首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of the plasma membrane Ca2+ pump in the cell is of critical importance in maintaining calcium homeostasis. Since protein kinase C is known to regulate functions of cellular proteins by direct phosphorylation or by inducing their gene expression, we investigated the possible involvement of protein kinase C in the regulation of the plasma membrane Ca2+ pump. The Ca2+ pump was isolated by immunoprecipitation from [32P]orthophosphate-labeled cultured rat aortic endothelial cells grown in the absence or presence of phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C. PMA treatment of cells led to a rapid increase in the phosphorylation level (1.3-fold) within 5 min and a further increase to 2.9-fold after 3 h. Prolonged PMA treatment also induced the accumulation of the Ca2+ pump mRNA, followed by increased levels of the pump protein. The peak level of the pump mRNA induction occurred at 4 h and was 8-20-fold higher than the control culture without PMA. The rate of the Ca2+ pump protein accumulation was slower, reaching a maximum of 3.5-fold after 6 h. Induction of the pump mRNA was suppressed by the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine and by down-regulation of protein kinase C. Inactive phorbol ester 4 alpha-phorbol didecanoate also failed to mimic the PMA effect. These results suggest that the induction of Ca2+ pump expression is mediated by a protein kinase C-dependent mechanism. Furthermore, since the induction of the Ca2+ pump mRNA was blocked when cycloheximide and PMA were added together, this suggests that newly synthesized protein factor is needed to produce the mRNA induction. Our results suggest that protein kinase C is involved in the regulation of the Ca2+ pump in endothelial cells. At the protein level, it modifies the Ca2+ pump by phosphorylation, and at the gene level, it stimulates the expression of its mRNA and thereby increases the amount of the pump protein.  相似文献   

2.
We have studied the interaction between dihydropyridine (DHP) Ca2+ modulators and the phorbol ester phorbol 12-myristate 13-acetate (PMA) on whole cell Ca2+ currents, 45Ca2+ uptake, immediate early gene (IEG) expression, and proliferation in the rat pituitary GH4C1 cell line. When short (3- to 5-msec) depolarizing voltage clamp steps were used to activate L-type Ca2+ channels, the DHP Ca2+ agonist (-)Bay K 8644 markedly enhanced Ca2+ entry by slowing channel closing upon repolarization. In contrast, the Ca2+ agonist induced only small and inconsistent increases in c-fos mRNA and did not measurably increase NGFI-A. Ca2+ channel activation by depolarization with 50 mM KCl in the presence of (-)Bay K 8644 induced large increases in 45Ca2+ uptake, but failed to markedly induce either of the IEGs. The phorbol ester PMA did not alter T- or L-type Ca2+ current or 45Ca2+ uptake by GH4C1 cells, but triggered large increases in both c-fos and NGFI-A mRNA. In combination, PMA and (-)Bay K 8644 acted synergistically to increase mRNAs for both IEGs. The effect of the DHPs was stereospecific; (+)Bay K 8644, a Ca2+ antagonist, inhibited PMA-induced increases in c-fos and NGFI-A mRNAs. Both PMA and (-)Bay K 8644 inhibited the proliferation of GH4C1 cells, measured by cell count or [3H]thymidine incorporation. The inhibition by the Ca2+ agonist was stereoselective and approximately additive to that of PMA. These results indicate that the expression of c-fos IEG and that of NGFI-A IEG are differentially regulated by separate second messenger pathways in GH4C1 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Superoxide production in alveolar macrophages is stimulated by agonists which act through Ca2+-mediated (concanavalin A) and/or protein kinase C (phorbol ester or diacylglycerol analogues) -mediated events. Simultaneous addition of saturating concentrations of concanavalin A and a protein kinase C activator (either phorbol 12-myristate-13-acetate or 1-oleoyl-2-acetyl-sn-glycerol) caused a supra-additive enhancement of the initial rate of O2-. production. This synergism closely correlated with the known time-course of Ca2+ mobilization induced by concanavalin A; however, it occurred under conditions in which protein kinase C activation is reportedly not Ca2+ dependent. Phorbol ester-induced O2-. production was partially inhibited by the Ca2+ ionophore, A23187. Although phorbol ester-stimulated O2-. production initially was enhanced by concanavalin A, the duration of this O2-. production was reduced in comparison to that induced by phorbol ester alone. These results suggest a dual role for intracellular Ca2+ in both stimulatory and inhibitory regulation of O2-. production.  相似文献   

4.
The effects of phorbol esters and diacylglycerol on phosphate uptake in opossum kidney (OK) cells were investigated to assess the possible role of Ca2+-activated, phospholipid dependent protein kinase (protein kinase C) on renal phosphate handling. OK cells are widely used as a model of proximal renal tubular cells and are reported to possess a Na+-dependent phosphate transport system. Phorbol-12,13-dibutyrate (PDBu) inhibited phosphate uptake. This inhibitory effect was synergistically enhanced with A23187. 4 beta-phorbol 12,13-didecanoate inhibited phosphate uptake, while 4 alpha-phorbol 12,13-didecanoate did not. 1-oleoyl-2-acetyl-glycerol (OAG), a synthetic diacylglycerol, also exhibited an inhibitory effect on phosphate uptake. These data suggest the possible involvement of protein kinase C in proximal renal tubular phosphate transport.  相似文献   

5.
Ca2+- and phospholipid-dependent protein kinase (protein kinase C) has been shown to modify receptor-mediated Ca2+ responses in a variety of cells. To assess its possible role in modulating voltage-dependent Ca2+ responses, we examined the effect of tumor-promoting phorbol esters, which activate protein kinase C, on Ca2+ channel function in the PC12 neural cell line. Phorbol 12-myristate 13-acetate reduced K+-depolarization-evoked 45Ca uptake and decreased binding of the Ca2+ channel antagonist [3H] (+)PN200-110 to intact cells. Inhibition of binding was markedly reduced in PC12 membranes, but was restored by reconstituting membranes with protein kinase C activity. Protein kinase C may therefore participate in endogenous regulation of voltage-dependent Ca2+ channels in mammalian neural cells.  相似文献   

6.
Receptor-mediated breakdown of PtdIns(4,5)P2 produces two cellular signals, Ins(1,4,5)P3, which can release intracellular Ca2+, and diacylglycerol, which activates a Ca2+- and phospholipid-dependent protein kinase (protein kinase C). This study assesses the significance of protein kinase C in relation to phenylephrine- and vasopressin-induced Ca2+ mobilization in hepatocytes. Phorbol ester (4 beta-phorbol-12-myristate-13-acetate), which can directly activate protein kinase C, had no effect either on Ca2+ efflux from the cell (measured with arsenazo III) or on Ca2+ influx (measured with Quin-2), processes which are inhibited and stimulated, respectively, by both phenylephrine and vasopressin. No evidence of synergism between phorbol ester pretreatment of hepatocytes and the Ca2+ ionophore (ionomycin)-mediated effects on the increase of cytosolic free Ca2+ and phosphorylase activation could be obtained. These findings suggest that protein kinase C is not obligatorily involved in the regulation of hepatocyte Ca2+ fluxes. Pretreatment of hepatocytes with phorbol ester (PMA) or 1-oleoyl-2-acetylglycerol totally inhibited the effects of phenylephrine in elevating the cytosolic free Ca2+; half-maximal inhibitory effects occurred at PMA and 1-oleoyl-2-acetylglycerol concentrations of 1 ng/ml and 12 micrograms/ml, respectively. In contrast, pretreatment with PMA had a much smaller effect on Ca2+ mobilization induced by vasopressin. These observations suggest that protein kinase C may be involved in "down-regulation" of the alpha 1-receptor in hepatocytes and may thus exert a negative influence on the Ca2+-signalling pathway.  相似文献   

7.
The protein kinase C activators phorbol myristate acetate (PMA), mezerein, oleoylacetylglycerol, and (-)-indolactam V, although without direct effect on arachidonic acid release, greatly enhance the release of platelet arachidonic acid caused by the Ca2+ ionophores A23187 and ionomycin. In contrast, 4 alpha-phorbol 12,13-didecanoate and (+)-indolactam V, which lack the ability to activate kinase C, do not potentiate arachidonate release. Release of arachidonic acid occurs without activation of phospholipase C and is therefore mediated by phospholipase A2. Synergism between PMA and A23187 is not affected by inactivation of the Na+/H+ exchanger with dimethylamiloride. The time course and dose-response for the effect of PMA at 23 degrees C closely correlate with the phosphorylation of a set of relatively "slowly" phosphorylated proteins (P20, P35, P41, P60), but not the rapidly phosphorylated P47 protein. P20 is myosin light chain, and P41 is probably Gi alpha, but the other proteins have not been positively identified. Depletion of metabolic ATP stores by antimycin A plus 2-deoxyglucose abolishes both protein phorphorylation and the potentiation of arachidonate release by PMA, but does not prevent fatty acid release by the ionophores. Similarly, the kinase C inhibitors H-7 and staurosporine produce, respectively, partial and complete inhibition of PMA-potentiated arachidonic acid release and protein phosphorylation, without affecting the direct response to ionophores. These results indicate that protein phosphorylation, mediated by kinase C, promotes the phospholipase A2 dependent release of arachidonic acid in platelets when intracellular Ca2+ is elevated by Ca2+ ionophores.  相似文献   

8.
We compared the effects of phorbol 12-myristate 13-acetate (PMA) with those of prostaglandin E1 (PGE1) on the calcium transient in intact platelets and on 45Ca2+ uptake in saponin-treated platelets and microsomal fractions to determine the roles of protein kinase C and cyclic AMP in calcium sequestration. In intact platelets, PMA, like PGE1, stimulated the return of the calcium transient to resting values after a thrombin stimulus, but only the PGE1 effect was reversed by adrenaline. Both PMA and PGE1, when added before saponin, stimulated ATP-dependent 45Ca2+ uptake into the permeabilized platelets. Thrombin also stimulated 45Ca2+ uptake into saponin-treated platelets. Uptake of 45Ca2+ was increased in microsomal preparations from platelets pretreated with PMA or PGE1. PMA did not increase the cyclic AMP content of control or thrombin-treated platelets, and it induced a pattern of protein phosphorylation in 32P-labelled platelets different from that with PGE1. In correlation with the increased uptake of calcium in the saponin-treated preparation, we measured a rapid translocation of protein kinase C from supernatant to cell fraction after the addition of PMA. Our results suggest that activation of protein kinase C enhances calcium sequestration independently of an effect on cyclic AMP content in platelets. This activation could play a physiological role in the regulation of the calcium transient.  相似文献   

9.
In cloned osteoblast-like MC3T3-E1 cells, prostaglandin E2 (PGE2) stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in a dose-dependent manner, attaining a maximum at 0.5 microM. Dose of PGE2 above 0.5 microM caused less than maximal stimulation. While PGE2 stimulated the formation of inositol trisphosphate dose dependently in the range between 1 nM and 10 microM. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, which by itself had little effect on 45Ca2+ influx, significantly suppressed the 45Ca2+ influx induced by PGE2 in a dose-dependent manner between 1 nM and 1 microM. 4 alpha-Phorbol 12,13-didecanoate, a phorbol ester which is inactive for PKC, showed little effect in this capacity. Staurosporine, a PKC inhibitor, enhanced the PGE2-induced 45Ca2+ influx. On the other hand, dibutyryl cAMP had little effect on the 45Ca2+ influx induced by PGE2. Our data suggest that PGE2 regulates Ca2+ influx through self-induced activation of PKC. These results indicate that there is an autoregulatory mechanism in signal transduction by PGE2, and PGE2 modulates osteoblast functions through the interaction between Ca2+ influx and phosphoinositide hydrolysis in osteoblast-like cells.  相似文献   

10.
The demonstration that activators of the Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C), such as phorbol esters and diacylglycerols, can provoke luteinizing hormone (LH) release from pituitary gonadotropes, suggests a possible role for protein kinase C in stimulus-release coupling. We now report that administration of phorbol myristate acetate (PMA) to pituitary cell cultures causes a sustained reduction in Triton X-100-extracted protein kinase C activity. Further, phorbol ester- and diacylglycerol-stimulated LH release, as well as inhibition by PMA of gonadotropin-releasing hormone (GnRH)-stimulated inositol phosphate production, were reduced by pretreatment with PMA. The effects of phorbol ester pretreatment on PMA-stimulated LH release and protein kinase C activity were dose-dependent, sustained (greater than or equal to 24 h) and specific (no measurable effect with 4 alpha-phorbol didecanoate). The effect on PMA-stimulated LH release was apparently Ca2+-independent. In pituitary cell cultures with reduced protein kinase C activity, the gonadotropes have reduced responsiveness to PMA but release a similar proportion of cellular LH in response to Ca2+-mobilizing secretagogues (GnRH and A23187) as do control cells. The normal responsiveness to GnRH of cells with reduced responsiveness to protein kinase C activators calls into question the requirement for this enzyme for GnRH-stimulated LH release.  相似文献   

11.
We examined whether protein kinase C activation plays a modulatory or an obligatory role in exocytosis of catecholamines from chromaffin cells by using PKC(19-31) (a protein kinase C pseudosubstrate inhibitory peptide), Ca/CaM kinase II(291-317) (a calmodulin-binding peptide), and staurosporine. In permeabilized cells, PKC (19-31) inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion as much as 90% but had no effect on Ca2(+)-dependent secretion in the absence of phorbol ester. The inhibition of the phorbol ester-induced enhancement of secretion by PKC (19-31) was correlated closely with the ability of the peptide to inhibit in situ phorbol ester-stimulated protein kinase C activity. PKC(19-31) also blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of numerous endogenous proteins in permeabilized cells but had no effect on Ca2(+)-stimulated phosphorylation of tyrosine hydroxylase. Ca/CaM kinase II(291-317), derived from the calmodulin binding region of Ca/calmodulin kinase II, had no effect on Ca2(+)-dependent secretion in the presence or absence of phorbol ester. The peptide completely blocked the Ca2(+)-dependent increase in tyrosine hydroxylase phosphorylation but had no effect on TPA-induced phosphorylation of endogenous proteins in permeabilized cells. To determine whether a long-lived protein kinase C substrate might be required for secretion, the lipophilic protein kinase inhibitor, staurosporine, was added to intact cells for 30 min before permeabilizing and measuring secretion. Staurosporine strongly inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion. It caused a small inhibition of Ca2(+)-dependent secretion in the absence of phorbol ester which could not be readily attributed to inhibition of protein kinase C. Staurosporine also inhibited the phorbol ester-mediated enhancement of elevated K(+)-induced secretion from intact cells while it enhanced 45Ca2+ uptake. Staurosporine inhibited to a small extent secretion stimulated by elevated K+ in the absence of TPA. The data indicate that activation of protein kinase C is modulatory but not obligatory in the exocytotoxic pathway.  相似文献   

12.
In quiescent cultures of Swiss 3T3 cells, platelet-derived growth factor or fibroblast growth factor known to induce both protein kinase C activation and Ca2+ mobilization raised c-fos mRNA. This action of the growth factors was mimicked by the specific activators for protein kinase C, such as phorbol esters and a membrane-permeable synthetic diacylglycerol, and also by the Ca2+ ionophores, such as A23187 and ionomycin. Prostaglandin E1 known to elevate cyclic AMP also raised c-fos mRNA, and this action was mimicked by 8-bromo-cyclic AMP, dibutyryl cyclic AMP and forskolin. These results suggest that expression of the c-fos gene is regulated by three different intracellular messenger systems, protein kinase C, Ca2+ and cyclic AMP, in Swiss 3T3 cells.  相似文献   

13.
Tumor-promoting phorbol esters such as 4 beta-phorbol 12-myristate 13-acetate (PMA) have been shown to act synergistically with Ca2+ ionophores in cell activation, including stimulation of arachidonic acid metabolism. The effects of PMA on unstimulated and Ca2+ ionophore- or thrombin-stimulated PGI2 and platelet-activating factor (PAF) production in cultured bovine aortic endothelial cells (BAEC) and human umbilical vein endothelial cells (HUVEC) were investigated. Incubation of BAEC or HUVEC for 5-10 min with 100 nM PMA alone slightly increased basal PGI2 production. PGI2 production was rapidly stimulated in BAEC and HUVEC treated with the Ca2+ ionophore ionomycin. Preincubation of BAEC or HUVEC with 100 nM PMA for 5-10 min followed by ionomycin for up to 60 min enhanced PGI2 production up to 2.5-fold. Pretreatment with 100 nM PMA for 5 min also caused a 2-fold enhancement of thrombin-stimulated (1 U/ml) PGI2 production in HUVEC. The production of other prostaglandins, PGF2 alpha, PGE2, and PGD2, was also enhanced. In contrast, PMA had no effect on PGI2 synthesized directly from exogenous arachidonic acid or PGH2. The inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate was without effect. Since the biosyntheses of both PGI2 and PAF share a common first step, the hydrolysis of their respective phospholipid precursors by phospholipase A2, we investigated whether PMA preincubation could also enhance PAF biosynthesis. Incubation of HUVEC with 100 nM PMA alone had a negligible effect on PAF production. However, thrombin-stimulated (1 U/ml) PAF production was enhanced 2.6-fold by preincubation with 100 nM PMA. The protein kinase C inhibitors H-7 and staurosporine ablated the enhancing effect of PMA on thrombin-stimulated PGI2 and PAF biosynthesis. These results demonstrate that PMA can significantly alter the production of PGI2 and PAF in vascular endothelial cells, and suggest that protein kinase C activation modulates phospholipase A2 activity in this cell type.  相似文献   

14.
We studied the molecular mechanism of noradrenaline release from the presynaptic terminal and the involvement of the protein kinase C substrate B-50 (GAP-43) in this process. To gain access to the interior of the presynaptic terminal, we searched for conditions to permeate rat brain synaptosomes by the bacterial toxin streptolysin O. A crude synaptosomal/mitochondrial preparation was preloaded with [3H]noradrenaline. After permeation with 0.8 IU/ml streptolysin O, noradrenaline efflux could be induced in a concentration-dependent manner by elevating the free Ca2+ concentration from 10(-8) to 10(-5) M. Efflux of the cytosolic marker protein lactate dehydrogenase was not affected by this increase in Ca2+. Ca2(+)-induced efflux of noradrenaline was largely dependent on the presence of exogenous ATP. Changing the Na+/K+ ratio in the buffer did not affect Ca2(+)-induced noradrenaline release. Release of noradrenaline could also be evoked by phorbol esters, indicating the involvement of protein kinase C. Ca2(+)- and phorbol ester-induced release were not additive at higher phorbol ester concentrations (greater than 10(-7) M). We compared the sensitivities of Ca2(+)- and phorbol ester-induced release of noradrenaline to the protein kinase inhibitors H-7 and polymyxin B and to antibodies raised against synaptic protein kinase C substrate B-50. Ca2(+)-induced release was inhibited by B-50 antibodies and polymyxin B, but not by H-7; phorbol ester-induced release was inhibited by polymyxin B and by H-7, but only marginally by antibodies to B-50.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Pretreatment of adrenal chromaffin cells with protein kinase C activators, i.e. 12-O-tetradecanoyl phorbol-13-acetate (TPA) and 1-oleoyl 2-acetyl glycerol (OAG), partially inhibited carbamylcholine (CCh)-induced rise in intracellular free Ca2+ concentration ([Ca2+]i). The apparent IC50 values of TPA and OAG were 3 nM and 25 microM, respectively. The effect of TPA on the CCh-induced rise in [Ca2+]i was overcome by pretreatment of the cells with a protein kinase C inhibitor, 1-(5-isoquinidinesulfonyl)-2-methylpiperazine hydrochloride (H-7). In contrast, KCl-induced rise in [Ca2+]i was not affected by pretreating the cells with TPA or OAG. An inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate failed to affect the CCh-induced rise in [Ca2+]i. CCh-induced 45Ca2+ uptake was also partially inhibited by pretreatment of the cells with TPA or OAG, but KCl-induced 45Ca2+ uptake was not affected by these pretreatments. These results indicate that protein kinase C activation causes an uncoupling of signal transduction between the nicotinic receptors and Ca2+ channels.  相似文献   

16.
The effects of phorbol esters and diacylglycerols on Ca2+ transport in isolated human platelet membranes were determined. Phorbol 12-myristate 13-acetate (PMA) stimulated Ca2+-ATPase activity in crude and purified internal platelet membranes approximately 2-fold with half-maximal stimulation occurring at 10 nM. Dilauroylglycerol also stimulated Ca2+-ATPase activity half-maximally at a concentration of 7.5 microM, but dioctanoylglycerol was without effect at up to 30 microM. PMA also inhibited Ca2+ uptake when added before or after commencement of ATP-dependent transport. PMA (25 nM) doubled the rate of Ca2+ efflux from passively loaded membranes in the absence of ATP. No protein kinase C activity was detected in crude or purified membranes by histone phosphorylation or endogenous protein phosphorylation assays. These results suggest that PMA and dilauroylglycerol stimulate Ca2+-ATPase activity and inhibit ATP-dependent Ca2+ transport by increasing the permeability of the membranes to Ca2+.  相似文献   

17.
Lipoprotein lipase gene expression in THP-1 cells   总被引:5,自引:0,他引:5  
  相似文献   

18.
Phorbol esters were used to investigate the action of protein kinase C (PKC) on insulin secretion from pancreatic beta-cells. Application of 80 nM phorbol 12-myristate 13-acetate (PMA), a PKC-activating phorbol ester, had little effect on glucose (15 mM)-induced insulin secretion from intact rat islets. In islets treated with bisindolylmaleimide (BIM), a PKC inhibitor, PMA significantly reduced the glucose-induced insulin secretion. PMA decreased the level of intracellular Ca(2+) concentration ([Ca(2+)](i)) elevated by the glucose stimulation when tested in isolated rat beta-cells. This inhibitory effect of PMA was not prevented by BIM. PMA inhibited glucose-induced action potentials, and this effect was not prevented by BIM. Further, 4alpha-phorbol 12,13-didecanoate (4alpha-PDD), a non-PKC-activating phorbol ester, produced an effect similar to PMA. In the presence of nifedipine, the glucose stimulation produced only depolarization, and PMA applied on top of glucose repolarized the cell. When applied at the resting state, PMA hyperpolarized beta-cells with an increase in the membrane conductance. Recorded under the voltage-clamp condition, PMA reduced the magnitude of Ca(2+) currents through L-type Ca(2+) channels. BIM prevented the PMA inhibition of the Ca(2+) currents. These results suggest that activation of PKC maintains glucose-stimulated insulin secretion in pancreatic beta-cells, defeating its own inhibition of the Ca(2+) influx through L-type Ca(2+) channels. PKC-independent inhibition of electrical excitability by phorbol esters was also demonstrated.  相似文献   

19.
Protein kinase C and meiotic maturation of surf clam oocytes   总被引:2,自引:0,他引:2  
We report here that phorbol ester, a potent activator of protein kinase C, induces germinal vesicle breakdown in surf clam oocytes. However, phorbol ester-induced activation is slow and is not accompanied by an increased Ca2+ influx. Simultaneous additions of phorbol ester and various amounts of K+ ions, which induce Ca2+ influx of different amplitudes, result in successful activation within the normal time schedule at K+ concentrations inefficient alone in activating the oocytes. In vivo, increased protein phosphorylation triggered by phorbol ester amounts to about one third that seen after fertilization. These results suggest that increased Ca2+ influx and protein kinase C activation act in synergy to cause resumption of meiotic maturation in these oocytes.  相似文献   

20.
Exposure to ethanol for several days increases the expression of dihydropyridine-sensitive, voltage-dependent Ca2+ channels in brain and in the neural cell line PC12. Since protein phosphorylation is a major mechanism by which ion channels are regulated, we used protein kinase inhibitors to investigate whether ethanol-induced up-regulation of Ca2+ channels involves activation of a protein kinase. Sphingosine and polymixin B, which inhibit protein kinase C and calmodulin-dependent kinases, prevented the enhancement of 45Ca2+ uptake induced by exposure of PC12 cells to ethanol for 4 days. In addition, sphingosine blocked the ability of ethanol to increase the number of [3H]dihydropyridine binding sites in PC12 cell membranes. Sphingosine's effect was prevented by simultaneous exposure to phorbol 12,13-dibutyrate, a potent activator of protein kinase C. Therefore, protein kinase C appears to be involved in the up-regulation of dihydropyridine-sensitive Ca2+ channels during prolonged exposure to ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号