首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
An isozyme of betaine aldehyde dehydrogenase in barley.   总被引:18,自引:0,他引:18  
  相似文献   

5.
6.
The NAD+-dependent animal betaine aldehyde dehydrogenases participate in the biosynthesis of glycine betaine and carnitine, as well as in polyamines catabolism. We studied the kinetics of inactivation of the porcine kidney enzyme (pkBADH) by the drug disulfiram, a thiol-reagent, with the double aim of exploring the enzyme dynamics and investigating whether it could be an in vivo target of disulfiram. Both inactivation by disulfiram and reactivation by reductants were biphasic processes with equal limiting amplitudes. Under certain conditions half of the enzyme activity became resistant to disulfiram inactivation. NAD+ protected almost 100% at 10 μM but only 50% at 5 mM, and vice versa if the enzyme was pre-incubated with NAD+ before the chemical modification. NADH, betaine aldehyde, and glycine betaine also afforded greater protection after pre-incubation with the enzyme than without pre-incubation. Together, these findings suggest two kinds of active sites in this seemingly homotetrameric enzyme, and complex, unusual ligand-induced conformational changes. In addition, they indicate that, in vivo, pkBADH is most likely protected against disulfiram inactivation.  相似文献   

7.
Glycinebetaine is an important quaternary ammonium compound generated in response to salt and other osmotic stresses in many organisms. Its synthesis requires the catalysis of betaine aldehyde dehydrogenase encoded by a Betaine Aldehyde Dehydrogenase (BADH) gene that converts betaine aldehyde into glycinebetaine in some halotolerant plants. In this study, a BADH gene was over expressed in transgenic alfalfa (Medicago sativa L) plants using Agrobacterium-mediated transformation. Transgenic alfalfa plants grown under 9‰ NaCl grew well; while non-transgenic control plants turned yellowish in color, wilted, and eventually died. Polymerase chain reaction (PCR) and Northern blot hybridization analyses demonstrated that the BADH gene was transferred into the T2 generation and segregated in a Mendelian fashion. Transgenic alfalfa plants expressing BADH showed significantly higher BADH enzyme activity and betaine contents when grown under 6‰ NaCl. Moreover, proline content in T2 lines were higher while electrolyte leakage and malonaldehyde content were lower in T2 lines compared with non-transgenic plants. These findings indicated that transgenic plants expressing BADH transgene exhibited higher salt tolerance than non-transgenic plants.  相似文献   

8.
Betaine aldehyde dehydrogenase (BADH EC 1.2.1.8) catalyzes the irreversible oxidation of betaine aldehyde to glycine betaine using NAD+ as a coenzyme. Porcine kidney BADH (pkBADH) follows a bi‐bi ordered mechanism in which NAD+ binds to the enzyme before the aldehyde. Previous studies showed that NAD+ induces complex and unusual conformational changes on pkBADH and that potassium is required to maintain its quaternary structure. The aim of this work was to analyze the structural changes in pkBADH caused by NAD+ binding and the role played by potassium in those changes. The pkBADH cDNA was cloned and overexpressed in Escherichia coli, and the protein was purified by affinity chromatography using a chitin matrix. The pkBADH/NAD+ interaction was analyzed by circular dichroism (CD) and by isothermal titration calorimetry (ITC) by titrating the enzyme with NAD+. The cDNA has an open reading frame of 1485 bp and encodes a protein of 494 amino acids, with a predicted molecular mass of 53.9 kDa. CD data showed that the binding of NAD+ to the enzyme caused changes in its secondary structure, whereas the presence of K+ helps maintain its α‐helix content. K+ increased the thermal stability of the pkBADH‐NAD+ complex by 5.3°C. ITC data showed that NAD+ binding occurs with different association constants for each active site between 37.5 and 8.6 μM. All the results support previous data in which the enzyme incubation with NAD+ provoked changes in reactivity, which is an indication of slow conformational rearrangements of the active site.  相似文献   

9.
The aldehyde dehydrogenase from Thermoplasma acidophilum, which was previously implemented as a key enzyme in a synthetic cell-free reaction cascade for the production of alcohols, was optimized by directed evolution. Improvements have been made to enhance reaction velocity and solubility. Using a random approach followed by site-directed and saturation mutagenesis, three beneficial amino acid mutations were found after screening of ca. 20,000 variants. Mutation Y399C enhanced the protein solubility after recombinant expression in Escherichia coli 6-fold. Two further mutations, F34M and S405N, enhanced enzyme activity with the cofactor NAD+ by a factor of eight. Impacts on enzyme stability and substrate specificity were negligible.  相似文献   

10.
11.
12.
Yui R  Matsuura ET 《Mutation research》2006,594(1-2):155-161
Cumulative damage due to reactive oxygen species (ROS) in mitochondria, especially in mitochondrial DNA (mtDNA), would result in a decrease in mitochondrial respiratory function and contributes to the age-related decline in the physiological functioning of organisms. Previously, we reported the tissue-specific accumulation of deleted mtDNA with age in Drosophila melanogaster. In the present study, to understand the mechanism by which mtDNA deletion is generated with age, nucleotide sequences of deleted mtDNA were determined. Consequently, 33 different sequences each containing a deletion were obtained from flies that were more than 55-day-old. Most of the deletions were found to be flanked by short direct repeats. The present results, together with those from other animals, suggest that there is a common mechanism generating mtDNA deletions through direct repeats.  相似文献   

13.
Asiimwe T  Krause K  Schlunk I  Kothe E 《Mycorrhiza》2012,22(6):471-484
We report the first mycorrhizal fungal aldehyde dehydrogenase gene, ald1, which was isolated from the basidiomycete Tricholoma vaccinum. The gene, encoding a protein Ald1 of 502 amino acids, is up-regulated in ectomycorrhiza. Phylogenetic analyses using 53 specific fungal aldehyde dehydrogenases from all major phyla in the kingdom of fungi including Ald1 and two partial sequences of T. vaccinum were performed to get an insight in the evolution of the aldehyde dehydrogenase family. By using competitive and real-time RT-PCR, ald1 is up-regulated in response to alcohol and aldehyde-related stress. Furthermore, heterologous expression of ald1 in Escherichia coli and subsequent in vitro enzyme activity assay demonstrated the oxidation of propionaldehyde and butyraldehyde with different kinetics using either NAD(+) or NADP(+) as cofactors. In addition, overexpression of ald1 in T. vaccinum after Agrobacterium tumefaciens-mediated transformation increased ethanol stress tolerance. These results demonstrate the ability of Ald1 to circumvent ethanol stress, a critical function in mycorrhizal habitats.  相似文献   

14.
15.
Chemically inducible gene switches can provide precise control over gene expression, enabling more specific analyses of gene function and expanding the plant biotechnology toolkit beyond traditional constitutive expression systems. The alc gene expression system is one of the most promising chemically inducible gene switches in plants because of its potential in both fundamental research and commercial biotechnology applications. However, there are no published reports demonstrating that this versatile gene switch is functional in transgenic monocotyledonous plants, which include some of the most important agricultural crops. We found that the original alc gene switch was ineffective in the monocotyledonous plant sugar cane, and describe a modified alc system that is functional in this globally significant crop. A promoter consisting of tandem copies of the ethanol receptor inverted repeat binding site, in combination with a minimal promoter sequence, was sufficient to give enhanced sensitivity and significantly higher levels of ethanol inducible gene expression. A longer CaMV 35S minimal promoter than was used in the original alc gene switch also substantially improved ethanol inducibility. Treating the roots with ethanol effectively induced the modified alc system in sugar cane leaves and stem, while an aerial spray was relatively ineffective. The extension of this chemically inducible gene expression system to sugar cane opens the door to new opportunities for basic research and crop biotechnology.  相似文献   

16.
 Plants have to cope with a number of envi-ronmental stresses which may potentially induce genetic and epigenetic changes and thus contribute to genome variability. In the present study we inspected the DNA methylation status of two heterochromatic loci (defined with repetitive DNA sequences HRS60 and GRS) in a tobacco cell culture exposed to osmotic stress. Investigations were performed on a TBY-2 cell suspension culture, and the stress was elicited with NaCl or D-mannitol. Using the restriction enzymes MspI/HpaII and MboI/Sau3AI in combination with Southern hydridization we observed a reversible hypermethylation of the external cytosine at the CpCpG trinucleotides in cells grown under mild osmotic stress equal to a NaCl concentration of 10 g/l. There were no changes in the methylation of the internal cytosine as the CpG dinucleotides within the CCGG motifs (HpaII sites) appeared to be fully methylated in tobacco DNA repetitive sequences under normal physiological conditions. The data suggest epigenetic changes in the plant genome based on de novo methylation of DNA in response to environmental stress. Received: 26 November 1996/Accepted: 20 December 1996  相似文献   

17.
18.
The uptake and accumulation of the potent osmolytes glycine betaine and carnitine enable the food-borne pathogen Listeria monocytogenes to proliferate in environments of elevated osmotic stress, often rendering salt-based food preservation inadequate. To date, three osmolyte transport systems are known to operate in L. monocytogenes: glycine betaine porter I (BetL), glycine betaine porter II (Gbu), and a carnitine transporter OpuC. We investigated the specificity of each transporter towards each osmolyte by creating mutant derivatives of L. monocytogenes 10403S that possess each of the transporters in isolation. Kinetic and steady-state osmolyte accumulation data together with growth rate experiments demonstrated that osmotically activated glycine betaine transport is readily and effectively mediated by Gbu and BetL and to a lesser extent by OpuC. Osmotically stimulated carnitine transport was demonstrated for OpuC and Gbu regardless of the nature of stressing salt. BetL can mediate weak carnitine uptake in response to NaCl stress but not KCl stress. No other transporter in L. monocytogenes 10403S appears to be involved in osmotically stimulated transport of either osmolyte, since a triple mutant strain yielded neither transport nor accumulation of glycine betaine or carnitine and could not be rescued by either osmolyte when grown under elevated osmotic stress.  相似文献   

19.
20.
The response of the genome of Festuca arundinacea seedlings to changes in the temperature at which they were grown was investigated. Fifteen repeated sequences in the nuclear DNA were isolated and hybridized to the genomic DNA of seedlings grown at 10 degrees C or 30 degrees C. The redundancies of sequences recognized by four probes ( FaA5, FaH8, FaH13 and FaH14), were found to differ significantly in the two DNAs. DNA sequences recognized by FaH8, FaH13 and FaH14 were more represented in the genome of the 30 degrees C-raised seedlings than in the genome of the 10 degrees C-raised seedlings (76.5 x 10(3), 1.9 x 10(3), and 111.8 x 10(3) copies per haploid, 1C genome vs 62.7 x 10(3), 1.3 x 10(3), and 80.8 x 10(3) copies, respectively). In contrast, FaA5-related sequences were more represented in the genome of seedlings grown at the lower temperature (15.5 x 10(3) vs 10.2 x 10(3) copies, respectively). Southern-blot hybridization of these repeats to digested genomic DNA produced patterns which indicated that the probe sequences were part of longer repeated sequences having a limited degree of structural heterogeneity. These patterns were partly different when the probes were hybridized to the DNA from seedlings grown at 10 degrees C or 30 degrees C. In situ hybridization showed that the DNA sequences recognized by each probe were scattered along the length of all the chromosomes, with preferential location of FaA5- and FaH13-related sequences at given, mainly centromeric, regions of certain chromosomes. These findings suggest that redundancy modulations of interspersed repeated sequences allow direct responses of the genome of F. arundinacea to changes in environmental temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号