首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein kinase CK2 has many established in vitro substrates, but it is only within the past few years that we have begun to ascertain which of these are its real physiological targets, how their phosphorylation may contribute towards regulating normal cell physiology, and how phosphorylation of these proteins might influence the development of diseases such as cancer. One of the well-characterised in vitro substrates for CK2 is the tumour suppressor protein, p53. However, the physiological nature of this interaction has never been fully established. In the present article, we summarise a recent study from our laboratory showing that phosphorylation of p53 at Ser392, the sole site modified by CK2 in vitro, is regulated by a novel mechanism where the stoichiometry of phosphorylation is governed by the rate of turnover of the p53 protein. Such a model is entirely consistent with phosphorylation by a constitutively active protein kinase such as CK2. In contrast to this, while there is overwhelming evidence that CK2 phosphorylates p53 in vitro and is the only detectable Ser392 protein kinase in cell extracts, our data raise uncertainty as to whether this interaction truly reflects events underpinning Ser392 phosphorylation in vivo. We consider the possible role of CK2 in regulating the p53 response in a wider context and suggest key issues that should be addressed experimentally to provide a more cohesive picture of the relationship between this important protein kinase and a pivotal anti-cancer surveillance system in cells.  相似文献   

2.
3.
A E Bugrim 《Cell calcium》1999,25(3):219-226
Calcium is an ubiquitous second messenger that is involved in the regulation of a number of cell functions. The mechanism by which the specificity of calcium signaling is achieved is not well understood. We suggest that calcium release from the ER can occur selectively at different spatial locations in response to different extracellular stimuli. We discuss a possible mechanism for such selectivity and present a model based on this mechanism. The suggested mechanism is based on the regulation of local Ca2+ release by cyclic AMP-dependent protein kinase (PKA) and relies upon two experimental observations: first, some G-protein coupled signaling pathways activate PLC and regulate adenylate cyclase at the same time, leading to IP3 production and altering PKA activity via changes in cAMP level; second, phosphorylation by PKA alters the properties of IP3 receptor (IP3R). In our model we consider allosteric regulation of IP3Rs by IP3 and cAMP-dependent phosphorylation. The differences in IP3Rs and PKA densities at different spatial locations within the cell allow the release of calcium selectively at each location in response to certain combination of IP3 and cAMP concentration. Specificity of agonist-response coupling is achieved if different combinations in the levels of these second messengers are specific for different extracellular stimuli.  相似文献   

4.
The existence of a Na+-dependent mechanism for Ca2+ efflux from isolated rat liver mitochondria was confirmed. The activity of this system is decreased by 60% in mitochondria isolated from perfused livers. The Na+-dependent activity is fully restored by infusion of either 1μm-adrenaline or 1μm-isoprenaline, but the α-adrenergic agonist phenylephrine is ineffective.  相似文献   

5.
Transmissible spongiform encephalopathies, or prion diseases, are lethal neurodegenerative disorders caused by the infectious agent named prion, whose main constituent is an aberrant conformational isoform of the cellular prion protein, PrP(C) . The mechanisms of prion-associated neurodegeneration and the physiologic function of PrP(C) are still unclear, although it is now increasingly acknowledged that PrP(C) plays a role in cell differentiation and survival. PrP(C) thus exhibits dichotomic attributes, as it can switch from a benign function under normal conditions to the triggering of neuronal death during disease. By reviewing data from models of prion infection and PrP-knockout paradigms, here we discuss the possibility that Ca(2+) is the hidden factor behind the multifaceted behavior of PrP(C) . By featuring in almost all processes of cell signaling, Ca(2+) might explain diverse aspects of PrP(C) pathophysiology, including the recently proposed one in which PrP(C) acts as a mediator of synaptic degeneration in Alzheimer's disease.  相似文献   

6.
7.
8.
CDPKs - a kinase for every Ca2+ signal?   总被引:13,自引:0,他引:13  
Numerous stimuli can alter the Ca2+concentration in the cytoplasm, a factor common to many physiological responses in plant and animal cells. Calcium-binding proteins decode information contained in the temporal and spatial patterns of these Ca2+ signals and bring about changes in metabolism and gene expression. In addition to calmodulin, a calcium-binding protein found in all eukaryotes, plants contain a large family of calcium-binding regulatory protein kinases. Evidence is accumulating that these protein kinases participate in numerous aspects of plant growth and development.  相似文献   

9.
Thrombin stimulated rapid formation of diacylglycerol, inositol 1,4,5-trisphosphate (IP3) and thromboxane B2 (TXB2) in human platelets. Formation of diacylglycerol and IP3 appeared to precede that of TXB2. Activation of protein kinase C by diacylglycerol combining with Ca+2 mobilization by IP3 has been implicated in mediating arachidonate release. However, addition of the protein kinase C inhibitor 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) to platelet suspension did not inhibit thrombin-stimulated arachidonate release and TXB2 synthesis, whereas addition of the Ca+2 antagonist, 3,4,5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8) or the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) abolished arachidonate release. The correlation of IP3 production with arachidonate release on increasing the concentrations of thrombin was further examined. IP3 production reached near maximum at 0.2 U/ml, whereas TXB2 synthesis continued to increase at 1 U/ml. These results suggest that protein kinase C activation may not mediate arachidonate release and that Ca+2 mobilization by IP3 may only partially account for arachidonate release in platelets stimulated with relatively high concentrations of thrombin.  相似文献   

10.
N-methyl-D-aspartic acid receptor-dependent long term potentiation (LTP), a model of memory formation, requires Ca2+·calmodulin-dependent protein kinase II (αCaMKII) activity and Thr286 autophosphorylation via both global and local Ca2+ signaling, but the mechanisms of signal transduction are not understood. We tested the hypothesis that the Ca2+-binding activator protein calmodulin (CaM) is the primary decoder of Ca2+ signals, thereby determining the output, e.g. LTP. Thus, we investigated the function of CaM mutants, deficient in Ca2+ binding at sites 1 and 2 of the N-terminal lobe or sites 3 and 4 of the C-terminal CaM lobe, in the activation of αCaMKII. Occupancy of CaM Ca2+ binding sites 1, 3, and 4 is necessary and sufficient for full activation. Moreover, the N- and C-terminal CaM lobes have distinct functions. Ca2+ binding to N lobe Ca2+ binding site 1 increases the turnover rate of the enzyme 5-fold, whereas the C lobe plays a dual role; it is required for full activity, but in addition, via Ca2+ binding site 3, it stabilizes ATP binding to αCaMKII 4-fold. Thr286 autophosphorylation is also dependent on Ca2+ binding sites on both the N and the C lobes of CaM. As the CaM C lobe sites are populated by low amplitude/low frequency (global) Ca2+ signals, but occupancy of N lobe site 1 and thus activation of αCaMKII requires high amplitude/high frequency (local) Ca2+ signals, lobe-specific sensing of Ca2+-signaling patterns by CaM is proposed to explain the requirement for both global and local Ca2+ signaling in the induction of LTP via αCaMKII.  相似文献   

11.
PURPOSE OF REVIEW: Lipoproteins play a critical role in the development of atherosclerosis, which might result partly from their capacity to induce specific intracellular signaling pathways. The goal of this review is to summarize the signaling properties of lipoproteins, in particular, their capacity to induce activation of mitogen-activated protein kinase pathways and the resulting modulation of cellular responses in blood vessel cells. RECENT FINDINGS: Lipoproteins activate the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in all blood vessel cell types. This may require lipoprotein docking to scavenger receptor B1, allowing transfer of cholesterol and sphingosine-1-phosphate to plasma membranes. Subsequent propagation of the signals probably requires the stimulation of G protein-coupled receptors, followed by the transactivation of receptor tyrosine kinases. Lipoprotein-induced extracellular signal-regulated kinase activity favors cell proliferation, whereas lipoprotein-induced p38 mitogen-activated protein kinase activity leads to cell hyperplasia and promotes cell migration. Some signaling pathways and cellular effects induced by lipoproteins have been observed in atherosclerotic plaques and therefore represent potential targets for the development of anti-atherosclerotic drugs. SUMMARY: The main blood vessel cell types have the capacity to activate protein kinase pathways in the presence of lipoproteins. This induces cell proliferation, hyperplasia and migration, known to be dysregulated in atherosclerotic lesions.  相似文献   

12.
Annexins belong to a family of lipid-binding proteins that are implicated in membrane organization. Several members are capable of binding to actin and, in smooth muscle cells, annexin 6 is known to form a Ca(2+)-dependent, plasmalemmal complex with actin filaments. Annexins can also associate with F-actin containing stress fibres within cultured smooth muscle cells or fibroblasts in a Ca(2+)-independent manner. Depolymerization of stress-fibre systems with cytochalasin D leads to the translocation of actin-bound annexin 2 from the cytoplasm to the plasma membrane at high intracellular levels of Ca(2+). This type of Ca(2+)-dependent annexin mobility is observed only in cells of mesenchymal phenotype, which have a well-developed stress-fibre system; not in epithelial cells.  相似文献   

13.
Pyk2 (proline-rich tyrosine kinase 2) and FAK (focal adhesion kinase) are highly related tyrosine kinases. One distinguishing feature is the differential regulation of the two enzymes in response to elevation of cytoplasmic calcium. In the latest issue of the Biochemical Journal, Sasaki and co-workers have provided insight into the calcium-dependent regulation of Pyk2. The findings suggest that calmodulin may bind the FERM (4.1/ezrin/radixin/moesin) domain to promote Pyk2 activation in response to calcium signals triggered by vasopressin. While the molecular details of the protein-protein interaction and mechanism of activation remain to be firmly established, this study is the first to provide mechanistic insight into the regulation of Pyk2 by calcium.  相似文献   

14.
Protein kinase C (PKC) isozymes are the paradigmatic effectors of lipid signaling. PKCs translocate to cell membranes and are allosterically activated upon binding of the lipid diacylglycerol to their C1A and C1B domains. The crystal structure of full-length protein kinase C βII was determined at 4.0 ?, revealing the conformation of an unexpected intermediate in the activation pathway. Here, the kinase active site is accessible to substrate, yet the conformation of the active site corresponds to a low-activity state because the ATP-binding side chain of Phe629 of the conserved NFD motif is displaced. The C1B domain clamps the NFD helix in a low-activity conformation, which is reversed upon membrane binding. A low-resolution solution structure of the closed conformation of PKCβII was derived from small-angle X-ray scattering. Together, these results show how PKCβII is allosterically regulated in two steps, with the second step defining a novel protein kinase regulatory mechanism.  相似文献   

15.
Nonalcoholic fatty liver disease (NAFLD) is now the most frequent chronic liver disease in Western societies, affecting one in four adults in the USA, and is strongly associated with hepatic insulin resistance, a major risk factor in the pathogenesis of type 2 diabetes. Although the cellular mechanisms underlying this relationship are unknown, hepatic accumulation of diacylglycerol (DAG) in both animals and humans has been linked to hepatic insulin resistance. In this Perspective, we discuss the role of DAG activation of protein kinase Cε as the mechanism responsible for NAFLD-associated hepatic insulin resistance seen in obesity, type 2 diabetes, and lipodystrophy.  相似文献   

16.
Receptor-mediated elevations of intracellular Ca2+ in endothelial cells may be controlled by a negative feedback mechanism through activation of protein kinase C (PKC). To test this hypothesis, we studied the effects of an activation or inhibition of PKC on the release of nitric oxide (NO) and prostacyclin (PGI2) from cultured bovine and porcine aortic endothelial cells (EC). Preincubation with the PKC activators phorbol-12-myristate-13-acetate (PMA) (3-300 nM) or 1-oleyl-2-acetyl-glycerol (OAG) (30 μM) significantly attenuated the release of NO and PGI2 from EC stimulated with bradykinin (0.3–30 nM), whereas phorbol-12, 13-didecanoate (PDD) (30–300 nM), which does not activate PKC, had no effect. UCN-01 (10 nM), a specific PKC inhibitor, significantly augmented the bradykinin-stimulated release of NO from EC. These effects were correlated with a reduced (PMA) or enhanced (UCN-01) elevation of intracellular Ca2+ in response to bradykinin in both types of EC. Neither the PKC activators nor the inhibitor had any effect on resting intracellular Ca2+ or basal endothelial autacoid release. Several isoforms of PKC (namely PKCα, PKCδ, PKC?, and PKCζ) were detected in bovine, human, and porcine EC by immunoblotting analysis with isotype-specific anti-PKC antibodies, which, except PKC?, were predominantly located in the cytosol. Incubation of bovine EC with PMA elicited a significant increase in membrane-bound PKCα immunoreactivity, whereas there was no translocation of PKCα from the cytosolic to the membrane fraction with bradykinin. As determined by histone phosphorylation, PKC activity was similarly reduced in the cytosol, but increased in the membrane fraction of bovine EC exposed to PMA, whereas bradykinin had no significant effect. These findings indicate that endothelial autacoid release can be modulated by activators and inhibitors of PKC. However, stimulation of EC with bradykinin does not lead to a detectable activation of PKC, suggesting that PKC does not exert a negative feedback in the signal transduction pathway of this receptor-dependent agonist. © 1993 Wiley-Liss, Inc.  相似文献   

17.
18.
This study was aimed at examining the effect of tamoxifen, a selective estrogen receptor modulator, on the release of endogenous glutamate in rat cerebral cortex nerve terminals (synaptosomes) and exploring the possible mechanism. Tamoxifen inhibited the release of glutamate that was evoked by the K(+) channel blocker 4-aminopyridine (4-AP), and this phenomenon was concentration-dependent and insensitive to the estrogen receptor antagonist. The effect of tamoxifen on the evoked glutamate release was prevented by the chelating extracellular Ca(2+) ions, and by the vesicular transporter inhibitor bafilomycin A1. However, the glutamate transporter inhibitor dl-threo-beta-benzyloxyaspartate did not have any effect on the action of tamoxifen. Tamoxifen did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization whereas it decreased the 4-AP-induced increase in cytosolic [Ca(2+)]. Furthermore, the inhibitory effect of tamoxifen on the evoked glutamate release was abolished by the Ca(v)2.2 (N-type) and Ca(v)2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but not by the ryanodine receptor blocker dantrolene, or the mitochondrial Na(+)/Ca(2+) exchanger blocker CGP37157. In addition, the protein kinase C (PKC) inhibitors GF109203X or Ro318220 prevented tamoxifen from inhibiting glutamate release. Western blotting showed that tamoxifen significantly decreased the 4-AP-induced phosphorylation of PKC and PKCα. Together, these results suggest that tamoxifen inhibits glutamate release from rat cortical synaptosomes, through the suppression of presynaptic voltage-dependent Ca(2+) entry and PKC activity.  相似文献   

19.
Chen L  Meng Q  Jing X  Xu P  Luo D 《Cellular signalling》2011,23(2):497-505
Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca2+ signalling. In HEK293 and Jurkat cells, the Ca2+ release and Ca2+ uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca2+ responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca2+ concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca2+ flux.  相似文献   

20.
Changes in glycolytic flux have been observed in liver under conditions where effects of cAMP seem unlikely. We have, therefore, studied the phosphorylation of four enzymes involved in the regulation of glycolysis and gluconeogenesis (6-phosphofructo-1-kinase from rat liver and rabbit muscle; pyruvate kinase, 6-phosphofructo-2-kinase and fructose-1,6-bisphosphatase from rat liver) by defined concentrations of two cAMP-independent protein kinases: Ca2+/calmodulin-dependent protein kinase and Ca2+/phospholipid-dependent protein kinase (protein kinase C). The results were compared with those obtained with the catalytic subunit of cAMP-dependent protein kinase. The following results were obtained. 1. Ca2+/calmodulin-dependent protein kinase phosphorylates 6-phosphofructo-1-kinase and L-type pyruvate kinase at a slightly lower rate as compared to cAMP-dependent protein kinase. 2. 6-Phosphofructo-1-kinase is phosphorylated by the two kinases at a single identical position. There is no additive phosphorylation. The final stoichiometry is 2 mol phosphate/mol tetramer. The same holds for L-type pyruvate kinase except that the stoichiometry with either kinase or both kinases together is 4 mol phosphate/mol tetramer. 3. Rabbit muscle 6-phosphofructo-1-kinase is phosphorylated by cAMP-dependent protein kinase but not by Ca2+/calmodulin-dependent protein kinase. 4. Fructose-1,6-bisphosphatase from rat but not from rabbit liver is phosphorylated at the same position but at a markedly lower rate by Ca2+/calmodulin-dependent protein kinase when compared to the phosphorylation by cAMP-dependent protein kinase. 5. 6-Phosphofructo-2-kinase is phosphorylated by Ca2+/calmodulin-dependent protein kinase only at a negligible rate. 6. Protein kinase C does not seem to be involved in the regulation of the enzymes examined: only 6-phosphofructo-2-kinase became phosphorylated to a significant degree. In contrast to the phosphorylation by cAMP-dependent protein kinase, this phosphorylation is not associated with a change of enzyme activity. This agrees with our observation that the sites of phosphorylation by the two kinases are different. The results indicate that Ca2+/calmodulin-dependent protein kinase but not protein kinase C could be involved in the regulation of hepatic glycolytic flux under conditions where changes in the activity of cAMP-dependent protein kinase seem unlikely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号