首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fecal neutral steroids and bile acids from germfree rats   总被引:3,自引:0,他引:3  
The amount and composition of fecal neutral sterols and bile acids excreted by adult male germfree and conventional rats have been determined. The amounts of neutral sterols excreted were 12.8 (germfree) and 19.5 (conventional) mg/kg of body wt per day. The germfree rats excreted cholesterol and lathosterol (methostenol was not assayed); the conventional rats excreted coprostanol and coprostanone in addition. The amounts of bile acids excreted were 11.3 (germfree) and 21.4 (conventional) mg/kg of body wt per day. The bile acids excreted by the rats were tentatively identified as tauro--muricholate, tauro-alpha-muricholate, and tauro-cholate, besides an unidentified component. The conventional rats excreted the corresponding unconjugated acids as well as many other unconjugated bile acids. No significant correlation was found between the amount of coprosterols and the total amount of neutral sterols excreted by the conventional rats. This suggests that bacterial reduction of cholesterol is not an important mechanism of increasing neutral sterol excretion of conventional rats as compared to germfree rats. Evidence is presented that suggests that this difference in neutral sterol excretion is due to changes in intestinal secretion and sloughing between the two types of animal. The factors reponsible for the differences in bile acid excretion have not been identified.  相似文献   

2.
We investigated the effects of pectin with different degrees of methylation (34.5, 70.8, and 92.6%, respectively) on the composition and concentration of intestinal and fecal bile acids and neutral sterols in conventional and germfree rats. Diets containing 6.5% pectin (galacturonan) were given for 3 weeks. High concentrations of free and secondary bile acids appeared in cecum and colon of conventional rats. With increasing degree of methylation, more bile acids were transported into lower parts of intestinal tract and excreted whereas the proportion of secondary bile acids decreased. In contrast, the composition of bile acids in intestinal contents and feces was relatively unchanged in germfree rats. Exclusively cholesterol was found as a neutral sterol in germfree rats. Coprostanol appeared in cecum of conventional rats and additionally coprostanone in colon. Amounts of neutral sterols increased with increasing degree of methylation of pectin. Additionally, concentrations of bile acids in plasma decreased if the pectin-containing diets were given. Besides the degree of methylation, the molecular weight of pectin used in the diets influenced concentration and composition of intestinal and fecal steroids in rats.  相似文献   

3.
Steroid balance studies were conducted on 24 conventional and 12 germfree male rats, 90-120 days old, fed diets containing either 20% safflower or 20% coconut oil. Both germfree and conventional rats fed the safflower oil diets had significantly lower serum cholesterol levels and significantly higher liver cholesterol levels than did the rats fed coconut oil. No significant differences in total fecal neutral sterols, coprostanol, Delta(7)-cholestenol, or total fecal bile acid excretion were seen between dietary groups of rats of either status. There was no evidence of qualitative differences in fecal bile acid excretion as a function of diet. The increased liver cholesterol was in the ester form, with cholesteryl linoleate the largest single component. There was no significant difference in the cholesterol content of the skin, muscle, adipose tissue, or gastrointestinal tract. The significance of a large increase in liver cholesteryl ester, lowered serum cholesterol, and no change in steroid excretion is discussed.  相似文献   

4.
The objective of the present study was to investigate the cholesterol-reducing effect of medium-chain fatty acids (MCFAs) completed by elevated excretion of fecal neutral steroids and/or bile acids. Blood and liver lipid profiles, fecal neutral steroids, bile acids, and mRNA and protein expression of the genes relevant to cholesterol homeostasis were measured and analyzed in C57BL/6J mice fed a cholesterol-rich diet with 2% caprylic acid or capric acid for 12 weeks. Blood total cholesterol and low-density lipoprotein cholesterol (LDL-c) levels were reduced significantly as compared to diet with palmitic acid or stearic acid. Caprylic acid promoted the excretion of fecal neutral steroids, especially cholesterol. The excretion of fecal bile acids, mainly in the form of cholic acid was enhanced and accompanied by elevated expression of mRNA and the protein of hepatic cholesterol 7α-hydroxylase (CYP7A1). These results indicate that MCFAs can reduce blood cholesterol by promoting the excretion of fecal cholesterol and cholic acid.  相似文献   

5.
The well-known bile acid analysis technique used by us and others (Grundy, Ahrens, and Miettinen. 1965. J. Lipid Res. 6:397-410) does not allow for the detection of hyodeoxycholic acid, a product of quantitative importance in rodent feces. Using updated methodology, it was established that hyodeoxycholic acid and omega-muricholic acid, both apparent conversion products of beta-muricholic acid, occur in apppreciable amounts in intestinal contents and feces of conventional Wistar type Lobund rats. In conventional rats, these bile acids comprise about 50% of fecal bile acids; they are not found in intestinal contents or feces of germfree rats. Others have demonstrated that hyodeoxycholic acid if formed by combined action of gut flora and liver. A new method for the separation of conjugated and free bile acids in biological samples was developed. Results with this method confirmed the total conjugation of bile acids in the germfree rat, and the almost total deconjugation that takes place in the cecum of the conventional rat.  相似文献   

6.
The fecal excretion of intraperitoneally injected 24-14C-labeled taurocholate (TCA), taurolithocholate (TLCA) and the respective 3-sulfate esters (TCA-3-S; TLCA-3-S), were compared in germfree (GF) rats, conventional (CV) rats, and in gnotobiotic rats associated with Clostridium Cl-8 or this same strain Cl-8 plus the bile desulfating Clostridium S1, respectively. TCA and TLCA were about two times more rapidly excreted by CV animals than by GF animals; the time required for 50% excretion of total label injected (t 1/2) was 6.6 days vs 14.9 for TCA, and 4.4 vs 8.9 for TLCA. In GF and in CV animals, TCA-3-S and TLCA-3-S were excreted more rapidly than their nonsulfated analogues; the t 1/2 values of TCA-3-S and TCA were 2.7 days vs 14.9 in GF rats, and 3.1 vs 6.6 days in CV animals. The t 1/2 values of TLCA-3-S and TLCA were 2.7 days vs 8.9 in GF rats, and 1.5 vs 4.4 days in CV rats. In gnotobiotic rats associated with Clostridium strains S1 + Cl-8, fecal bile salts were nearly 100% deconjugated and desulfated and the 50% excretion times of TCA-3-S and TLCA-3-S approximated to those of TCA and TLCA in GF animals. T 1/2 of TCA-3-S in gnotobiotic S1 + Cl-8 animals was 12.2 days vs 14.9 for TCA in GF animals. In gnotobiotic S1 + Cl-8 animals the t 1/2 of TLCA and TLCA-3-S was 12.5 and 11.0 days, respectively. These results illustrate clearly the important effect the intestinal microflora has upon the metabolic half-life of bile salts. Moreover, they demonstrate that desulfation of bile salts by the intestinal microflora takes place in intestinal segments from where a certain degree of reabsorption is still possible, and thus point to the fact that microbial desulfation is an important variable in the overall elimination of bile salts.  相似文献   

7.
This study examined the effects of Lactobacillus acidophilus ATCC 43121 (LAB) on cholesterol metabolism in hypercholesterolemia-induced rats. Four treatment groups of rats (n = 9) were fed experimental diets: normal diet, normal diet+LAB (2 x 10(6) CFU/day), hypercholesterol diet (0.5% cholesterol, w/w), and hypercholesterol diet + LAB. Body weight, feed intake, and feed efficiency did not differ among the four groups. Supplementation with LAB reduced total serum cholesterol (25%) and VLDL + IDL + LDL cholesterol (42%) in hypercholesterol diet groups, although hepatic tissue cholesterol and lipid contents were not changed. In the normal diet group, cholesterol synthesis (HMG-CoA reductase expression), absorption (LDL receptor expression), and excretion via bile acids (cholesterol 7 alpha-hydroxylase expression) were increased by supplementation with LAB, and increased cholesterol absorption and decreased excretion were found in the hypercholesterol diet group. Total fecal acid sterols excretion was increased by supplementation with LAB. With proportional changes in both normal and hypercholesterol diet groups, primary bile acids (cholic and chenodeoxycholic acids) were reduced, and secondary bile acids (deoxycholic and lithocholic acids) were increased. Fecal neutral sterol excretion was not changed by LAB. In this experiment, the increase in insoluble bile acid (lithocholic acid) reduced blood cholesterol level in rats fed hypercholesterol diets supplemented with LAB. Thus, in the rat, L. acidophilus ATCC 43121 is more likely to affect deconjugation and dehydroxylation during cholesterol metabolism than the assimilation of cholesterol into cell membranes.  相似文献   

8.
Germfree and conventional rats were given a semi-synthetic diet containing either normal cornstarch or an amylomaize starch. The experimental groups thus formed were compared to assess the effects of these two types of starch and to determine if digestive tract microflora was involved in these effects. The presence of amylomaize starch decreased body growth in germfree and conventional rats, increasing food intake in the former and decreasing it in the latter. In conventionals, amylomaize starch decreased the apparent digestibility of the ration only slightly, while in germfrees it diminished apparent digestibility considerably. The cecal weight of germfree animals was not modified by amylomaize starch but that of conventional rats was increased fourfold. In both types of rat, amylomaize starch largely decreased the plasma concentration of cholesterol, largely increased the total amount of bile acids in the small intestine but slightly modified the fecal elimination of cholesterol and bile acids. It augmented the cholesterol concentration in the liver of germfrees and decreased it in conventionals while, on the contrary, it diminished the total amount of bile acids in the hind gut in the former and augmented it in the latter. This starch did not change bile acid deconjugation in conventional rats but considerably decreased other bacterial transformations of cholesterol and bile acids. Digestive tract microflora was undoubtedly involved in the action of amylomaize starch on cecal weight, ration digestibility, food intake, hepatic cholesterol concentration, the amount of bile acid in the hind gut and obviously in the transformation of cholesterol and bile acids. It did not play a role in the other effects of this starch: the strong decrease in the concentration of plasma cholesterol was the direct effect of amylomaize starch on rat metabolism.  相似文献   

9.
From mouse fecal material we have isolated four strictly anaerobic bacteria which, when associated with germfree mice or rats, reduced the cecal volume by 80 and 60%, respectively. This cecal volume-reducing flora did not metabolize estrone-3-sulfate, taurolithocholate-3-sulfate or taurolithocholate but gnotobiotic rats associated with this particular flora (CRF-rats) excreted these compounds faster in feces plus urine than did germfree rats. The time needed for 50% excretion (t1/2) of orally administered estrone-3-sulfate was 32 h in germfree rats versus 13 h in CRF rats; for intraperitoneally injected taurolithocholate-3-sulfate the t1/2 was 63 h in germfree versus 17 h in CRF rats and for taurolithocholate the t1/2 was 199 h in germfree and 96 h in CRF rats. Association of germfree rats with the cecal volume-reducing flora did not change the cecal absorption rate of estrone-3-sulfate, but shortened the 50% small intestinal transit time of [14C]PEG from 10 to 3 h; a value also found in conventional rats. These results stress the important influence of the intestinal microflora on the absorption and excretion of steroids via its effect on the physiology of the whole intestinal tract and point to the deficiencies inherent to the use of germfree animals in excretion studies.  相似文献   

10.
Fatty acid bile acid conjugates (FABACs) prevent and dissolve cholesterol gallstones and prevent diet induced fatty liver, in mice. The present studies aimed to test their hypocholesterolemic effects in mice. Gallstone susceptible (C57L/J) mice, on high fat (HFD) or regular diet (RD), were treated with the conjugate of cholic acid with arachidic acid (FABAC; Aramchol). FABAC reduced the elevated plasma cholesterol levels induced by the HFD. In C57L/J mice, FABAC reduced plasma cholesterol by 50% (p < 0.001). In mice fed HFD, hepatic cholesterol synthesis was reduced, whereas CYP7A1 activity and expression were increased by FABAC. The ratio of fecal bile acids/neutral sterols was increased, as was the total fecal sterol excretion. In conclusion, FABACs markedly reduce elevated plasma cholesterol in mice by reducing the hepatic synthesis of cholesterol, in conjunction with an increase of its catabolism and excretion from the body.  相似文献   

11.
Daily excretion of fecal total bile acids and neutral steroids were compared in five controls and two patients with extremely low concentrations of plasma high density lipoprotein (3 to 11 mg/dl) and severe atherosclerosis. There was no significant difference in steroid excretion rates in the groups. The predominant bile acid excreted in control feces was deoxycholic acid; lithocholic acid was predominant in the patients. The patients showed no signs of significant liver disease.  相似文献   

12.
The effects of vitamin K1 and K2 on the fecal excretion of the radioactivity from the rats given cholesterol-4?14C have been studied.There was a significant increase in the radioactivity excretion by the administration of vitamin K, and 23.3–31.5% of the total radioactivity injected were excreted in a week in the feces of the rats administered vitamin K, while 16.3–17.6% in the control animals.The change was due entirely to the increase in fecal bile acid excretion but no significant change was observed in neutral sterol output. The implications of these findings were discussed.  相似文献   

13.
Sarcosine conjugated ursodeoxycholic acid (SUDC) was synthesized and its intestinal absorption and metabolism were studied in rat and hamster. Intestinal absorption study using bile fistula rat shows that more than 90% of SUDC administered intraduodenally was excreted in the bile within 24 hr. No change of the administered bile acid was seen during the absorption from the intestine, the passage of the liver, and the excretion into the bile. When [24-14C]SUDC and [11,12-3H2]-ursodeoxycholic acid were administered orally to a hamster, more than 95% of both the administered 14C and 3H were recovered from the feces within 6 days. Most (77%) of the fecal 14C-labeled compound was SUDC, whereas 95% of the fecal 3H-labeled compound was unconjugated lithocholic acid. These results indicate that SUDC, unlike taurine or glycine conjugated bile acid, resists bacterial deconjugation and 7-dehydroxylation.  相似文献   

14.
The effect of six different conjugated bile salts (two trihydroxyconjugated bile salts: tauro and glycocholic acids; and four dihydroxyconjugated bile salts: tauro- and glycochenodeoxycholic, tauro- and glycodeoxycholic acids) on eight bifidobacteria strains were studied. A strong growth-inhibitory effect was observed (80% at 0.95mm) for each bile salt and strain. This phenomenon was explained by the production of deconjugated bile salt during bifidobacteria growth. The deconjugation phenomenon was concurrent with biomass production, and deconjugated bile salts were the sole compound produced during bifidobacteria biotransformation. In resting cell experiments, differences appeared between the strains and the kind of bile salts, particularly concerning taurocholic acid. The Bifidobacterium longum strains were the most efficient among the bacteria tested.  相似文献   

15.
We have developed a simple and accurate HPLC method for measurement of fecal bile acids using phenacyl derivatives of unconjugated bile acids, and applied it to the measurement of fecal bile acids in cirrhotic patients. The HPLC method has the following steps: 1) lyophilization of the stool sample; 2) reconstitution in buffer and enzymatic deconjugation using cholylglycine hydrolase/sulfatase; 3) incubation with 0.1 N NaOH in 50% isopropanol at 60°C to hydrolyze esterified bile acids; 4) extraction of bile acids from particulate material using 0.1 N NaOH; 5) isolation of deconjugated bile acids by solid phase extraction; 6) formation of phenacyl esters by derivatization using phenacyl bromide; and 7) HPLC separation measuring eluted peaks at 254 nm. The method was validated by showing that results obtained by HPLC agreed with those obtained by LC-MS/MS and GC-MS. We then applied the method to measuring total fecal bile acid (concentration) and bile acid profile in samples from 38 patients with cirrhosis (17 early, 21 advanced) and 10 healthy subjects. Bile acid concentrations were significantly lower in patients with advanced cirrhosis, suggesting impaired bile acid synthesis.  相似文献   

16.
Normal and alloxan-diabetic male mice (Crj-ICR) were fed a diet containing 0.5% cholesterol for 5 and 10 weeks, and gallbladder bile was analyzed for cholesterol, phospholipids and bile acids, feces for sterols and bile acids, and plasma and liver for cholesterol, phospholipids, and triglycerides. Normal mice developed no gallstones but the diabetic mice developed cholesterol gallstones with an incidence of 70% by 5 weeks and 80% by 10 weeks after feeding of the cholesterol diet. Diabetic mice fed the ordinary diet also developed stones (23%) by 10 weeks. In the diabetic mice, the gallbladder was enlarged about threefold, and biliary lipid concentration, diet intake, and fecal excretion of sterols and bile acids increased but body weight decreased. Cholic acid and beta-muricholic acid comprised over 40% each of the total biliary bile acids in normal mice, but cholic acid increased to about 80% and beta-muricholic acid decreased to a few percent in the diabetic mice. Fecal excretion of bile acids increased after cholesterol feeding in both normal and diabetic mice, but the increased bile acid in the normal animals was beta-muricholic acid and that in the diabetic mice was deoxycholic acid. The mice that developed gallstones showed a marked increase in biliary cholesterol value and decreases in gallbladder bile and bile acid concentration, but no difference in biliary and fecal bile acid composition, bile acid synthesis, fecal sterols, or plasma and liver lipid levels. Cholesterol absorption was increased in the diabetic mice when examined by plasma 14C/3H ratio and fecal 14C-labeled sterol excretion after a single oral administration of [14C]cholesterol and a simultaneous intravenous injection of [3H]cholesterol. These data led to the conclusion that cholesterol gallstones developed in alloxan-diabetic mice fed excess cholesterol, due to the hyperphagia and the enhancement of cholesterol absorption caused by increases in the synthesis and secretion of cholic acid.  相似文献   

17.
Deconjugation of bile acids by intestinal lactobacilli.   总被引:11,自引:7,他引:4       下载免费PDF全文
Lactobacillus species normally found in the intestinal tract of humans varied in the ability to deconjugate bile acids, whereas laboratory strains of Lactobacillus acidophilus deconjugated both glycocholate and taurocholate. All isolates of L. acidophilus from human feces deconjugated taurocholate, whereas only one of six deconjugated glycocholate. None of 13 isolates identified as L. casei deconjugated taurocholate, whereas 9 deconjugated glycocholate. The deconjugating system of L. acidophilus appeared to be constitutive, required low oxidation-reduction potential, and was most active at pH 6. No degradation beyond deconjugation was detected.  相似文献   

18.
Fecal excretion of neutral sterols and bile acids was measured in age-matched hyperlipoproteinemic Zucker obese rats and their lean litter mates. The bile acid excretion (mg/day ± SEM) in Zucker rats was significantly higher (p<0.01) when compared to lean controls (Zucker obese rats 41.68 ± 2.86; lean controls 29.85 ± 1.50). Neutral sterol excretion in both the groups of rats was similar. Total fecal steroid excretion (mg/day ± SEM) in Zucker rats was significantly higher (p<0.01) than in lean controls (Zucker obese rats 52.33 ± 3.50; lean controls 39.23 ± 2.16. The Zucker rat thus mimics the increased bile acid excretion noted previously in human Type IV hyperlipoproteinemia and could serve as an ideal animal model for studying the interrelationship between bile acid excretion and very low density lipoprotein metabolism.  相似文献   

19.
The effects of cholestyramine feeding on biliary ursodeoxycholic acid, fecal excretion of bile acids and neutral sterols on cholesterol 7α-hydroxylase and hepatic HMG-CoA reductase were examined in the guinea pig. In the bile there was a 57% decrease in the concentration of ursodeoxycholic acid while an increase was observed in the concentration of chenodeoxycholic acid. Cholestyramine feeding for ten days resulted in a decrease in plasma cholesterol levels and an increase in both hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase activities. The fecal excretion of both bile acids and neutral sterols was significantly increased.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号