共查询到20条相似文献,搜索用时 15 毫秒
1.
S. G. Medvedev 《Entomological Review》2014,94(3):345-358
The Palaearctic flea fauna includes 921 species and 479 subspecies from 96 genera of 10 families. Of them, 858 species (94%) from 43 genera are endemic to the Palaearctic; they comprise 40% of the Palaearctic Hystrichopsyllidae, 24% of Ceratophyllidae, and 20% of Leptopsyllidae. Ranges of 581 species (63% of the Palaearctic fauna) are situated within one province or subregion of the Palaearctic. Species with ranges including a part of Asia (592) comprise 87% of the total fauna; 72% of the species (517) are endemic to the Palaearctic. The largest centers of taxonomic diversity of Palaearctic fleas are situated in the East Asian, Central Asian, and Turano-Iranian Subregions: 320 species of fleas (214 of them endemic) from 59 genera (8 endemic) are known from the East Asian Subregion; 270 species (over 120 endemic) from 54 genera (5 endemic) are distributed in the Central Asian Subregion. The Turano-Iranian fauna comprises 213 species (103 endemic) from 47 genera (3 endemic); about 160 species occur in the Turanian Subprovince closest to the Russian borders, one-third of them (52 species, or 33%) are endemic; 69 species more are endemic to the entire Asian part of the Palaearctic. Extra-Asian and extra-Siberian ranges are known in 190 flea species. In the western Palaearctic, 76 species are endemic to the European Province, and 57 species, to the Mediterranean Province; 36 species have Euro-Mediterranean distribution. The fauna of the Saharo-Arabian Subregion comprises 30 species (12 endemic), 6 species have ranges of the Mediterranean-Saharo-Arabian type. Scenarios of the origin of the Siphonaptera at the Triassic-Jurassic boundary are hypothesized. Formation of the Palaearctic flea fauna was mostly supported by the Asian-Indo-Malayan and East Asian-Western American palaeofaunal centers of taxonomic diversity. The long history of faunal exchange between the east Palaearctic and the west Nearctic is manifested by the distribution of the parasites of rodents and insectivores, fleas of the genera Stenoponia, Rhadinopsylla, Nearctopsylla, and Catallagia, belonging to several subfamilies of the Hystrichopsyllidae, as well as members of a number of other flea families. A great number of endemic species in the genera Palaeopsylla and Ctenophthalmus (Hystrichopsyllidae), both in the European and Asian parts of the Palaearctic, can be explained by the junction of the European and Asian continental platforms in the late Cretaceous and their subsequent isolation during the Paleocene. A considerable contribution to the flea fauna in the Russian territory was made by the East Asian-Nearctic center of taxonomic diversity, with a smaller role of the European palaeofauna. Immigration of species of the family Pulicidae from the Afrotropical Region is restricted to the southern territories of Russia. 相似文献
2.
Michael F. Whiting Alison S. Whiting Michael W. Hastriter Katharina Dittmar 《Cladistics : the international journal of the Willi Hennig Society》2008,24(5):677-707
Siphonaptera (fleas) is a highly specialized order of holometabolous insects comprising ~2500 species placed in 16 families. Despite a long history of extensive work on flea classification and biology, phylogenetic relationships among fleas are virtually unknown. We present the first formal analysis of flea relationships based on a molecular matrix of four loci (18S ribosomal DNA, 28S ribosomal DNA, Cytochrome Oxidase II, and Elongation Factor 1‐alpha) for 128 flea taxa from around the world representing 16 families, 25 subfamilies, 26 tribes, and 83 flea genera with eight outgroups. Trees were reconstructed using direct optimization and maximum likelihood techniques. Our analysis supports Tungidae as the most basal flea lineage, sister group to the remainder of the extant fleas. Pygiopsyllomorpha is monophyletic, as are the constituent families Lycopsyllidae, Pygiopsyllidae, and Stivaliidae, with a sister group relationship between the latter two families. Macropsyllidae is resolved as sister group to Coptopsyllidae with moderate nodal support. Stephanociricidae is monophyletic, as are the two constituent subfamilies Stephanocircinae and Craneopsyllinae. Vermipsyllidae is placed as sister group to Jordanopsylla. Rhopalopsyllidae is monophyletic as are the two constituent subfamilies Rhopalopsyllinae and Parapsyllinae. Hystrichopsyllidae is paraphyletic with Hystrichopsyllini placed as sister to some species of Anomiopsyllini and Ctenopariini placed as sister to Carterettini. Ctenophthalmidae is grossly paraphyletic with the family broken into seven lineages dispersed on the tree. Most notably, Anomiopsyllini is paraphyletic. Pulicidae and Chimaeropsyllidae are both monophyletic and these families are sister groups. Ceratophyllomorpha is monophyletic and includes Ischnopsyllidae, Ceratophyllidae, and Leptopsyllidae. Leptopsyllidae is paraphyletic as are its constituent subfamilies Amphipsyllinae and Leptopsyllinae and the tribes Amphipsyllini and Leptopsyllini. Ischnopsyllidae is monophyletic. Ceratophyllidae is monophyletic, with a monophyletic Dactypsyllinae nested within Ceratophyllinae, rendering the latter group paraphyletic. Mapping of general host associations on our topology reveals an early association with mammals with four independent shifts to birds. © The Willi Hennig Society 2008. 相似文献
3.
Intracellular endosymbionts, Wolbachia spp., have been reported in many different orders of insects and in nematodes but not previously in fleas. This is the first conclusive report of Wolbachia spp. within members of the Siphonaptera. Using nested polymerase chain reaction (PCR) targeting of the 16S ribosomal RNA gene, we screened for Wolbachia spp. in fleas collected from 3 counties in Georgia and 1 in New York. The prevalence of Wolbachia spp. detected varied among the 6 different species screened: 21% in the cat flea Ctenocephalides felis (n = 604), 7% in the dog flea C. canis (n = 28), 25% in Polygenus gwyni (n = 8), 80% in Orchopeas howardi (n = 15), 94% in Pulex simulans (n = 255), and 24% in the sticktight flea Echidnophaga gallinacea (n = 101). Wolbachia spp. infection in fleas was confirmed by sequencing positive PCR products, comparing sequenced 16S ribosomal DNA (rDNA) with Wolbachia spp. sequences in GenBank using BLAST search, and subjecting sequence data to phylogenetic analysis. For further confirmation, 16S rDNA-positive samples were reamplified using the wsp gene. 相似文献
4.
S. G. Medvedev 《Entomological Review》2017,97(8):1023-1030
The paper deals with peculiarities of flea structure determined by their parasitism on mammals and birds. On the basis of the data on diversity of morphological characters, the leading role of structures of the frontal and nototrochanteral complexes in the adaptive evolution of Siphonaptera is substantiated. Peculiarities of the pulicoid, ischnopsylloid, palaeopsylloid, and generalized morphological types are analyzed together with examples of narrow morphological specializations. Distribution of fleas of these morphological types over five groups of hosts differing in the degree of mobility and association with nests and burrows is also analyzed. 相似文献
5.
6.
Collections of fleas from terrestrial Sciuridae from New Mexico and Montana yielded 2 species of acarid mites: Acarus monopsyllus from Ceratophyllus ciliatus and Paraceroglyphus cynomydis n. sp. from 4 species of Oropsylla. The genera Acarus, Paraceroglyphus, and Trichopsyllopus form a clade distinct from other genera of flea-associated mites, with Paraceroglyphus the sister group of the other 2 genera. Paraceroglyphus cynomydis is the sister group of a clade comprising P. xenopsylla and possibly P. californicus, with P. meles as the nearest outgroup. 相似文献
7.
Knowledge of the mayfly biodiversity in the Balkan Peninsula is still far from complete. Compared to the neighbouring countries, the mayfly fauna in Croatia is very poorly known. Situated at the crossroads of central and Mediterranean Europe and the Balkan Peninsula, Croatia is divided into two ecoregions: Dinaric western Balkan and Pannonian lowland. Mayflies were sampled between 2003 and 2013 at 171 sites, and a total of 66 species was recorded. Combined with the literature data, the Croatian mayfly fauna reached a total of 79 taxa. Of these, 29 species were recorded for the first time in Croatia while 15 species were not previously recorded in Dinaric western Balkan ecoregion. Based on the mayfly assemblage, sampling sites were first structured by ecoregion and then by habitat type. In comparison with the surrounding countries, the Croatian mayfly fauna is the most similar to the Hungarian and Bosnian fauna. Some morphologically interesting taxa such as Baetis
cf.
nubecularis Eaton, 1898 and Rhithrogena from the diaphana group were recorded. Ephemera
cf.
parnassiana Demoulin, 1958, the species previously recorded only from Greece, was also recorded. 相似文献
8.
Vashchenok VS 《Parazitologiia》2000,34(4):280-287
In experiments, the mean life duration of fleas Leptopsylla segnis on white mice (abundance of fleas within natural limits, up to 10 fleas per mouse) was 22.7 days in females and 18.8 day in males. Maximum life duration was 51 and 37 days respectively. In cases, when the initial numbers of fleas were 20 and 28-34 fleas, the duration of life was decreased. The maximum limit decreased greater than the mean duration of life. A survival dynamics of fleas depended upon the flea number. It was found out, that in cases of high abundance of fleas in the beginning of experiments, the mortality rate of males was lower than in females. During the stay on a host the fleas lost gradually an ability to endure a starvation. Possible mechanisms of the regulation of flea abundance are discussed. 相似文献
9.
10.
K P Kadatskaia 《Parazitologiia》1983,17(5):370-374
The factors favouring the cessation of reproduction in X. conformis are laid in the preimaginal state. The drop in temperature during the formation of imago at the pupal stage is a signal for the cessation of reproduction. Imagos hatched at a temperature lower than that of developmental conditions of preimaginal stages do not start reproduction and enter facultative imaginal diapause state. With further decrease in temperature the state of fleas intensifies. With the rise of temperature fleas come out of diapause. In autumn coming out of diapause begins at a temperature higher than 20 degrees, on the 8th--9th day. The lower air temperature the more rapid is coming out of diapause, at a rise of temperature of 3 to 5 degrees. 相似文献
11.
R E Lewis 《The Journal of parasitology》1966,52(6):1167-1171
12.
During a recent epidemiological study of Lushoto plague focus, some uncommon specimens of fleas or even totally new species were collected. In this paper, we describe one of those, Ctenophthalmus (Ethioctenophthalmus) teucqae n. sp. Microscopic observation of comparison specimens deposited at National History Museum (London) allows us to create a sub-species, C. (E.) teucqae shumeensis n. ssp. 相似文献
13.
Medvedev SG 《Parazitologiia》2001,35(4):291-306
The structure of pseudosetae, spinelets, and spines of combs (ctenidia) was studied by means of light and SE microscopy in 80% of genera and subgenera of the World fauna. It is found out that peculiarities of ctenidiae in the prothorax and in tergites of the abdomen are characteristics of families and infraorders of fleas. Some characters of ctenidiae found in certain flea genera are reductions and apparently caused by habitation in some extremal conditions. An absence of ctenidiae in the unfraorder Pulicomorpha is compensated by more developed posterior margin of prothorax and general abbreviation of all thoracal segments. Reasons of ctenidiae absence, which is observed in certain genera of the infraorders Ceratophyllomorpha, Pygiopsyllomorpha and Hystricopsillomorpha associated with the same hosts, is not clear. It is confirmed, that distance between ctenidiae in different flea species associated with the same species host species, however it is recovered, that this distance correlates with the diameter of most thin hair of host. In some flea species the distance between ctenidia spices in females is larger, than in males. It is found, that sexual dimorphism by this character may not be expressed in certain species of closely related species group of fleas. It is suggested that ctenidiae were present even in the common ancestor of fleas. The hypothesis on origin of spines and pseudosetae from setae of the posterior walls of toracal and abdominal segments in the common ancestor of fleas is proposed. 相似文献
14.
15.
16.
S A Filimonova 《Parazitologiia》1989,23(6):480-488
Changes in the ultrastructure of cells of the intestinal epithelium during the digestion of one blood portion were traced in the fleas L. segnis. It is shown that alongside with the cavity digestion take place elements of intracellular digestion. Hypothetic scheme of the digestive cell functioning is given. 相似文献
17.
18.
C Thomas 《Cytobios》1991,67(268):29-43
Five populations of Xenopsylla cheopis exhibit a chromosome complement of 2n = 17, X1X2Y (male), and 2n = 18, X1X1X2X2 (female). A detailed analysis of populations of X. astia from Bombay and Trivandrum led to the identification of two distinct cytotypes which hybridisation studies indicated were sibling species. These are referred to as X. astia with a diploid chromosome number of 2n = 18, X1X2X3Y (male), and 2n = 20, X1X1X2X2X3X3 (female) and X. prasadii with 2n = 10, X1X2Y1Y2 (male), and 2n = 10 X1X1X2X2 (female). It is proposed that X. prasadii is derived from X. astia through translocation/fusion events since the average total chromosome lengths are remarkably similar in all three species. 相似文献
19.
Fleas fauna of the Caucasus is considered, possible ways of its formation are discussed. Caucasian fleas belong to 155 species and 40 genera; 23 species are endemics. Hypothesis on Western Palearctic and Eastern Palearctic sources of the Caucasian fleas' fauna formation are proposed. 相似文献
20.
Bartonella are emerging and re-emerging pathogens affecting humans and a wide variety of animals including rodents. Horizontal transmission of Bartonella species by different hematophagous vectors is well acknowledged but vertical transmission (from mother to offspring) is questionable and was never explored in fleas. The aim of this study was to investigate whether the rodent flea, Xenopsylla ramesis, can acquire native Bartonella from wild rodents and transmit it transovarially. For this aim, Bartonella-free laboratory-reared X. ramesis fleas were placed on six naturally Bartonella-infected rodents and six species-matched Bartonella-negative rodents (three Meriones crassus jirds, two Gerbillus nanus gerbils and one Gerbillus dasyurus gerbil) for 7 days, 12-14h per day. The fleas that were placed on the Bartonella-positive rodents acquired four different Bartonella genotypes. Eggs and larvae laid and developed, respectively, by fleas from both rodent groups were collected daily for 7 days and molecularly screened for Bartonella. All eggs and larvae from both groups were found to be negative for Bartonella DNA. Interestingly, two of five gut voids regurgitated by Bartonella-positive fleas contained Bartonella DNA. The naturally infected rodents remained persistently infected with Bartonella for at least 89 days suggesting their capability to serve as competent reservoirs for Bartonella species. The findings in this study indicate that X. ramesis fleas can acquire several Bartonella strains from wild rodents but cannot transmit Bartonella transovarially. 相似文献