首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luz Allende 《Polar Biology》2009,32(3):493-501
The goal of this study was to address the top-down and bottom-up controls on different microbial web components (bacterioplankton, picophytoplankton, and >3 μm phytoplankton) in an Antarctic lake. Two experiments using a size fractionation approach and nutrient addition were conducted at microcosm scale (2.5 l). The variation in net growth rates (k′) of bacterioplankton and phytoplankton size fractions was analyzed after 5 days. The results determined significant differences; whereas bacterioplankton and large phytoplankton showed an increase in their k′ when their predators were removed, the picophytoplankton showed a decrease. All the studied plankton components presented the highest k′ when nutrients were added. It is suggested that, in this lake, both the top-down and bottom-up regulations account for the regulation of bacterioplankton and large phytoplankton. As for picophytoplankton, the bottom-up control was evident and grazing did not pose a negative impact and rather, had a positive effect probably due to liberation of nutrients.  相似文献   

2.
Numerous (0.5 to 4.8 × 105 cells/ml), small phytoplankton (smaller than 0.5–1 × 1–2 μm in cell size, picophytoplankton) were distributed in the halocline (depth 2–12 m, 4–14 practical salinity units) of the saline meromictic lake, Lake Suigetsu (35°35′ N, 135°52′ E), located in the central part of the coast of Wakasa Bay along the Japan Sea in Fukui Prefecture, Japan. Vertical distribution of phytoplankton revealed that the maximum number of picophytoplankton was always observed near or a little deeper than the oxic-anoxic boundary layer (depth 5–6 m); they were dominant phytoplankton in the water layer deeper than the oxic-anoxic boundary from July to late September 2005. Spectral analysis of autofluorescence emitted from the particle fractions smaller than 5 μm measured with a spectrofluorometer and from individual cells measured with a microscope photodiode array detector revealed that the major component of picophytoplankton was phycoerythrin-rich, unicellular cyanobacteria (picocyanobacteria). Eukaryotic phytoplankton about 2.5 μm in diameter were also found, but the numbers were low. Fluorescence intensity of chlorophyll a at 685 nm (room temperature) emitted from the particle fractions smaller than 5 μm was increased by the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These observations indicated that at least some picophytoplankton had a functional photosystem II in the halocline where sulfide, the potential inhibitor of oxygenic photosynthesis, was always present. The large abundance together with their physiological potency suggest that picophytoplankton are one of the important primary producers in the halocline of Lake Suigetsu. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

3.
We investigated the dynamics and diversity of heterotrophic bacteria, autotrophic and heterotrophic flagellates, and ciliates from March to July 2002 in the surface waters (0–50 m) of Lake Bourget. The heterotrophic bacteria consisted mainly of “small” cocci, but filaments (>2 μm), commonly considered to be grazing-resistant forms under increased nanoflagellate grazing, were also detected. These elongated cells mainly belonged to the Cytophaga-Flavobacterium (CF) cluster, and were most abundant during spring and early summer, when mixotrophic or heterotrophic flagellates were the main bacterial predators. The CF group strongly dominated fluorescent in situ hybridization–detected cells from March to June, whereas clear changes were observed in early summer when Beta-proteobacteria and Alpha-proteobacteria increased concomitantly with maximal protist grazing pressures. The analysis of protist community structure revealed that the flagellates consisted mainly of cryptomonad forms. The dynamics of Cryptomonas sp. and Dinobryon sp. suggested the potential importance of mixotrophs as consumers of bacteria. This point was verified by an experimental approach based on fluorescent microbeads to assess the potential grazing impact of all protist taxa in the epilimnion. From the results, three distinct periods in the functioning of the epilimnetic microbial loop were identified. In early spring, mixotrophic and heterotrophic flagellates constituted the main bacterivores, and were regulated by the availability of their resources mainly during April (phase 1). Once the “clear water phase” was established, the predation pressure of metazooplankton represented a strong top-down force on all microbial compartments. During this period only mixotrophic flagellates occasionally exerted a significant bacterivory pressure (phase 2). Finally, the early summer was characterized by the highest protozoan grazing impact and by a rapid shift in the carbon pathway transfer, with a fast change-over of the main predators contribution, i.e., mixotrophic, heterotrophic flagellates and ciliates in bacterial mortality. The high abundance of ciliates during this period was consistent with the high densities of resources (heterotrophic nanoflagellates, algae, bacteria) in deep layers containing the most chlorophyll. Bacteria, as ciliates, responded clearly to increasing phytoplankton abundance, and although bacterial grazing impact could vary largely, bacterial abundance seemed to be primarily bottom-up regulated (phase 3).  相似文献   

4.
The ability of photoautotrophic picoplankton Synechococcus to degrade urea was examined in the euphotic zone of Lake Biwa. Samples were divided into pico (0.2–2.0 μm) and larger (>2.0 μm) size fractions by filtration. The rates of urea degradation (the sum of the rates of incorporation of carbon into phytoplankton cells and of liberation of CO2 into water) measured by radiocarbon urea were 8 and 17 μmol urea m−3 day−1 in June and July, respectively, for the picophytoplankton in the surface water, and 196 and 96 μmol urea m−3 day−1, respectively for the larger phytoplankton. The rates decreased with depth, somewhat similar to the vertical profiles of the photosynthetic rate. The urea degradation rates were obviously high under light conditions. In daylight, urea was degraded into two phases, carbon incorporation and CO2 liberation, whereas in the dark it was degraded only into the CO2 liberation phase. The contribution of picophytoplankton to total phytoplankton in urea degradation was high in the subsurface to lower euphotic layer. Urea degradation activity was higher in the picophytoplankton fraction than in the larger phytoplankton fraction. Shorter residence times of urea were obtained in the upper euphotic zone. The contribution of picophytoplankton to urea cycling was 4% to 35%. The present results suggest that the picophytoplankton Synechococcus is able to degrade urea and effectively makes use of regenerated urea as a nitrogen source in the euphotic layer, and that picophytoplankton play an important role in the biogeochemical nitrogen cycle in Lake Biwa. Received: June 25, 1998 / Accepted: February 10, 1999  相似文献   

5.
A monitoring programme for microzooplankton was started at the long-term sampling station “Kabeltonne” at Helgoland Roads (54°11.3′N; 7°54.0′E) in January 2007 in order to provide more detailed knowledge on microzooplankton occurrence, composition and seasonality patterns at this site and to complement the existing plankton data series. Ciliate and dinoflagellate cell concentration and carbon biomass were recorded on a weekly basis. Heterotrophic dinoflagellates were considerably more important in terms of biomass than ciliates, especially during the summer months. However, in early spring, ciliates were the major group of microzooplankton grazers as they responded more quickly to phytoplankton food availability. Mixotrophic dinoflagellates played a secondary role in terms of biomass when compared to heterotrophic species; nevertheless, they made up an intense late summer bloom in 2007. The photosynthetic ciliate Myrionecta rubra bloomed at the end of the sampling period. Due to its high biomass when compared to crustacean plankton especially during the spring bloom, microzooplankton should be regarded as the more important phytoplankton grazer group at Helgoland Roads. Based on these results, analyses of biotic and abiotic factors driving microzooplankton composition and abundance are necessary for a full understanding of this important component of the plankton.  相似文献   

6.
Dilution experiments were performed to examine the growth and grazing mortality rates of picophytoplankton (<2 μm), nanophytoplankton (2–20 μm), and microphytoplankton (>20 μm) at stations in the Chesapeake Bay (CB), the Delaware Inland Bays (DIB) and the Delaware Bay (DB), in early spring 2005. At station CB microphytoplankton, including chain-forming diatoms were dominant, and the microzooplankton assemblage was mainly composed of the tintinnid Tintinnopsis beroidea. At station DIB, the dominant species were microphytoplanktonic dinoflagellates, while the microzooplankton community was mainly composed of copepod nauplii and the oligotrich ciliate Strombidium sp. At station DB, nanophytoplankton were dominant components, and Strombidium and Tintinnopsis beroidea were the co-dominant microzooplankton. The growth rate and grazing mortality rate were 0.13–3.43 and 0.09–1.92 d−1 for the different size fractionated phytoplankton. The microzooplankton ingested 73, 171, and 49% of standing stocks, and 95, 70, and 48% of potential primary productivity for total phytoplankton at station CB, DIB, and DB respectively. The carbon flux for total phytoplankton consumed by microzooplankton was 1224.11, 100.76, and 85.85 μg C l−1 d−1 at station CB, DIB, and DB, respectively. According to the grazing mortality rate, carbon consumption rate and carbon flux turn over rates, microzooplankton in study area mostly preferred to graze on picophytoplankton, which was faster growing but was lowest biomass component of the phytoplankton. The faster grazing on Fast-Growing-Low-Biomass (FGLB) phenomenon in coastal regions is explained as a resource partitioning strategy. This quite likely argues that although microzooplankton grazes strongly on phytoplankton in these regions, these microzooplankton grazers are passive. Handling editor: K. Martens  相似文献   

7.
The influence of the size distribution of phytoplankton on changes in the planktonic food web structures with eutrophication was examined using natural planktonic communities in two world-famous lakes: Lake Baikal and Lake Biwa. The size distribution of phytoplankton and the ratio of heterotrophic to autotrophic biomass (H/A ratio), indicating the balance between primary production and its consumption, were investigated in the lakes of different trophic status. The results revealed that microphytoplankton (>20μm) in mesotrophic Lake Biwa, and picophytoplankton (<2μm) or nanophytoplankton (2–20μm) in oligotrophic Lake Baikal, comprised the highest proportion of the total phytoplankton biomass. The H/A ratio was lower in Lake Biwa (<1) than in Lake Baikal (>1). The low H/A ratio in Lake Biwa appeared to be the consequence of the lack of consumption of the more abundant microphytoplankton, which were inferior competitors in nutrient uptake under oligotrophic conditions but less vulnerable to grazing. As a result, unconsumed microphytoplankton accumulated in the water column, decreasing the H/A ratio in Lake Biwa. Our results showed that food web structure and energy flow in planktonic communities were greatly influenced by the size distribution of phytoplankton, in conjunction with bottom-up (nutrient uptake) and top-down (grazing) effects at the trophic level of primary producers.  相似文献   

8.
The composition and ecological role of ciliates and dinoflagellates were investigated at one station in Kongsfjorden, Svalbard, during six consecutive field campaigns between March and December 2006. Total ciliate and dinoflagellate abundance mirrored the seasonal progression of phytoplankton, peaking with 5.8 × 104 cells l−1 in April at an average chlorophyll a concentration of 10 μg l−1. Dinoflagellates were more abundant than ciliates, dominated by small athecates. Among ciliates, aloricate oligotrichs dominated the assemblage. A large fraction (>60%) of ciliates and dinoflagellates contained chloroplasts in spring and summer. The biomass of the purely heterotrophic fraction of the ciliate and dinoflagellate community (protozooplankton) was with 14 μg C l−1 highest in conjunction with the phytoplankton spring bloom in April. Growth experiments revealed similar specific growth rates for heterotrophic ciliates and dinoflagellates (<0–0.8 d−1). Food availability may have controlled the protozooplankton assemblage in winter, while copepods may have exerted a strong control during the post-bloom period. Calculations of the potential grazing rates of the protozooplankton indicated its ability to control or heavily impact the phytoplankton stocks at most times. The results show that ciliates and dinoflagellates were an important component of the pelagic food web in Kongsfjorden and need to be taken into account when discussing the fate of phytoplankton and biogeochemical cycling in Arctic marine ecosystems.  相似文献   

9.
Primary production by phytoplankton in the eutrophic Mikawa Bay, Japan, was studied by simultaneous measurements of natural carbon isotope ratio (δ 13C) and short-term carbon uptake rates (13C tracer study) of size-fractionated nannoplankton (<10 μm) and net plankton (>10 μm) samples. Short-term photosynthetic rates, which represent the physiological state of algae, were variable regardless of standing stock sizes. Theδ 13C values of particulate organic carbon (POC) in June and July displayed horizontal variations for both the net plankton fraction (−19.8 to −12.7‰) and the nannoplankton fraction (−22.0 to −12.8‰). For both fractions, low concentrations of POC had more negativeδ 13C values (−22 to −18‰). Highδ 13C values for the net plankton were found when POC concentrations were much higher, due to red tide. This suggests that the increase in algal standing crop for the net plankton fraction resulted from accelerated photosynthetic activity. However the nannoplankton fractions with higher POC values have relatively lowδ 13C values.  相似文献   

10.
Size-fractionated chlorophyll a (Chla)-specific productivity (μgC μgChla −1 h−1) was measured at 11 stations off the northern coast of the South Shetland Islands during summer. The Chla-specific productivity of the 2- to 10 or 10- to 330-μm fraction was highest at 100% and 23% light depths. The Chla-specific productivity of the 2- to 10-μm fraction was generally highest, and that of the <2 or 10- to 330-μm fraction was sometimes highest at 12% and 1% light depths. Temperature was less than 3°C within the euphotic zone at all stations. The hypothesis of Shiomoto et al., according to which Chla-specific productivity of picophytoplankton (<2 μm) is not significantly higher than that of larger phytoplankton (>2 μm) in water colder than 10°C, was supported on condition that light is not limited for larger phytoplankton. Received: 16 September 1997 / Accepted: 8 December 1997  相似文献   

11.
Microzooplankton grazing can have significant impacts on the distribution and abundance of phytoplankton, thereby influencing the frequency and duration of algae blooms. Observations of high ciliate abundances in the Suwannee River estuary, Florida, suggest a significant potential for top-down pressure on the phytoplankton community by microzooplankton. We examined the composition of the microzooplankton and determined grazing mortality losses for phytoplankton within the Suwannee River estuary from 2001 to 2002. Our results indicated grazing mortality rates of 1.4 d−1, equivalent to a loss of up to 76% of phytoplankton standing crop and up to 83% of total daily primary production. The microzooplankton community was primarily composed of ciliates, dinoflagellates, and copepod nauplii. The densities of ciliates in the estuary were comparable to densities reported in highly eutrophic ecosystems (9,400–72,800 ciliates l−1). Grazing pressure on small phytoplankton may be further enhanced because ciliates and small dinoflagellates have growth rates similar to those of phytoplankton, and therefore can keep up with surges in abundance. Handling editor: Judit Padisak  相似文献   

12.
Mataloni  G.  Tesol&#;n  G.  Sacullo  F.  Tell  G. 《Hydrobiologia》2000,432(1-3):65-72
Lakes from Maritime Antarctica are regarded as systems generally inhabited by metazoan plankton capable of imposing a top-down control on the phytoplankton during short periods, while lakes from Continental Antarctica lacking these communities would be typically controlled by scarcity of nutrients, following a bottom-up model. Otero Lake is a highly eutrophic small lake located on the NW of the Antarctic Peninsula, which has no metazoan plankton. During summer 1996, we studied the density, composition and vertical distribution of the phytoplankton community of this lake with respect to various abiotic variables, yet our results demonstrated neither light nor nutrient limitation of the phytoplankton biomass. Densities of heterotrophic nanoflagellates (HNAN) and ciliates from three different size categories were also studied. Extremely low densities of HNAN (0–155 ind. ml–1) could be due to feeding competition by bacterivore nanociliates and/or predation by large ciliates. A summer bloom of the phytoflagellate Chlamydomonas aff. celerrima Pascher reached densities tenfold those of previous years (158.103 ind. ml–1), though apparently curtailed by a strong peak of large ciliates (107 ind. ml–1) which would heavily graze on PNAN (phototrophic nanoflagellates). Top-down control can thus occur in this lake during short periods of long hydrologic residence time.  相似文献   

13.
The seasonal changes in the size-fractionated chlorophylla concentrations (<3 μm, 3 to 25 μm, and >25 μm) were investigated at a pelagic site of the north basin of Lake Biwa during June to December 1985. Autofluorescing plankton cells in the <3-μm fractions were also examined using the fluorescein isothiocyanate staining epifluorescence microscopic technique. The <3-μm phytoplankton (usually dominated by chroococcoid cyanobacteria except for a few cases dominated by small eukaryotes) showed a clearly different pattern of seasonal change compared with the larger fractions. That is, from August to early September, chlorophylla of the larger fractions declined considerably, while the <3-μm chlorophylla did not decrease significantly. Moreover, cyanobacterial cell density in the <3-μm fraction showed a maximum value (2–3.5×105 cells·ml−1) during this period. The relative contribution of the <3-μm chlorophylla to the total chlorophylla increased from <5% to 45% during the course of this change. No clear vertical trend in the distribution and composition of the <3-μm phytoplankton was found, except that relatively large cyanobacteria (>4 μm3) appeared at a depth of 15m but not at 0,5 and 10 m from late July to August. These large cells were also found in November and December. The drastic seasonal change of phytoplankton size structure occurring in this basin was discussed in relation to grazing, nutrient depletion and sinking. Contribution from Otsu Hydrobiological Station, Kyoto Univeristy (No. 308, foreign language series).  相似文献   

14.
Global warming affects the hydrological cycle by increasing the frequency and intensity of extreme rainfall events and dry spells. These changes potentially affect the quantity and quality of dissolved organic matter (DOM) input into lakes. In this study, we investigated if changes in precipitation over a 3-year period correspond to changes in DOM and whether these changes affect light attenuation and plankton community composition. We sampled Lake Escondido, a shallow, oligotrophic Andean lake, nine times, analyzing coloured DOM and plankton community composition. During the study period, we observed that variations in the precipitation regime correlated with DOM parameters (water colour and molecular weight), and this, in turn, affected the plankton composition. Chlorophyll a concentrations of both phytoplanktonic fractions (less than and greater than 2 μm) were related to water colour and TDP. We observed in the small fraction (<2 μm) an increase in phycocyanin-rich cells during periods of high water colour. Larger phytoplanktonic cells (>2 μm) presented two biomass peaks corresponding to increases of the cyanophyte Chroococcus planctonicus and of the haptophyte Chrysochromulina parva. As precipitation decreased, the lake became more transparent, favouring C. planctonicus and mixotrophic oligotrich ciliates with endosymbiotic Chlorella. In the context of global climate change, our results highlight the potential impact of changes in precipitation patterns and, consequently, in DOM quality on the plankton community.  相似文献   

15.
To understand the characteristics of the ecosystem in Japanese lowland marsh, we investigated chlorophyll-a (Chl. a), photosynthesis and respiration of a phytoplankton community in a brownish-colored pond in Naka-ikemi marsh, Tsuruga, Fukui Prefecture. Chl. a concentrations and volumetric gross primary production rates ranged between 1.3–57.0 μg Chl. a l−1 and 148–1619 μg C l−1 day−1 during the study period. Higher values of Chl. a and primary production rates were clearly observed from June to September, when the dominant algae were the phytoflagellates, Peridinium (Dinophyceae) and Cryptomonas (Cryptophyceae), with swimming ability. The trophic status of the pond water of Naka-ikemi marsh was defined as being in eutrophic condition based on the biomass and productivity of phytoplankton. However, depths of Z 1% showing the productive layer in this study site were relatively narrower than those observed in the hyper-eutrophic Lake Suwa with frequent cyanobacterial water bloom. Factor-attenuating underwater light intensity in Naka-ikemi marsh was presumed to be colored dissolved organic matter. Thus, not only phytoplankton primary production, but also allochthonous organic matter supplied from the catchment area seems to be the dominant factor in the whole energy budget of the pond. In conclusion, we regarded the pond ecosystem in Naka-ikemi marsh to be in a eutrophic–dystrophic condition.  相似文献   

16.
The methylthiotriazine herbicide, simetryn, is commonly used in Japan, and its concentration in surface water is often high enough to affect natural phytoplankton. To estimate how the plankton community in eutrophic systems respond to short-term exposure of realistic concentrations of simetryn, we collected plankton from a eutrophic lake and exposed them to low (20 μg l−1) and high (100 μg l−1) concentrations of simetryn for 12 days in microcosm tanks (50 l). High concentrations significantly lowered total phytoplankton biomass, particularly green algal density. Consequently, the species composition was severely modified by simetryn application. However, there was no apparent impact of simetryn on microbial food-web components, bacteria, heterotrophic nanoflagellates (HNF), and ciliates. Despite the decreased abundance of algal food, the zooplankton community showed subtle changes with simetryn application. The results indicate that the direct impact of simetryn on planktonic organisms other than phytoplankton, particularly on microbial food-web components, is weak. The indirect impact of simetryn on zooplankton through the change of food quality and quantity was also small. It has been suggested that the persistence of microorganisms, alternative food for zooplankton, probably dilutes the indirect impact of simetryn on zooplankton by compensating for the loss of food phytoplankton. Consequently, the plankton community in eutrophicated systems is resistant to the herbicide at a feasible concentration for a short period of time.  相似文献   

17.
A series of single-factor in situ experiments was conductedin a mesotrophic lake in Brandenburg, North Germany, to studythe predatory impact of Eudiaptomus graciloides (adults, copepodites,nauplii), cyclopoid copepods (adult Diacyclops bicuspidatus,Thermocyclops oithonoides) and daphnids (adult Daphnia hyalina,Daphnia cucullata) on the microbial community (bacteria, autotrophicpicoplankton, flagellates, ciliates). All zooplankton speciestested reduced the ciliate community significantly and ingestionrates were always higher for ciliates in the 20–55 µmsize category as compared to smaller ciliates (10–20 µm).Adult E.graciloides, which exhibited the highest predatory impacton ciliates, differed from cyclopoids and daphnids by theirability to decimate ciliates to very low abundances. Ingestionrates of ciliates by the crustacean zooplankton followed thesequence E.graciloides > daphnids = cyclopoids = copepodites.While top-down control was evident for ciliates, top-down effectsdown to the autotrophic picoplankton and flagellates were mostlyrestricted to Daphnia-dominated treatments. Top-down effectswere never strong enough to produce negative bacterial growthrates. For all zooplankton tested, clearance rates for ciliatesexceeded those for phytoplankton. Besides the potential of thecrustacean zooplankton to influence the structure of ciliatecommunities, ciliates may contribute to the energy demands ofcopepods and daphnids, especially when phytoplankton resourcesare limited.  相似文献   

18.
Biomass and production of plankton communities were investigated in two Chinese integrated fish culture ponds in August, Dianshanhu Pond (with high density of planktivorous carp) and Pingwang Pond (with low density of planktivorous carp). The plankton communities were composed of rotifers, protozoans, phytoplankton (<40 µm) and bacteria. The large phytoplankton (>40 µm), cladocerans and copepods were rare because of grazing pressure by the carp. The density or biomass of bacteria (1.93 × 107 and 2.20 × 107 cells ml–1 on average in Dianshanhu and Pingwang Ponds, respectively), picophytoplankton (24.6 and 18.5 mg m–3 Chla on average) and rotifers (5372 and 20733 ind. 1–1 on average) exceeded the maximum values reported for natural waters.The average [3H]thymidine uptake rates were 694 and 904 pmoles 1–1 h–1 (13.4 and 20.6 µgC 1–1) and the bacterial production by the >2 µm fraction amounted 21–28% of total [3H] thymidine uptake rate in both ponds. The mean chlorophylla concentrations were 59.1 and 183 mg m–3 in Dianshanhu and Pingwang Ponds, respectively. 82.4% and 65.3% of the total Chla was contributed by the <10 µm nano- and picophytoplankton in each pond, respectively. In particular, the picophytoplankton contribution amounted 41.2% of thtal Chla in Dianshanhu Pond. Primary production was 2.5 and 3.4 gC m–2 d–1 in each pond, respectively, and >50% of production was contributed by picophytoplankton. The mean biomasses of protozoa were 168 µg 1–1 and 445 µg 1–1 and those of rotifers were 763 µg 1–1 and 1186 µg 1–1 in Dianshanhu and Pingwang Ponds, respectively. The ecological efficiencies expressed in terms of the ratios of primary production to zooplankton production were 0.22 and 0.31, for the two ponds.  相似文献   

19.
 Phytoplankton biomass, community structure and productivity of the Great Astrolabe lagoon and surrounding ocean were studied using measurements of chlorophyll concentration and carbon uptake. The contribution of picophytoplankton to biomass, productivity and community structure was estimated by size fractionation, 14C-incubation and flow cytometry analysis. Picoplankton red fluorescence was demonstrated to be a proxy for chlorophyll <3 μm. Consequently, the percentage contribution to chl a<3 μm from each picoplankton group could be calculated using regression estimated values of ψ i (fg chl a per unit of red fluorescence). In the lagoon, average chlorophyll concentration was 0.8 mg m-3 with 45% of phytoplankton <3 μm. Primary production reached 1.3 g C m-2 day-1 with 53% due to phytoplankton <3 μm. Synechococcus was the most abundant group at all stations, followed by Prochlorococcus and picoeukaryotes. At all stations, Prochlorococcus represented less than 4% of the chl a <3 μm, Synechococcus between 85 and 95%, and Picoeukaryotes between 5 and 10%. In the upper 40 m of surrounding oceanic waters, phytoplankton biomass was dominated by the >3 μm size fraction. In deeper water, the <1 μm size fraction dominated. Prochlorococcus was the most abundant picoplankton group and their contributions to the chlorophyll a<3 μm were close to that of the picoeukaryotes (50% each). Accepted: 27 May 1999  相似文献   

20.
The vertical distribution of some ciliated Protozoa in the plankton of a pond in north-west England was investigated during August 1971. At this time, when the pond was stratified with an oxygen dificient hypolimnion, ciliates were counted at 10-cm depth intervals every 5 h over 25 h. The most common species (Loxodes magnus and L. striatus) were confined to the hypolimnion; there was no diurnal migration into the epilimnion. Earlier work had shown that Loxodes species require oxygen; it is therefore possible that these ciliates, which inhabited the oxygen dificient hypolimnion, migratedvertically, from time to time, to an oxygen supply at the boundary with the well-oxygenated epilimnion. To test this, Loxodes populations were confined in cellophane tubese both in the hypolimnion (at 3 m) and epilimnion (0.5 m) for 12 and 24 h (earlier trials had shown that the tubes were not markedly toxic). The ciliates died at both depths, and in a further experiment when Loxodes were confined at 3 m and 0.5 m and sampled at 5-h intervals up to 25 h it was found that they survived longer in the hypolimnion. It is suggested that ciliatees confined at 3 m died because they were unable to migrate vertically to an oxygen supply, while those at 0.5 m died because some other adverse factor was operating in the eiplimnion. Laboratory experiments showed that Loxodes died inn water in which phytoplankton photosynthesis took place and it is suggested that side effects of photosynthesis in the epilimnion (e.g. a rise in pH) caused the death of ciliates exposed at 0.5 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号