首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research involves the development and evaluation of a part flow control model for a type of flexible manufacturing system (FMS) called a dedicated flexible flow line (FFL). In the FFL, all part types flow along the same path between successive machine groups. The specific objective of the part flow control model for the FFL is to minimize makespan for a given set of parts produced in a FFL near-term schedule, given fixed available buffer constraints. The control model developed in this research involved the repeated, real-time execution of a mathematical programming algorithm. The algorithm attempts to release the right mix of parts at the tight time to keep the FFL operating smoothly. The focus of the approach is directed toward managing WIP buffers for each machine group queue. The algorithm specifically incorporates stochastic disturbance factors such as machine failures. Through a limited number of simulation experiments, performance of the control model is shown to be superior to other parts releasing and control methods reported in the literature.  相似文献   

2.
3.
4.
Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics   总被引:3,自引:0,他引:3  
Numerical predictions of blood flow patterns and hemodynamic stresses in Abdominal Aortic Aneurysms (AAAs) are performed in a two-aneurysm, axisymmetric, rigid wall model using the spectral element method. Physiologically realistic aortic blood flow is simulated under pulsatile conditions for the range of time-averaged Reynolds numbers 50< or =Re(m)< or =300, corresponding to a range of peak Reynolds numbers 262.5< or =Re(peak) < or = 1575. The vortex dynamics induced by pulsatile flow in AAAs is characterized by a sequence of five different flow phases in one period of the flow cycle. Hemodynamic disturbance is evaluated for a modified set of indicator functions, which include wall pressure (p(w)), wall shear stress (tau(w)), and Wall Shear Stress Gradient (WSSG). At peak flow, the highest shear stress and WSSG levels are obtained downstream of both aneurysms, in a pattern similar to that of steady flow. Maximum values of wall shear stresses and wall shear stress gradients obtained at peak flow are evaluated as a function of the time-average Reynolds number resulting in a fourth order polynomial correlation. A comparison between predictions for steady and pulsatile flow is presented, illustrating the importance of considering time-dependent flow for the evaluation of hemodynamic indicators.  相似文献   

5.
6.
7.
The study is concerned with the analysis of two flow domains of peristaltic motion in tubes. In the first analysis the wall disturbance wavelength is much larger than the average tube radius. There is a simple algebraic relation between the average flow rate and pressure differential across a wavelength. In the second analysis the disturbance wavelength may be as small as the average radius. A numerical technique may be used to determine the relation between average flow rate and pressure differential across a wavelength.  相似文献   

8.
Imaging in flow.     
Imaging in flow has been valuable in investigating discrepancies in flow cell measurements due to cell orientation and flow dynamics. This paper discusses optical consideration in flow imaging, slit and full field imaging systems and various cell motion arresting techniques from the standpoint of image plane exposure and suitable detector choices. It concludes with an explanation of the slit-imaging techniques employed in a multidimensional slit-scan flow system and slit-scan correlation system.  相似文献   

9.
10.
Pedersen, O. F., H. J. L. Brackel, J. M. Bogaard, and K. F. Kerrebijn. Wave-speed-determined flow limitation at peak flow innormal and asthmatic subjects. J. Appl.Physiol. 83(5): 1721-1732, 1997.The purpose ofthis study was to examine whether peak expiratory flow is determined bythe wave-speed flow-limiting mechanism. We examined 17 healthy subjectsand 11 subjects with stable asthma, the latter treated with inhaledbronchodilators and corticosteroids. We used an esophageal balloon anda Pitot-static probe positioned at five locations between the rightlower lobe and midtrachea to obtain dynamic area-transmural pressure(A-Ptm) curves as described (O. F. Pedersen, B. Thiessen, and S. Lyager. J. Appl.Physiol. 52: 357-369, 1982). From these curves weobtained cross-sectional area (A)and airway compliance (Caw = dA/dPtm) at PEF, calculated flow at wave speed {ws = A[A/(Caw*)0.5],where  is density} and speed index is (SI = /ws). In 13 of 15 healthy andin 4 of 10 asthmatic subjects, who could produce satisfactory curves,SI at PEF was >0.9 at one or more measured positions. Alveolarpressure continued to increase after PEF was achieved, suggesting flowlimitation somewhere in the airway in all of these subjects. Weconclude that wave speed is reached in central airways at PEF in mostsubjects, but it cannot be excluded that wave speed is also reached inmore peripheral airways.

  相似文献   

11.
Hemodynamic analysis was conducted to determine uncertainty in clinical measurements of coronary flow reserve (CFR) and fractional flow reserve (FFR) over pathophysiological conditions in a patient group with coronary artery disease during angioplasty. The vasodilation-distal perfusion pressure (CFR-p(rh)) curve was obtained for 0.35- and 0.46-mm guide wires. Our hypothesis is that a guide wire spanning the lesions elevates the pressure gradient and reduces the flow during hyperemic measurements. Maximal CFR-p(rh) was uniquely determined by the intersection of measured CFR and calculated p(rh) of native and residual epicardial lesions in patients without microvascular disease, during angioplasty. Extrapolation of the linear curve gave a zero-coronary flow mean pressure (p(zf)) of approximately 20 mmHg and a corresponding p(rh) of 55 mmHg in the native lesions, which coincided with the level that causes ischemia in human hearts. On this linear curve, values of CFR and FFRmyo (pathophysiological condition) and CFRg and FFRmyog (in the presence of the guide wire) were obtained in native and residual lesions. A strong linear correlation was found between CFR and CFRg [CFR = CFRg x 0.689 + 1.271 (R2= 0.99) for 0.46 mm and CFR = CFRg x 0.757 + 1.004 (R2= 0.99) for 0.35 mm] and between FFRmyo and FFRmyog [FFRmyo = FFRmyog x 0.737 + 0.263 (R2= 0.99) for 0.46 mm and FFRmyo = FFRmyog x 0.790 + 0.210 (R2= 0.99) for 0.35 mm]. This study establishes a strong correlation between CFR and CFRg and between FFRmyo and FFRmyog, which could be used to obtain the true state of occlusion in the coronary artery during angioplasty.  相似文献   

12.
13.
The effect of pulsatile flow on peristaltic transport in a circular cylindrical tube is analysed. The flow of a Newtonian viscous incompressible fluid in a flexible circular cylindrical tube on which an axisymmetric travelling sinusoidal wave is imposed, is considered. The initial flow in the tube is induced by an arbitrary periodic pressure gradient. A perturbation solution with amplitude ratio (wave amplitude/tube radius) as a parameter is obtained when the frequency of the travelling wave and that of the imposed pressure gradient are equal. The interaction effects of periodic wall induced flow and periodic pressure imposed flow are visualized through the presence of substantially different components of steady and higher harmonic oscillating flow in the first order flow solution. Numerical results show a strong variation of steady state velocity profiles with boundary wave number and Reynolds number and a strong phase shift behaviour of the flow in the radial direction.  相似文献   

14.
Current knowledge of gene flow in plants: implications for transgene flow   总被引:13,自引:0,他引:13  
Plant evolutionary biologists' view of gene flow and hybridization has undergone a revolution. Twenty-five years ago, both were considered rare and largely inconsequential. Now gene flow and hybridization are known to be idiosyncratic, varying with the specific populations involved. Gene flow typically occurs at evolutionarily significant rates and at significant distances. Spontaneous hybridization occasionally has important applied consequences, such as stimulating the evolution of more aggressive invasives and increasing the extinction risk for rare species. The same problems have occurred for spontaneous hybridization between crops and their wild relatives. These new data have implications for transgenic crops: (i) for most crops, gene flow can act to introduce engineered genes into wild populations; (ii) depending on the specific engineered gene(s) and populations involved, gene flow may have the same negative impacts as those observed for traditionally improved crops; (iii) gene flow's idiosyncratic nature may frustrate management and monitoring attempts; and (iv) intercrop transgene flow, although rarely discussed, is equally worthy of study.  相似文献   

15.
We describe a micromixing approach that is compatible with commercial autosamplers, flow cytometry, and other detection schemes that require the mixing of components that have been introduced into laminarflow. The scheme is based on high-throughput flow cytometry (HyperCyt) where samples from multi-well plates that have been picked up by an autosampler can be separated during delivery by the small air bubbles introduced during the transit of the autosampler probe from well to well. Here, either cell or particle samplesflowing continuously and driven by a syringe are brought together in a Y with reagent samples from wells driven by a peristaltic pump. The mixing is driven by a magnetic microstirrer contained within the sample line. The mixing is assessed using fluorescence of both cell calcium responses and bead-based fluorescence unquenching. In the analysis stream, the particles and reagents are mixed with eithera "wire" or "bar". The bar is more efficient than the wire, and the efficiency of either depends on the spinning action. The high-throughput approach and mixing in HyperCyt integrate autosamplers with submicroliter detection volumes for analysis in flow cytometry or in microfluidic channels.  相似文献   

16.
Measurements of the time-varying flow in a centrifugal blood pump operating as a left ventricular assist device (LVAD) are presented. This includes changes in both the pump flow rate as a function of the left ventricle contraction and the interaction of the rotating impeller and fixed exit volute. When operating with a pulsing ventricle, the flow rate through the LVAD varies from 0-11 L/min during each cycle of the heartbeat. Phase-averaged measurements of mean velocity and some turbulence statistics within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser, are reported at 20 phases of the cardiac cycle. The transient flow fields are compared to the constant flow rate condition that was reported previously in order to investigate the transient effects within the pump. It is shown that the quasi-steady assumption is a fair treatment of the time varying flow field in all regions of this representative pump, which greatly simplifies the comprehension and modeling of this flow field. The measurements are further interpreted to identify the effects that the transient nature of the flow field will have on blood damage. Although regions of recirculation and stagnant flow exist at some phases of the cardiac cycle, there is no location where flow is stagnant during the entire heartbeat.  相似文献   

17.
18.
19.
Magnetically suspended left ventricular assist devices have only one moving part, the impeller. The impeller has absolutely no contact with any of the fixed parts, thus greatly reducing the regions of stagnant or high shear stress that surround a mechanical or fluid bearing. Measurements of the mean flow patterns as well as viscous and turbulent stresses were made in a shaft-driven prototype of a magnetically suspended centrifugal blood pump at several constant flow rates (3-9 L/min) using particle image velocimetry (PIV). The chosen range of flow rates is representative of the range over which the pump may operate while implanted. Measurements on a three-dimensional measurement grid within several regions of the pump, including the inlet, blade passage, exit volute, and diffuser are reported. The measurements are used to identify regions of potential blood damage due to high shear stress and/or stagnation of the blood, both of which have been associated with blood damage within artificial heart valves and diaphragm-type pumps. Levels of turbulence intensity and Reynolds stresses that are comparable to those in artificial heart valves are reported. At the design flow rate (6 L/min), the flow is generally well behaved (no recirculation or stagnant flow) and stress levels are below levels that would be expected to contribute to hemolysis or thrombosis. The flow at both high (9 L/min) and low (3 L/min) flow rates introduces anomalies into the flow, such as recirculation, stagnation, and high stress regions. Levels of viscous and Reynolds shear stresses everywhere within the pump are below reported threshold values for damage to red cells over the entire range of flow rates investigated; however, at both high and low flow rate conditions, the flow field may promote activation of the clotting cascade due to regions of elevated shear stress adjacent to separated or stagnant flow.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号