inhibition becomes an invariant parameter of the central program of precise reactions.  相似文献   

17.
Mechanism of force generation of a viral DNA packaging motor   总被引:6,自引:0,他引:6  
A large family of multimeric ATPases are involved in such diverse tasks as cell division, chromosome segregation, DNA recombination, strand separation, conjugation, and viral genome packaging. One such system is the Bacillus subtilis phage phi 29 DNA packaging motor, which generates large forces to compact its genome into a small protein capsid. Here we use optical tweezers to study, at the single-molecule level, the mechanism of force generation in this motor. We determine the kinetic parameters of the packaging motor and their dependence on external load to show that DNA translocation does not occur during ATP binding but is likely triggered by phosphate release. We also show that the motor subunits act in a coordinated, successive fashion with high processivity. Finally, we propose a minimal mechanochemical cycle of this DNA-translocating ATPase that rationalizes all of our findings.  相似文献   

18.
The purpose of this study is to investigate the asymmetry of dominant and non-dominant arms regarding reaction time (RT), velocity, force and power generated during ballistic target-directed movements. Fifty six, right-handed young males performed protractile movements with both arms separately by pushing a joystick towards a target-line as quickly and as accurately as possible. Participants performed 21 repetitions with each hand. The temporal, spatial, kinetic and kinematic parameters were computed. All movements were grouped regarding their accuracy (when joystick fell short, stopped precisely or overreached the target). Each group of movements was analyzed separately and the data obtained was compared across groups. The results showed that although the left arm was less accurate than the right one, it reached the target significantly faster, developing greater average force and power. The forces of acceleration and deceleration of the left arm were greater too. We did not observe a significant lateral difference in RT in situations when the arm fell short of the target, or stopped precisely on the target. It was only when the target was overreached that the left arm displayed a significantly greater RT than the right one. We explain the results from the asymmetry of motor behavior in favor of the influence of both hemispheres in this process.  相似文献   

19.
Kostetskiĭ PV 《Biofizika》2004,49(4):595-600
Using the "hard-sphere" atom-atom approximation with consideration of the available X-ray data, the possibility of free rotation of the side chain of His57 residue in the active center of chymotrypsin was studied. It was shown that there is a significant rotational freedom of the imidazole ring on chi1 and chi2 torsional angles. The rotation is accompanied by the movement of the side chains of Tyr94, Ile99 and Ser195 residues. It was assumed that the four residues act as movable parts of the motor of the enzymatic machinery. Amino acid residues that contact the cavity around the His57 imidazole ring were identified.  相似文献   

20.
Many of the brain structures involved in performing real movements also have increased activity during imagined movements or during motor observation, and this could be the neural substrate underlying the effects of motor imagery in motor learning or motor rehabilitation. In the absence of any objective physiological method of measurement, it is currently impossible to be sure that the patient is indeed performing the task as instructed. Eye gaze recording during a motor imagery task could be a possible way to “spy” on the activity an individual is really engaged in. The aim of the present study was to compare the pattern of eye movement metrics during motor observation, visual and kinesthetic motor imagery (VI, KI), target fixation, and mental calculation. Twenty-two healthy subjects (16 females and 6 males), were required to perform tests in five conditions using imagery in the Box and Block Test tasks following the procedure described by Liepert et al. Eye movements were analysed by a non-invasive oculometric measure (SMI RED250 system). Two parameters describing gaze pattern were calculated: the index of ocular mobility (saccade duration over saccade + fixation duration) and the number of midline crossings (i.e. the number of times the subjects gaze crossed the midline of the screen when performing the different tasks). Both parameters were significantly different between visual imagery and kinesthesic imagery, visual imagery and mental calculation, and visual imagery and target fixation. For the first time we were able to show that eye movement patterns are different during VI and KI tasks. Our results suggest gaze metric parameters could be used as an objective unobtrusive approach to assess engagement in a motor imagery task. Further studies should define how oculomotor parameters could be used as an indicator of the rehabilitation task a patient is engaged in.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号