共查询到20条相似文献,搜索用时 0 毫秒
1.
Combined solid-phase and solution approach for the synthesis of large peptides or proteins. 总被引:1,自引:0,他引:1
In the synthesis of large peptides or proteins, highly homogeneous segments are indispensable for a convergent strategy either on a solid-phase resin or in solution. Employing Boc/Bzl chemistry to prepare fully protected segments with a free alpha-carboxyl group from the solid support, base-labile linkers are profitable for practical peptide synthesis since they require no special equipment. For this purpose, an N-[9-(hydroxymethyl)-2-fluorenyl]succinamic acid (HMFS) linker was adopted. Consequently, there must be high compatibility between the protecting groups of the segment and the anchoring group which is cleavable by treatment with morpholine or piperidine in DMF. Instead of using the 2-bromobenzyloxycarbonyl (BrZ) group for the Tyr residue and the formyl (For) group for the Trp residue, both of which are the most susceptible protecting groups under these base-catalysed conditions, the base-resistant 3-pentyl (Pen) and cyclohexyloxycarbonyl (Hoc) groups were introduced to the respective side-chain functional groups. By applying the present strategy, the authors were able to rapidly synthesize homogeneous protected segments for use in the subsequent segment coupling in solution. In the present paper, the utility of the combined solid-phase and solution approach is demonstrated by synthesizing muscarinic toxin 1 (MTX1) which binds to the muscarinic acetylcholine receptors. 相似文献
2.
Z Majer M Zewdu M Hollósi J Sepródi Z Vadász I Teplán 《Biochemical and biophysical research communications》1988,150(3):1017-1020
[Lyst6]GHRP, the C-terminally thionated analog of the highly potent growth hormone releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 was prepared by using solid support. The success of the synthesis showed that Lawesson's reagent can be used for selective thionation of an amide group not only in solution but also on the surface of a resin. The C-terminal thioamide group proved to be stable under the conditions of the solid phase synthesis. 相似文献
3.
P Juvvadi D J Dooley C C Humblet G H Lu E A Lunney R L Panek R Skeean G R Marshall 《International journal of peptide and protein research》1992,40(3-4):163-170
Three analogs of bradykinin and one of angiotensin II have been prepared in which the naturally occurring proline residues have been replaced by the bicyclic amino acid, 2,4-methanoproline (2,4-MePro). The relative binding affinities for these analogs were determined to be significantly reduced in the cases of the three bradykinin analogs; [2,4-MePro3]-BK retains 1.3%, [2,4-MePro7]-BK retains 0.3% and [2,4-MePro2]-BK retains 0.021% of the binding affinity of bradykinin. Results from other modification at positions three and seven indicate preference for the trans-amide bond preceding these residues implying that other factors, either steric or conformational, are responsible for the decreased affinity for the receptor seen with 2,4-MePro substitution. The retention of significant binding affinity (26%) in the case of [Ile5,2,4-MePro7]-angiotensin II gives direct evidence that the trans-conformation of the proline amide bond is the one recognized by the AII receptor. Only significant retention of activity can be interpreted unambiguously with the use of this proline analog because of its known conformational differences from Pro as well as its increased steric requirements at the receptor. 相似文献
4.
Analogs of Neuropeptide Y (NPY) were synthesized with conventional Boc/benzyl protective group strategy. Instead of Asn7 in the native sequence, Boc-Lys(Alloc)-OH was incorporated. At the end of the synthesis the Alloc group was selectively removed by palladium-catalyzed hydrostannolysis and biotin coupled to the epsilon-amino group of Lys7. After cleavage and characterization with plasma desorption mass spectrometry the N epsilon,7-biotinyl-[Lys7]-NPY and the nonbiotinylated analog [Lys7]-NPY were investigated as ligands to the NPY receptor from rat cerebral cortex. Both analogs were found to be high affinity ligands to the NPY receptor and bound with essentially the same affinity as unmodified NPY. 相似文献
5.
6.
De Napoli L Messere A Montesarchio D Piccialli G Benedetti E Bucci E Rossi F 《Bioorganic & medicinal chemistry》1999,7(2):395-400
A convenient 'on line' solid-phase synthesis of oligonucleotides conjugated at the 3'-end with peptides by means of a polymeric support linking the first nucleoside via the base has been developed. A 17-mer designed for antisense experiments against HIV-1, linking at the 3'-terminus the tripeptide Gly-Gly-His, was prepared in good yields and characterized by MALDI-TOF mass spectrometry. 相似文献
7.
This study details a series of conditions that may be applied to ensure 'safe' incorporation of cysteine with minimal racemization during automated or manual solid-phase peptide synthesis. Earlier studies from our laboratories [Han et al. (1997) J. Org. Chem. 62, 4307-4312] showed that several common coupling methods, including those exploiting in situ activating agents such as N-[(dimethylamino)-1H-1,2,3-triazolo[4,5-b]pyridin-1-ylmethylene]-N-methylmethanaminium hexafluorophosphate N-oxide (HATU), N-[1H-benzotriazol-1-yl)-(dimethylamino)methylene]-N-methylmethanaminium hexafluorophosphate N-oxide (HBTU), and (benzotriazol-1-yl-N-oxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) [all in the presence of N-methylmorpholine (NMM) or N,N-diisopropylethylamine (DIEA) as a tertiary amine base], give rise to unacceptable levels (i.e. 5-33%) of cysteine racemization. As demonstrated on the tripeptide model H-Gly-Cys-Phe-NH(2), and on the nonapeptide dihydrooxytocin, the following methods are recommended: O-pentafluorophenyl (O-Pfp) ester in DMF; O-Pfp ester/1-hydroxybenzotriazole (HOBt) in DMF; N,N'-diisopropylcarbodiimide (DIPCDI)/HOBt in DMF; HBTU/HOBt/2,4,6-trimethylpyridine (TMP) in DMF (preactivation time 3.5-7.0 min in all of these cases); and HBTU/HOBt/TMP in CH(2)Cl(2)/DMF (1:1) with no preactivation. In fact, several of the aforementioned methods are now used routinely in our laboratory during the automated synthesis of analogs of the 58-residue protein bovine pancreatic trypsin inhibitor (BPTI). In addition, several highly hindered bases such as 2,6-dimethylpyridine (lutidine), 2,3,5,6-tetramethylpyridine (TEMP), octahydroacridine (OHA), and 2,6-di-tert-butyl-4-(dimethylamino)pyridine (DB[DMAP]) may be used in place of the usual DIEA or NMM to minimize cysteine racemization even with the in situ coupling protocols. 相似文献
8.
Joseph Diaz Remy Guegan Michel Beaumont Jean Benoit Jacques Clement Christian Fauchard Daniel Galtier Joseph Millan Claude Muneaux Yvette Muneaux Michel Vedel Robert Schwyzer 《Bioorganic chemistry》1979,8(4):429-442
A large-scale synthesis of somatostatin was developed. A stepwise C→N approach in solution was used, employing N(α)-t-butoxycarbonyl amino acid active esters. The scheme of semipermanent protection utilized 2-(methylsulfonyl)-ethoxycarbonyl for the -amino group of lysine; acetamidomethyl for the β-thiol groups of cysteine; the orange-colored 2-[4-(phenylazo)-phenylsulfonyl]-ethoxy group for the C-terminal carboxy group of cysteine. All condensations and N(α)-deprotections were carried out in homogeneous solution, while isolation and purification of peptides carrying the colored group was achieved by precipitation and washing of the solid products. Thus, the “alternating solution/solid-phase peptide synthesis” combines advantages of both the classical solution synthesis and the Merrifield solid-phase technique. The overall yield was 5%, or 16 g of somatostatin from 100 g of the novel amino acid derivative, N(α)-t-butoxycarbonyl-S-acetamidomethyl--cysteine 2-[4-(phenylazo)-phenylsulfonyl]-ethyl ester. An improved method for the preparation of S-acetamidomethyl--cysteine, free of thiazolidine carboxylic acid, is described. 相似文献
9.
The synthesis of Tyr(P)-containing peptides by the use of Fmoc-Tyr(PO3Me2)-OH in Fmoc/solid phase synthesis is complicated since, firstly, piperidine causes cleavage of the methyl group from the -Tyr(PO3Me2)-residue during peptide synthesis and, secondly, harsh conditions are needed for its final cleavage. A very simple method for the synthesis of Tyr(P)-containing peptides using t-butyl phosphate protection is described. The protected phosphotyrosine derivative, Fmoc-Tyr(PO3tBu2)-OH was prepared in high yield from Fmoc-Tyr-OH by a one-step procedure which employed di-t-butyl N,N-diethyl-phosphoramidite as the phosphorylation reagent. The use of this derivative in Fmoc/solid phase peptide synthesis is demonstrated by the preparation of the Tyr(P)-containing peptides, Ala-Glu-Tyr(P)-Ser-Ala and Ser-Ser-Ser-Tyr(P)-Tyr(P). 相似文献
10.
11.
Both the reductive unfolding and oxidative regeneration of a P93A mutant and wild-type RNase A have been studied at 15 degrees C and pH 8.0. The rate of reduction of the 40--95 disulfide bond is accelerated about 120-fold by the P93A mutation, while the reduction of the 65--72 disulfide bond is not accelerated by this mutation (within the experimental error). Moreover, the reduction of native P93A to des[40--95] is about 10 times faster than the further reduction of the same des[40--95] species. These results demonstrate that the reduction of the mutant proceeds through a local unfolding event and provides strong support for our model in which the reduction of wild-type RNase A to the des species proceeds through two independent local conformational unfolding events. The oxidative regeneration rate of the P93A mutant is comparable to that of wild-type RNase A, suggesting that a cis 92--93 peptide group that is present in native wild-type RNase A and in native des[40--95], is not obligatory for the formation of the third (final) native disulfide bond of des[40--95] by reshuffling from an unstructured 3S precursor. Thus, the trans to cis isomerization of the Tyr92-Pro93 peptide group during the regeneration of wild-type RNase A may occur after the formation of the third native disulfide bond. 相似文献
12.
As part of ongoing work aimed at generating proteolytically stable, readily applicable, radiolabeled endomorphin-2 (EM-2) analogs for elucidation of the topological requirements of peptide binding to μ-opioid receptors, we report here on the synthesis, radiolabeling, binding kinetics and binding site distribution of an EM-2 analog in which Pro2 is replaced by 2-aminocyclohexanecarboxylic acid, ACHC. [3H][(1S,2R)ACHC]2EM-2 (specific activity 63.49 Ci × mmol−1) bound specifically to its binding sites with high affinity (KD = 0.55 ± 0.06 nM) and saturably, yielding a receptor density, Bmax of 151 ± 4 fmol × mg protein−1 in rat brain membranes. A similar affinity value was obtained in kinetic assays. Both Na+ and Gpp(NH)p decreased the affinity, proving the agonist character of the radioligand. Specific μ-opioid ligands displaced the radioligand with much higher affinities than did δ- and κ-ligands. The autoradiographic distribution of the binding sites of [3H][(1S,2R)ACHC]2EM-2 agreed well with the known locations of the μ-opioid receptors in the rat brain. In consequence of its high affinity, selectivity and enzymatic resistance [19], the new radioligand will be a good tool in studies of the topographical requirements of μ-opioid-specific peptide binding. 相似文献
13.
A simple two-step procedure is reported for the synthesis of a tert-butyl ester protected form of an EDTA-like bifunctional chelating agent. This reagent can be easily introduced on any available amino group during the assembly of peptides on solid-phase supports. Using the model tetradecapeptide OVA(323-336), we have introduced an EDTA group at the N-terminus of this T-cell epitope and confirmed that the EDTA group is present on the molecule, can chelate metals, and does not affect the biological activity of the peptide. 相似文献
14.
C-Terminal peptide aldehydes and hydroxamates comprise two separate classes of effective inhibitors of a number of serine, aspartate, cysteine, and metalloproteases. Presented here is a method for preparation of both classes of peptide derivatives from the same resin-bound Weinreb amide precursor. Thus, 5-[(2 or 4)-formyl-3,5-dimethoxyphenoxy]butyramido-polyethylene glycol-polystyrene (BAL-PEG-PS) was treated with methoxylamine hydrochloride in the presence of sodium cyanoborohydride to provide a resin-bound methoxylamine, which was efficiently acylated by different Fmoc-amino acids upon bromo-tris-pyrrolidone-phosphonium hexafluorophosphate (PyBrOP) activation. Solid-phase chain elongation gave backbone amide-linked (BAL) peptide Weinreb amides, which were cleaved either by trifluoroacetic acid (TFA) in the presence of scavengers to provide the corresponding peptide hydroxamates, or by lithium aluminum hydride in tetrahydrofuran (THF) to provide the corresponding C-terminal peptide aldehydes. With several model sequences, peptide hydroxamates were obtained in crude yields of 68-83% and initial purities of at least 85%, whereas peptide aldehydes were obtained in crude yields of 16-53% and initial purities in the range of 30-40%. Under the LiAlH4 cleavage conditions used, those model peptides containing t-Bu-protected aspartate residues underwent partial side chain reduction to the corresponding homoserine-containing peptides. Similar results were obtained when working with high-load aminomethyl-polystyrene, suggesting that this chemistry will be generally applicable to a range of supporting materials. 相似文献
15.
S R Haynes S D Hagins M M Juban P H Elzer R P Hammer 《The journal of peptide research》2005,66(6):333-347
A homologous series of nonapeptides and their acetylated versions were successfully prepared using solid-phase synthetic techniques. Each nonapeptide was rich in alpha,alpha-dialkylated amino acids [one 4-aminopiperidine-4-carboxylic acid (Api) and six alpha-aminoisobutyric acid (Aib) residues] and also included lysines or lysine analogs (two residues). The incorporation of the protected dipeptide 9-fluorenylmethyloxycarbonyl (Fmoc)-Aib-Aib-OH improved the purity and overall yields of these de novo designed peptides. The helix preference of each nonapeptide was investigated in six different solvent environments, and each peptide's antimicrobial activity and cytotoxicity were studied. The 3(10)-helical, amphipathic design of these peptides was born out most prominently in the N-terminally acetylated peptides. Most of the peptides exhibited modest activity against Escherichia coli and no activity against Staphylococcus aureus. The nonacetylated peptides (concentrations < or =100 microM) and the acetylated peptides (concentrations < or = 200 microM) did not exhibit any significant cytotoxicity with normal (nonactivated) murine macrophages. 相似文献
16.
Cis proline mutants of ribonuclease A. II. Elimination of the slow-folding forms by mutation. 总被引:2,自引:3,他引:2
下载免费PDF全文

D. A. Schultz F. X. Schmid R. L. Baldwin 《Protein science : a publication of the Protein Society》1992,1(7):917-924
Ribonuclease A is known to form an equilibrium mixture of fast-folding (UF) and slow-folding (US) species. Rapid unfolding to UF is then followed by a reaction in the unfolded state, which produces a mixture of UF, USII, USI, and possibly also minor populations of other US species. The two cis proline residues, P93 and P114, are logical candidates for producing the major US species after unfolding, by slow cis <==> trans isomerization. Much work has been done in the past on testing this proposal, but the results have been controversial. Site-directed mutagenesis is used here. Four single mutants, P93A, P93S, P114A, and P114G, and also the double mutant P93A, P114G have been made and tested for the formation of US species after unfolding. The single mutants P114G and P114A still show slow isomerization reactions after unfolding that produce US species; thus, Pro 114 is not required for the formation of at least one of the major US species of ribonuclease A. Both the refolding kinetics and the isomerization kinetics after unfolding of the Pro 93 single mutants are unexpectedly complex, possibly because the substituted amino acid forms a cis peptide bond, which should undergo cis --> trans isomerization after unfolding. The kinetics of peptide bond isomerization are not understood at present and the Pro 93 single mutants cannot be used yet to investigate the role of Pro 93 in forming the US species of ribonuclease A. The double mutant P93A, P114G shows single exponential kinetics measured by CD, and it shows no evidence of isomerization after unfolding.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
17.
A series of disulfide bridged peptides were designed as potential inhibitors of protein-protein interactions. Following solid phase synthesis, completely deprotected linear peptides were first oxidized to their disulfide analogs and then transformed into their lanthionine equivalents via a base-assisted reaction in water. Peptides consisting of cystine bridges of length i, i+3, with and without discrimination of the chiral centers, were studied for this transformation. Lanthionine peptides were also obtained directly from the reduced linear peptides under mild alkaline treatment, and the reaction proceeded via disulfide bond formation. The extent of conversion of a disulfide bridge into its lanthionine counterpart varied according to the primary sequence. Product characterization revealed diastereomeric lanthionine formation. The presence of D-amino acids, peptide conformation, and/or position of the cystine bridge are among the factors determining the facility of this reaction. Elimination of the backbone proton beta to the sulfur atom followed by intramolecular thiol Michael addition is the most likely mechanism for this transformation. 相似文献
18.
Galande Amit K. Spatola Arno F. 《International journal of peptide research and therapeutics》2001,8(3-5):247-251
Summary A series of disulfide bridged peptides were designed as potential inhibitors of protein-protein interactions. Following solid
phase synthesis, completely deprotected linear peptides were first oxidized to their disulfide analogs and then transformed
into their lanthionine equivalents via a base-assisted reaction in water. Peptides consisting of cystine bridges of lengthi, i+3, with and without discrimination of the chiral centers, were studied for this transformation. Lanthionine peptides were also
obtained directly from the reduced linear peptides under mild alkaline treatment, and the reaction proceeded via disulfide
bond formation. The extent of conversion of a disulfide bridge into its lanthionine counterpart varied according to the primary
sequence. Product characterization revealed diastereomeric lanthionine formation. The presence of D-amino acids, peptide conformation,
and/or position of the cystine bridge are among the factors determining the facility of this reaction. Elimination of the
backbone proton beta to the sulfur atom followed by intramolecular thiol Michael addition is the most likely mechanism for
this transformation. 相似文献
19.
L F Bonewald L Bibbs S A Kates A Khatri J S McMurray K F Medzihradszky S T Weintraub 《The journal of peptide research》1999,53(2):161-169
Phosphorylation and dephosphorylation are key events in receptor-mediated and post-receptor-mediated signal transduction. Synthetic phosphopeptides have been shown to have dramatic agonist or antagonist effects in several of these signaling pathways. For its 1997 study, the Association of Biomolecular Resource Facilities (ABRF) Peptide Synthesis Research Group assessed the ability of member laboratories to synthesize phosphotyrosine peptides. Participating laboratories were requested to synthesize and submit the following crude peptide, H-Glu-Asp-Tyr-Glu-Tyr(PO3H2)-Thr-Ala-Arg-Phe-NH2, for evaluation by amino acid analysis, sequence analysis, RP-HPLC, MALDI-TOF and ESI mass spectrometry. Prior to analysis of submitted peptides from ABRF members, the Peptide Synthesis Research Group synthesized and characterized the nonphosphorylated form of the peptide, the doubly phosphorylated form and the peptides singly phosphorylated on either the first or the second tyrosine. These peptide standards were separated easily by HPLC and capillary electrophoresis and the phosphotyrosine was detected readily by Edman degradation sequence analysis. No differences were seen by amino acid analysis and the expected masses were observed by mass spectrometry. The two singly phosphorylated peptides were easily distinguished by MALDI-PSD. Analysis of the peptides submitted from member facilities revealed that all but four of the 33 samples contained the correct product as determined by HPLC and mass spectrometry. HPLC analysis indicated that 20 of the 33 submitted samples contained greater than 75% correct product, five contained less than 50% correct product and four did not contain any correct product. By ESI/MS, an additional singly charged ion at m/z 535.5 was detected in five of the 33 submitted samples; this ion was subsequently shown to represent Ac-TARF-NH2. No correlation was found to exist between coupling time and percentage correct product; however, a correlation may exist between a greater percentage of correct product and the use of non-protected phosphotyrosine. 相似文献
20.
Powerful solvent systems useful for synthesis of sparingly-soluble peptides in solution. 总被引:3,自引:0,他引:3
H Kuroda Y N Chen T Kimura S Sakakibara 《International journal of peptide and protein research》1992,40(3-4):294-299
Our maximum protection strategy for the synthesis of human parathyroid hormone(1-84) indicates that fully protected peptide segments in the form of Boc-peptide phenacyl (Pac) ester are relatively soluble in ordinary organic solvents such as DMF, NMP or DMSO, which are suitable for coupling segments. However, about 1% of such segments synthesized were found to be insoluble even in the most polar solvent, DMSO. Thus, a more powerful solvent which can be used for their peptide synthesis was pursued. Among the solvent systems tested, a mixture of trifluoroethanol (TFE) or hexafluoroisopropanol (HFIP) and trichloromethane (TCM) or dichloromethane (DCM) was found to be most powerful for dissolving such sparingly-soluble protected peptides. These solvent systems were confirmed to be useful for the removal reaction of the carboxy-terminal Pac esters from the sparingly-soluble segments. They were then tested for the coupling reactions of fully protected Boc-peptides with other sparingly-soluble peptide esters. The TFE/TCM or TFE/DCM system was extremely useful for coupling segments without danger of racemization and of trifluoroester formation, if WSCI was used as the coupling reagent in the presence of 3,4-dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (HOOBt). 相似文献