首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The alpha-1,4-glucan phosphorylase (alpha-1,4-glucan: orthophosphate glucosyltransferase; EC 2.4.1.1) associated with the particulate cell fraction of Streptococcus mitior strain S3 was compared with the soluble maltodextrin phosphorylase that had been previously isolated from the same organism (Walker et al., 1969). The particulate enzyme was more sensitive to the glycogen content of the cell than the soluble euzyme; its activity was highest when the cells were grown under conditions favoring high glycogen storage. Substrate specificities of the two high activity towards endogenous glycogen, whereas low-molecular-weight maltodextrins were the preferred substrates for the soluble phosphorylase. The purification of the particulate phosphorylase included incubation of the particulate fraction in 160 mM sodium phosphate-10 mM sodium citrate-0.1% (wt/vol) Triton X-100 buffer (pH 6.7) and ion-exchange chromatography on diethylamino-ethyl- Sephadex A-50. The purified enzyme was fully soluble. The value for the purification factor was variable and depended on (i) the substrate used and (ii) whether the synthetic or the degradative reaction was being measured. The solubilization resulted in considerable changes in the properties of the phosphorylase: the pH optimum for activity was raised from 6.0 to 7.0-7.5 and the substrate specificity was altered. Consequently, the purified enzyme bore greater similarity to the soluble maltodextrin phosphorylase. The reported results are best explained in terms of a single phosphorylase, the specificity which is determind by its binding state in the cell. The enzyme acts as a glycogen phosphorylase in the particulate state and as a maltodextrin phosphorylase when soluble. The equilibrium between the two forms is related to the glycogen content of the cells.  相似文献   

2.
The in vitro influence of Keggin structure polyoxotungstates, 12-tungstosilicic acid, H(4)SiW(12)O(40) (WSiA) and 12-tungstophosphoric acid, H(3)PW(12)O(40) (WPA), and monomer Na(2)WO(4) × 2H(2)O on rat synaptic plasma membrane (SPM) Na(+)/K(+)-ATPase and E-NTPDase activity was studied, whereas the commercial porcine cerebral cortex Na(+)/K(+)-ATPase served as a reference. Dose-dependent Na(+)/K(+)-ATPase inhibition was obtained for all investigated compounds. Calculated IC(50) (10 min) values, in mol/l, for SPM/commercial Na(+)/K(+)-ATPase, were: 3.4 × 10(-6)/4.3 × 10(-6), 2.9 × 10(-6)/3.1 × 10(-6) and 1.3 × 10(-3)/1.5 × 10(-3) for WSiA, WPA and Na(2)WO(4) × 2H(2)O, respectively. In the case of E-NTPDase, increasing concentrations of WSiA and WPA induced its activity reduction, while Na(2)WO(4) × 2H(2)O did not noticeably affect the enzyme activity at all investigated concentrations (up to 1 × 10(-3)mol/l). IC(50) (10 min) values, obtained from the inhibition curves, were (in mol/l): 4.1 × 10(-6) for WSiA and 1.6 × 10(-6) for WPA. Monolacunary Keggin anion was found as the main active molecular species present under physiological conditions (in the enzyme assays, pH 7.4), for the both polyoxotungstates solutions (1 mmol/l), using Fourier transform infrared (FT-IR) and micro-Raman spectroscopy. Additionally, commercial porcine cerebral cortex Na(+)/K(+)-ATPase was exposed to the mixture of Na(2)WO(4) × 2H(2)O and WSiA at different concentrations. Additive inhibition effect was achieved for lower concentrations of Na(2)WO(4) × 2H(2)O/WSiA (≤ 1 × 10(-3)/4 × 10(-6) mol/l), while antagonistic effect was obtained for all higher concentrations of the inhibitors.  相似文献   

3.
利用硫酸铵分级沉淀、离子交换层析 (DEAE- 2 2 )、Sephadex G- 75凝胶过滤从嗜热脂肪芽孢杆菌胞内提纯得到 β-半乳糖苷酶。研究表明 ,该酶最适表观反应温度和最适 pH分别为 6 0℃和 6 .4。在 50℃该酶具有良好的热稳定性。碱金属和碱土金属盐对酶有激活作用 ,重金属 Zn2+、Fe3+、Cu2+抑制酶的活力。巯基保护剂能明显增强酶的活力 ,而巯基结合试剂强烈抑制酶的活性。该酶对 β-  相似文献   

4.
PEG-重组酵母尿酸酶结合物的基本特性研究   总被引:1,自引:0,他引:1  
重组Candida utilis尿酸酶由含PET-Uricase表达质粒的重组E.coli JM109(DE3)经乳糖诱导表达,菌体破碎后依次经过硫酸铵沉淀、阴离子交换层析和凝胶过滤层析可以获得纯度95%的重组尿酸酶。还原性SDS-PAGE和HPLC测得其亚基表观分子量和天然分子量分别约为33 kDa和130 kDa。获得的纯酶与20 kDa (mPEG)2 -Lys-NHS在特定的条件下反应合成PEG-重组酵母尿酸酶结合物,考察了重组酵母尿酸酶PEG化前后的基本性质,结果显示PEG化尿酸酶的最适pH为7.5,较修饰前下降了1个pH单位,酸碱稳定范围与修饰前类似,都在pH 6-10范围内稳定;修饰前后最适温度均为40℃,重组酵母尿酸酶的热稳定性和抗蛋白酶水解能力较PEG修饰前有较大提高;PEG化尿酸酶可保留修饰前酶活力的87.5%;在最适条件下,PEG-尿酸酶结合物的Km为3.57×10-5 mol/L,而修饰前测得的Km为3.91×10-5 mol/L。研究结果为深入探讨PEG化尿酸酶的结构与功能奠定了基础。  相似文献   

5.
The open reading frame TM1080 from Thermotoga maritima encoding ribose-5-phosphate isomerase type B (RpiB) was cloned and over-expressed in Escherichia coli BL21 (DE3). After optimization of cell culture conditions, more than 30% of intracellular proteins were soluble recombinant RpiB. High-purity RpiB was obtained by heat pretreatment through its optimization in buffer choice, buffer pH, as well as temperature and duration of pretreatment. This enzyme had the maximum activity at 70°C and pH 6.5-8.0. Under its suboptimal conditions (60°C and pH 7.0), k(cat) and K(m) values were 540s(-1) and 7.6mM, respectively; it had a half lifetime of 71h, resulting in its turn-over number of more than 2×10(8)mol of product per mol of enzyme. This study suggests that it is highly feasible to discover thermostable enzymes from exploding genomic DNA database of extremophiles with the desired stability suitable for in vitro synthetic biology projects and produce high-purity thermoenzymes at very low costs.  相似文献   

6.
The phenotype of the apical meristem was used to examine the effect of fasciation mutation at the f locus in different genetic backgrounds in soybean Glycine max (L.) Merr. Comparisons of meristem development in fasciation mutant and wild type were conducted with scanning electron microscope (SEM) on isogenic lines BARC-11-11-ff and BARC-11-11-FF at postgermination and early vegetative stages. Studies of apical meristems of three independently originated fasciation mutants, PI 83945-4, PI 243541, and T173, were carried out at vegetative and early floral transition stages. Corolla Fasciation, the extreme mutant phenotype, was used for comparison of meristem development. Enlargement of the apical meristem and shortened plastochron were observed in the mutant lines 2 d after germination. Similar to Corolla Fasciation, in PI 83945-4, PI 243541, and T173, enlargement of the apical meristem was followed by growth along one axis at the V3 stage and establishment of a ridge-like meristem at the V4 stage. Influence of pedigree on the expression of the fasciation phenotype was demonstrated by different growth patterns (subangular vs. ridge-like) of the apical meristem in BARC-11-11-ff and PI 243541 with the same f gene. During transition of the apical meristem from vegetative to reproductive stage in all mutant lines further production of leaf primordia ceased. The developmental pattern of the apical meristems suggests that the f locus may have the same allele in fasciation mutants of independent origin in soybean.  相似文献   

7.
An olive (Olea europaea L.) β-glucosidase was purified to apparent homogeneity by salting out with ammonium sulfate and using specifically designed sepharose-4B-L-tyrosine-1-napthylamine hydrophobic interaction chromatography. The purification was 155 fold with an overall enzyme yield of 54%. The molecular mass of the protein was estimated as ca. 65 kDa. The purified β-glucosidase was effectively active on p-/o-nitrophenyl-β-D-glucopyranosides (p-/o-NPG) with K(m) values of 2.22 and 14.11 mM and V(max) values of 370.4 and 48.5 U/mg, respectively. The enzyme was competitively inhibited by δ-gluconolactone and glucose against p-NPG as substrate. The K(i) and IC(50) values of δ-gluconolactone were determined as 0.016 mM and 0.23 mM while the enzyme was more tolerant to glucose inhibition with K(i) and IC(50) values of 6.4 mM and 105.5 mM, respectively, for p-NPG. The effect of various metal ions on the purified β-glucosidase was investigated. Of the ions tested, only the Fe(2+) increased the activity while Cd(2+) Pb(2+) Cu(2+), Ni(+), and Ag(+) exhibited different levels of inhibitory effects with K(i) and IC(50) values of 4.29×10(-4) and 0.38×10(-4), 1.26×10(-2) and 5.3×10(-3), 2.26×10(-4) and 6.1×10(-4), 1.04×10(-4) and 0.63×10(-4), 3.21×10(-3) and 3.34×10(-3) mM, respectively.  相似文献   

8.
3-Deoxy-D-manno-octulosonate (KDO)-8-phosphate synthetase has been purified 450-fold from frozen Escherichia coli B cells. The purified enzyme catalyzed the stoichiometric formation of KDO-8-phosphate and Pi from phosphoenolpyruvate (PEP) and D-arabinose-5-phosphate. The enzyme showed no metal requirement for activity and was inhibited by 1 mM Cd2+, Cu2+, Zn2+, and Hg2+. The inhibition by Hg2+ could be reversed by dithiothreitol. The optimum temperature for enzyme activity was determined to be 45 degrees C, and the energy of activation calculated by the Arrhenius equation was 15,000 calories (ca. 3,585 J) per mol. The enzyme activity was shown to be pH and buffer dependent, showing two pH optima, one at pH 4.0 to 6.0 in succinate buffer and one at pH 9.0 in glycine buffer. The isoelectric point of the enzyme was 5.1. KDO-8-phosphate synthetase had a molecular weight of 90,000 +/- 6,000 as determined by molecular sieving through G-200 Sephadex and by Ferguson analysis using polyacrylamide gels. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the 90,000-molecular-weight native enzyme was composed of three identical subunits, each with an apparent molecular weight of 32,000 +/- 4,000. The enzyme had an apparent Km for D-arabinose-5-phosphate of 2 X 10(-5) M and an apparent Km for PEP of 6 X 10(-6) M. No other sugar or sugar-phosphate could substitute for D-arabinose-5-phosphate. D-Ribose-5-phosphate was a competitive inhibitor of D-arabinose-5-phosphate, with an apparent Ki of 1 X 10(-3) M. The purified enzyme has been utilized to synthesize millimole quantities of pure KDO-8-phosphate.  相似文献   

9.
A phosphodiesterase I (EC 3.1.4.1; PDE-I) was purified from Walterinnesia aegyptia venom by preparative native polyacrylamide gel electrophoresis (PAGE). A single protein band was observed in analytical native PAGE and sodium dodecyl sulfate (SDS)-PAGE. PDE-I was a single-chain glycoprotein with an estimated molecular mass of 158 kD (SDS-PAGE). The enzyme was free of 5'-nucleotidase and alkaline phosphatase activities. The optimum pH and temperature were 9.0 and 60°C, respectively. The energy of activation (Ea) was 96.4, the V(max) and K(m) were 1.14 μM/min/mg and 1.9 × 10(-3) M, respectively, and the K(cat) and K(sp) were 7 s(-1) and 60 M(-1) min(-1) respectively. Cysteine was a noncompetitive inhibitor, with K(i) = 6.2 × 10(-3) M and an IC(50) of 2.6 mM, whereas adenosine diphosphate was a competitive inhibitor, with K(i) = 0.8 × 10(-3) M and an IC(50) of 8.3 mM. Glutathione, o-phenanthroline, zinc, and ethylenediamine tetraacetic acid (EDTA) inhibited PDE-I activity whereas Mg(2+) slightly potentiated the activity. PDE-I hydrolyzed thymidine-5'-monophosphate p-nitrophenyl ester most readily, whereas cyclic 3'-5'-AMP was least susceptible to hydrolysis. PDE-I was not lethal to mice at a dose of 4.0 mg/kg, ip, but had an anticoagulant effect on human plasma. These findings indicate that W. aegyptia PDE-I shares various characteristics with this enzyme from other snake venoms.  相似文献   

10.
Glucose-6-phosphatase (G6P) activity was determined in fresh-frozen, cryostat sections in the shoot apical meristem of Brassica campestris L. Enzymatic activity was differentially distributed in a zonate pattern in the vegetative meristem, but not in the transition and floral meristem. Vegetative apices showed a heterogenous localization with the highest activity in the central zone and the pith-rib meristem zone. At the early transition stage of development, G6P activity in the peripheral zone increased slightly. At the late transitional (prefloral) stage, G6P activity was not localized within the peripheral zone in island-like areas of activity. This is the first demonstration of G6P in shoot apical meristem at the vegetative, transition, and floral stage. The results indicate that G6P activity 1) is an accompanying event of evocation, but 2) does not mark incipient floral primordia. G6P may play an important role in the maintenance of glucose-6-phosphate homeostasis in an evoked shoot apical meristem.  相似文献   

11.
The potato (Solanum tuberosum L.) tuber is a swollen underground stem that can sprout in an apical dominance (AD) pattern. Bromoethane (BE) induces loss of AD and the accumulation of vegetative vacuolar processing enzyme (S. tuberosum vacuolar processing enzyme [StVPE]) in the tuber apical meristem (TAM). Vacuolar processing enzyme activity, induced by BE, is followed by programmed cell death in the TAM. In this study, we found that the mature StVPE1 (mVPE) protein exhibits specific activity for caspase 1, but not caspase 3 substrates. Optimal activity of mVPE was achieved at acidic pH, consistent with localization of StVPE1 to the vacuole, at the edge of the TAM. Downregulation of StVPE1 by RNA interference resulted in reduced stem branching and retained AD in tubers treated with BE. Overexpression of StVPE1 fused to green fluorescent protein showed enhanced stem branching after BE treatment. Our data suggest that, following stress, induction of StVPE1 in the TAM induces AD loss and stem branching.  相似文献   

12.
We report the expression, purification, and characterization of L-asparaginase (AnsA) from Rhizobium etli. The enzyme was purified to homogeneity in a single-step procedure involving affinity chromatography, and the kinetic parameters K(m), V(max), and k(cat) for L-asparagine were determined. The enzymatic activity in the presence of a number of substrates and metal ions was investigated. The molecular mass of the enzyme was 47 kDa by SDS-PAGE. The enzyme showed a maximal activity at 50 degrees C, but the optimal temperature of activity was 37 degrees C. It also showed maximal and optimal activities at pH 9.0. The values of K(m), V(max), k(cat), and k(cat)/K(m) were 8.9 +/- 0.967 × 10?3 M, 128 +/- 2.8 U/mg protein, 106 +/- 2 s?1, and 1.2 +/- 0.105 × 10? M?1s?1, respectively. The L-asparaginase activity was reduced in the presence of Mn2?, Zn2?, Ca2?, and Mg2? metal ions for about 52% to 31%. In addition, we found that NH??, L-Asp, D-Asn, and beta-aspartyl-hydroxamate in the reaction buffer reduced the activity of the enzyme, whereas L-Gln did not modify its enzymatic activity. This is the first report on the expression and characterization of the L-asparaginase (AnsA) from R. etli. Phylogenetic analysis of asparaginases reveals an increasing group of known sequences of the Rhizobialtype asparaginase II family.  相似文献   

13.
The oxidation of carbohydrate by the pentose-phosphate pathway in the shoot apical meristem and developing leaf primordia of Dianthus chinensis was assessed by measuring the activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). On a kg-1 dry weight h-1 basis, activity rose from 250 mmol in the apical meristem to 550 mmol in the first two leaf primordia and then declined to 350 mmol in the sixth pair of leaf primordia, and finally to 200 mmol in leaves just emerged from the shoot bud. Measurements of activity in the sixth leaf pair from the apex showed differential distribution in leaf tissues. Epidermal and mesophyll tissue had about the same activity as whole-leaf tissue, but vascular bundles had 70% greater activity. Within the vascular tissue, activity in the phloem was twice as high as in the xylem. When activity was expressed on a per-cell basis, there was a continuous increase from 20 fmol in the apex to 2 pmol in the sixth leaf pair. Activity on a per unit cell volume basis showed that cells of the apical meristem and the epidermis, mesophyll and xylem of the sixth leaf pair had similar values, about 30 amol; only the two youngest pairs of primordia and the phloem had values two or three times this amount.  相似文献   

14.
15.
16.
Glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH) is an important enzyme that functions in producing energy and supplying intermediates for cellular metabolism. Recent researches indicate that GAPDHs have multiple functions beside glycolysis. However, little information is available for functions of GAPDHs in potato. Here, we identified 4 putative cytosolic GAPDH genes in potato genome and demonstrated that the StGAPC1, StGAPC2, and StGAPC3, which are constitutively expressed in potato tissues and cold inducible in tubers, encode active cytosolic GAPDHs. Cosuppression of these 3 GAPC genes resulted in low tuber GAPDH activity, consequently the accumulation of reducing sugars in cold stored tubers by altering the tuber metabolite pool sizes favoring the sucrose pathway. Furthermore, GAPCs‐silenced tubers exhibited a loss of apical dominance dependent on cell death of tuber apical bud meristem (TAB‐meristem). It was also confirmed that StGAPC1, StGAPC2, and StGAPC3 interacted with the autophagy‐related protein 3 (ATG3), implying that the occurrence of cell death in TAB‐meristem could be induced by ATG3 associated events. Collectively, the present research evidences first that the GAPC genes play crucial roles in diverse physiological and developmental processes in potato tubers.  相似文献   

17.
Bovine pancreatic ribonuclease A (RNase A) catalyzes the cleavage of the P-O(5') bond in RNA. Although this enzyme has been the object of much landmark work in bioorganic chemistry, the nature of its rate-limiting transition state and its catalytic rate enhancement had been unknown. Here, the value of k(cat)/K(m) for the cleavage of UpA by wild-type RNase A was found to be inversely related to the concentration of added glycerol. In contrast, the values of k(cat)/K(m) for the cleavage of UpA by a sluggish mutant of RNase A and the cleavage of the poor substrate UpOC(6)H(4)-p-NO(2) by wild-type RNase A were found to be independent of glycerol concentration. Yet, UpA cleavage by the wild-type and mutant enzymes was found to have the same dependence on sucrose concentration, indicating that catalysis of UpA cleavage by RNase A is limited by desolvation. The rate of UpA cleavage by RNase A is maximal at pH 6.0, where k(cat) = 1.4 × 10(3) s(-1) and k(cat)/K(m) = 2.3 × 10(6) M(-1)s(-1) at 25°C. At pH 6.0 and 25°C, the uncatalyzed rate of [5,6-(3)H]Up[3,5,8-(3)H]A cleavage was found to be k(uncat) = 5 × 10(-9) s(-1) (t(1/2) = 4 years). Thus, RNase A enhances the rate of UpA cleavage by 3 × 10(11)-fold by binding to the transition state for P-O(5') bond cleavage with a dissociation constant of <2 × 10(-15) M.  相似文献   

18.
A nicotinamide adenine dinucleotide (NADH) oxidase from Streptococcus pyogenes MGAS10394 (SpNox) was cloned and overexpressed in Escherichia coli BL21 (DE3). The purified SpNox enzyme had optimal pH and temperature of 7.0 and 55°C, respectively, with a K(m) of 27.0μM and a k(cat)/K(m) of 1.1×10(7)s(-1)M(-1). SpNox showed the highest activity among all known NADH oxidases, and site-directed mutagenesis and docking analysis shed light on the molecular basis of its unusually high activity. The characteristics of SpNox may prove to be useful for NAD(+) regeneration in the production of l-rare sugar.  相似文献   

19.
NADH oxidase (Nox) catalyzes the conversion of NADH to NAD(+). A previously uncharacterized Nox gene (LrNox) was cloned from Lactobacillus rhamnosus and overexpressed in Escherichia coli BL21(DE3). Sequence analysis revealed an open reading frame of 1359 bp, capable of encoding a polypeptide of 453 amino acid residues. The molecular mass of the purified LrNox enzyme was estimated to be ~50 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and 100 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had optimal activity at pH 5.6 and temperature 65 °C, and k(cat)/K(m) of 3.77×10(7) s(-1) M(-1), the highest ever reported. Heat inactivation studies revealed that LrNox had high thermostability, with a half-life of 120 min at 80 °C. Molecular dynamics simulation studies shed light on the factors contributing to the high activity of LrNox. Although the properties of Nox from several microorganisms have been reported, this is the first report on the characterization of a recombinant H(2)O-forming Nox with high activity and thermostability. The characteristics of the LrNox enzyme could prove to be of interest in industrial applications such as NAD(+) regeneration.  相似文献   

20.
Carboanhydrase (carbonate-hydroliase EC 4.2.1.1.) is found in the extract of Spirulina platensis cells. A linear dependency of the enzyme activity on the protein concentration; pH optimum is found to be 8.0. Specific activity of carboanhydrase is 3 muM/min-mg of protein under the concentration of CO2 of 4-10(-3) M, appearing Michelis constant being 4.9-10(-3) M. The enzyme was stabilized with 10 mM of cisteine, its activity was inhibited by 50% with sulphanylamide (1-10(-5) M), acetazolamide (8--10(-7) M) and Cl- ions (5-10(-2) M). The activity of carboanhydrase, as well as the rate of NaH14CO3 fixation, depended on the pH value of cultural medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号