首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leptin is a hormone originally identified in adipocytes. It is involved in the regulation of fat deposition and energy expenditure and in other functions, such as reproduction. The presence of leptin has been reported in several reproductive organs. However, few studies have addressed its expression in the ovary. Moreover, the existing information is not consistent with regard to the particular cell types responsible for leptin expression. In this work we studied the distribution of leptin in the rat ovary by immunohistochemistry (IHC) and in situ hybridization (ISH). Leptin staining was found in steroid-producing cells: thecal, luteal, and interstitial cells. The strongest signal with both techniques was found in the cytoplasm of oocytes. A weak reaction for leptin mRNA was detected in granulosa of all growing follicles, although leptin protein was found only in the mature follicle. Western blotting analysis detects a strongly reactive 16-kD band, giving further support to the presence of leptin in the rat ovary. Variations in this immunoreactive band were found throughout the estrous cycle. Localization of leptin in the ovary may contribute to a better understanding of female reproductive function.  相似文献   

2.
The general aim of our in vitro experiments was to study the role of the metabolic hormones leptin, ghrelin, obestatin and IGF-I and mitogen-activated protein kinase (MAPK)-dependent intracellular mechanisms in the control of nuclear maturation of porcine oocytes. For this purpose, porcine oocytes were isolated from the ovary and cultured in the presence of leptin, ghrelin, obestatin, IGF-I, MAPK blocker PD98059 and the combinations of hormones with PD98059. Proportions of matured oocytes (at metaphase II of meiosis, determined by DAPI staining) and of oocytes containing MAPK/ERK1-2 (determined by immunocytochemistry) were measured before and after culture. It was observed that the majority of oocytes isolated from the ovary before culture were immature and did not contain visible MAPK, but some oocytes were mature, and the majority of these oocytes contained MAPK. Incubation of oocytes resulted in a significant increase in the proportion of matured oocytes and in the percentage of oocytes containing MAPK in both the matured and not matured groups. Addition of IGF-I to the culture medium increased the proportion of matured oocytes, addition of leptin decreased it, and ghrelin and obestatin did not oocyte maturation. Addition of hormones did not affect the expression of MAPK in either immature or mature oocytes. PD98059, when given alone, suppressed the maturation and accumulation of MAPK in both mature and immature oocytes. When given together with hormones, PD98059 was able to reduce the stimulatory effect of IGF-I, to invert the inhibitory action of leptin to stimulatory and to induce the stimulatory action of ghrelin and obestatin on meiosis. IGF-I, ghrelin and obestatin, but not leptin, when given together with PD98059, increased the accumulation of MAPK in both immature and mature oocytes. Association of nuclear maturation and expression of MAPK in oocytes before, but not after culture, as well as the prevention of oocyte maturation by MAPK blocker suggests the involvement of MAPK-dependent intracellular mechanisms in the promotion of reinitiation, but not completion of meiosis. The effect of hormonal additions on meiosis of oocytes suggests that IGF-I is a stimulator, leptin can be an inhibitor, while ghrelin and obestatin probably do not control oocyte maturation. The ability of PD98059 to modify the effect of hormones on oocyte maturation and on MAPK expression suggests possible interference of hormones and MAPK-dependent intracellular mechanisms in oocytes. However, no influence of hormones on MAPK and lack of association between action of hormones and PD98059 on MAPK and meiosis suggest that MAPK is probably not a mediator of effect of IGF-I, leptin, ghrelin and obestatin on porcine oocyte nuclear maturation.  相似文献   

3.
4.
Leptin, a multifunctional hormone, is present in mammalian oocytes and follicular fluids and cumulus cells. While leptin modulates oocyte maturation in vitro which seems to result in enhancement of embryo development, it is unclear whether leptin treatment of oocytes affects cytoplasmic maturation and fertilization processes. In order to gain a better understanding of the role of leptin during oocyte maturation, we examined microtubule and microfilament assembly following oocyte maturation and blastocyst formation, mitogen-activated protein kinase (MAPK) activity, and pronuclear formation following parthenogenetic stimuli or intracytoplasmic sperm injection (ICSI) in leptin-treated oocytes. Addition of 10 or 100 ng/ml leptin during oocyte maturation did not increase the proportion of metaphase II oocytes, but enhanced development to blastocyst stage by day 7 (P < 0.01) after parthenogenetic activation (PA), accompanied by increased cell number. However there was no effect on the number of apoptotic cells in blastocysts. Following maturation in the presence of leptin, there were more oocytes with normal spindle formation. MAPK activity decreased more rapidly, and pronuclear formation was accelerated after parthenogenetic activation or ICSI of leptin-treated oocytes. These results suggested that exogeneous leptin enhanced spindle assembly and accelerated pronuclear formation following fertilization, possibly via the MAPK pathway.  相似文献   

5.
Previous studies have demonstrated that direct or indirect elevation of cAMP levels in cultured amphibian ovarian follicles simultaneously stimulated production of oocyte maturation-inducing steroid (progesterone) by the follicles and inhibited oocyte maturation induced by endogenous or exogenous hormone. The duration of cAMP stimulation influenced arrest and reinitiation of oocyte meiotic maturation in ovarian follicles of Rana dybowskii. Addition of forskolin (adenylate cyclase stimulator) to cultured follicles inhibited both progesterone- and frog pituitary homogenate (FPH)-induced oocyte maturation. Similar inhibitory results were obtained when hormone-treated follicles were cultured in the continual presence of cAMP. Oocyte maturation increasingly occurred in follicular oocytes when cAMP or forskolin addition was delayed following treatment with FPH or progesterone. Transient exposure (6-8 hr) of ovarian follicles to forskolin or cAMP markedly stimulated oocyte maturation as well as accumulation of progesterone as measured by radioimmunoassay within the ovarian follicles. Forskolin was more effective than cAMP, at the dose tested, in stimulating progesterone production and accumulation by the follicles. The data demonstrate that transient manipulation (elevation) of cAMP levels in cultured follicles, without added FPH or steroid, was sufficient to initiate oocyte maturation. Results suggest that, with transient exposure to forskolin or exogenous cAMP, there is a sequential increase and decrease in endogenous cAMP levels in the somatic cells and germ cell components of the ovarian follicle. These changes appear to mediate production of maturation-inducing steroid and secondarily allow its effects on the oocyte to be expressed.  相似文献   

6.
The hypothesis that cumulus cells inhibit oocyte maturation by a cAMP-dependent process was tested (R. M. Schultz, R. Montgomery, P. F. Ward-Bailey, and J. J. Eppig (1983). Dev. Biol.95, 294–304.). Treatment of isolated cumulus cell-oocyte complexes with follicle-stimulating hormone (FSH) resulted in a dose-dependent increase in both cumulus cell cAMP levels and in the extent of inhibition of germinal vesicle breakdown (GVBD), the first morphological manifestation of oocyte maturation. Furthermore, it was found that concentrations of a membrane-permeable analog of cAMP, dibutyryl cAMP (dbcAMP), that were below those required for complete meiotic inhibition had a greater inhibitory effect on cumulus cell-enclosed oocytes than on denuded oocytes. Cumulus cell-enclosed and denuded oocytes matured at the same time in the absence of dbcAMP. Ablation of the gap junctions that couple cumulus cells to the oocyte abolished the maturation-inhibitory action of cumulus cells that was promoted either by FSH or low concentrations of dbcAMP. These results are consistent with the hypothesis that inhibition of oocyte maturation is mediated by a factor of granulosa/cumulus cell origin, other than cAMP, which requires cAMP for its activity and/or generation, and an intact intercellular coupling pathway between cumulus cells and the oocyte. A variety of steroid hormones potentiated the FSH-induced inhibition of maturation in cumulus cell-enclosed oocytes. In addition, steroid hormones inhibited maturation in denuded oocytes, but only when oocyte cAMP levels were elevated by cAMP analogs or forskolin. Steroids alone did not inhibit maturation of either cumulus cell-enclosed or denuded oocytes. Moreover, the steroids alone or in combination with FSH did not affect metabolic coupling between the cumulus cells and oocytes, nor did testosterone affect the forskolin-induced level of cAMP in denuded oocytes. Therefore, it is proposed that the oocyte is a site for the synergistic activity of steroid hormones with a cAMP-dependent process in inhibiting maturation. Results of these studies are discussed in terms of the roles of intercellular communication, cAMP, a putative maturation-inhibiting factor, and steroid hormones in the inhibition of maturation of mouse oocytes.  相似文献   

7.
Because body condition can affect reproduction, research has focused on the role of leptin, a body condition signal, in regulation of reproductive function. Objectives of this study were to determine if leptin supplementation directly affects 1) ovarian follicle growth and function, 2) oocyte maturation, or 3) preimplantation embryo development. Follicles cultured in the presence of recombinant mouse leptin resulted in a significant decrease in rate of follicle, but not oocyte, growth in a dose-dependent manner, with higher doses of leptin inhibiting growth. Leptin was also found to significantly increase stimulated progesterone, estradiol, and testosterone production/secretion by cultured follicles in a dose-dependent manner, with higher concentrations of leptin significantly increasing steroidogenesis. Culture of fully grown cumulus-enclosed germinal vesicle-intact (GV) mouse oocytes in the presence of increasing concentrations of leptin (0, 12.5, 25, 50, 100 ng/ml) had no effect on germinal vesicle breakdown (GVBD) or development to metaphase II (MII). Similarly, fully grown denuded oocytes showed no difference in GVBD at any concentration of leptin. However, maturation of denuded oocytes with 100 ng/ml leptin resulted in significantly reduced development to MII compared with oocytes matured with 0 or 12.5 ng/ml leptin. Culture of one-cell mouse embryos in increasing concentrations of leptin had no effect on cleavage or blastomere degeneration at 24 h of culture. Exposure of embryos for the first 96 h of development to increasing concentrations of leptin did not significantly affect total or expanded blastocyst development or hatching of blastocysts from zona pellucida. These results indicate leptin directly enhances insulin and gonadotropin-stimulated ovarian steroidogenesis, compromises denuded oocyte maturation, yet has no direct effect on preimplantation embryo development.  相似文献   

8.
The cyclic adenosine monophosphate (cAMP) content of intact oocyte-cumulus cell complexes at various times after the induction of oocyte maturation in mice in vivo was correlated with the time of commitment by the oocytes to undergo germinal vesicle breakdown (GVB) and metabolic coupling between the oocyte and cumulus cells. Seventy-nine percent of the oocytes either underwent GVB or were committed to do so by 2 h after injection of human chorionic gonadotropin (hCG). This occurred without a decrease in the coupling between cumulus cells and the oocyte and with increasing cAMP levels in the oocyte-cumulus cell complex. Maintenance of threshold levels of cAMP within mammalian oocytes appears essential for the maintenance of meiotic arrest, but data presented here suggest that oocyte maturation in mice is induced by gonadotropins in nonatretic follicles in vivo by some mechanism other than one which decreases the cAMP content of the intact oocyte-cumulus cell complex.  相似文献   

9.
A continuous exposure of follicle-enclosed mouse oocytes to ovine luteinizing hormone (LH, 10 μg/ml) in vitro resulted in a 3-fold elevation of CAMP levels in the follicle cells, but not the oocytes, with subsequent oocyte maturation. When follicle-enclosed oocytes were exposed to forskolin (0.01–10 μM) for 2 hr and then incubated in forskolin-free medium (transient exposure group), oocytes underwent germinal vesicle breakdown in a dose-dependent manner. In contrast, a continuous exposure of the follicles to forskolin (10 μM) for up to 10 hr failed to induce resumption of meiosis. Follicle cell cAMP levels increased within 2 hr after the initial exposure to forskolin, and thereafter decreased rapidly regardless of whether forskolin treatment was transient or continuous. A similar transient increase in oocyte cAMP levels was observed after transient or continuous treatment with forskolin. It was evident, however, that at any time examined oocyte cAMP levels were consistently higher in the continuous exposure group than in the transient exposure group. Furthermore, a continuous exposure to forskolin also blocked LH-induced meiotic maturation. These findings suggest that elevated levels of cAMP in the oocyte block meiotic maturation in mouse oocytes. The present results further suggest that an increase in follicle cell cAMP levels is essential to the LH-induced meiotic maturation.  相似文献   

10.
11.
Experiments were performed to determine if elevation of cumulus cell cAMP results in an increase in mouse oocyte cAMP while the heterologous gap junctions were intact. Both follicle-stimulating hormone (FSH) and cholera toxin induced a marked increase (>20-fold) in intracellular cAMP in isolated mouse cumulus cell-oocyte complexes in the presence of 3-isobutyl-1-methyl xanthine (IBMX). Concomitantly, both FSH and cholera toxin transiently inhibited resumption of meiosis of cumulus cell-enclosed but not denuded oocytes. The transient nature of the inhibitory effect produced by either FSH or cholera toxin was correlated with the cAMP level in the cumulus cell-oocyte complex. The inhibitory effect, however, was apparently not due to movement of cumulus cell cAMP to the oocyte via the functional heterologous gap junctions between cumulus cells and the oocyte. Radioimmunoassay of cAMP in oocytes free of attached cumulus cells or cumulus cell-enclosed oocytes exposed to either FSH or cholera toxin revealed that both groups of oocytes contained similar amounts of cAMP (about 0.14 fmole/oocyte). Metabolic labeling of cumulus cell-oocyte complexes with [3H]adenosine followed by incubation with either FSH or cholera toxin resulted in a marked increase in the amount of radiolabeled cAMP compared to that in unstimulated complexes. However, similar amounts of radiolabeled cAMP were found in oocytes derived from either stimulated or unstimulated complexes. Thus, we have not detected, using two methods of assay, that increasing the cAMP content of the cumulus cells results in any increase in the cAMP content of the oocyte. The apparent compartmentalization of cumulus cell cAMP elevated in response to either FSH or cholera toxin was not due to disruption of intercellular communication between the two cell types during the incubation; metabolic cooperativity was present between the two cell types and molecules of similar molecular weight and charge relative to that of cAMP were rapidly equilibrated between the two cell types. Testosterone potentiated the FSH/cholera toxin-induced transient inhibition of maturation of cumulus cell-enclosed oocytes. However, testosterone did not increase cAMP accumulation produced by either FSH or cholera toxin, decrease the rate of cAMP degradation, or promote movement of cumulus cell cAMP to the oocyte. Since cAMP elevated in response to FSH or cholera toxin appeared to be compartmentalized to cumulus cells and since neither FSH, cholera toxin, nor testosterone inhibited resumption of meiosis in denuded oocytes, it appears that the inhibitory effect promoted by FSH or cholera toxin is directly mediated by an agent other than cAMP, although cAMP generation is required for its action and that cumulus cells mediate the inhibition. These results are discussed in terms of a possible role of cAMP and steroids in regulating maturation in the mouse.  相似文献   

12.
The involvement of cyclic adenosine monophosphate (cAMP) in mammalian oocyte maturation was assessed using cultures of rabbit cumulus-oocyte complexes and perfused rabbit ovaries. Rabbit cumulus-oocyte complexes were cultured in Brackett's medium with or without forskolin at 10(-4), 10(-5) or 10(-6) mol l-1 for 3-6 h. At 3 or 4 h spontaneous meiotic maturation was significantly (P < 0.05) inhibited by forskolin at 10(-4) mol l-1. With prolonged incubation, spontaneous maturation progressed despite exposure to forskolin. In the second experiment ovaries were perfused for 12 h with forskolin (10(-4), 10(-5) or 10(-6) mol l-1) or medium alone. Neither ovulation nor degeneration of follicular oocytes occurred in any perfused ovary. The percentage of follicular oocytes achieving germinal vesicle breakdown was significantly (P < 0.001) increased in response to forskolin in a dose-related manner. In an additional experiment, ovaries were perfused with forskolin at 10(-4) mol l-1. A significant increase in the cAMP content in the follicle was observed within 30 min, but the ability to produce cAMP in response to forskolin decreased as the duration of perfusion was increased. Intraoocyte cAMP increased significantly within 30 min and reached its maximum 2 h after exposure to forskolin. Thereafter, cAMP levels in the oocytes decreased abruptly. This drop in intraoocyte cAMP concentration was followed by the resumption of meiosis. The alterations of intraoocyte cAMP contents following exposure to hCG in vivo paralleled those observed in the ovaries perfused with forskolin. These data suggest that a transient, but not continuous, increase in cAMP concentration after the gonadotrophin surge may be required to initiate oocyte maturation.  相似文献   

13.
Mouse oocytes are reversibly inhibited from resuming meiotic maturation in vitro by cAMP phosphodiesterase inhibitors such as 3-isobutyl-1-methyl xanthine (IBMX) and cAMP analogs such as dibutyryl cAMP (dbcAMP). Oocytes cultured in IBMX-containing medium were transferred to and cultured in IBMX-free medium for various periods of time prior to their return to either IBMX- or dbcAMP-containing medium. Results from these experiments defined a period of time in which oocytes became committed to resuming meiosis. Forskolin, which elevated the intracellular oocyte cAMP concentration, transiently inhibited oocytes from resuming meiosis. Levels of cAMP were determined in oocytes incubated in medium that allows resumption of meiosis. The level of oocyte cAMP decreased significantly during the time in which oocytes become committed to resuming meiosis. This decrease in oocyte cAMP was not observed in oocytes inhibited from resuming meiosis by IBMX. In addition, cAMP levels were determined in preovulatory antral follicles, cumulus cell-oocyte complexes, and oocytes during gonadotropin-induced resumption of meiosis in vivo. A decrease in oocyte cAMP preceded resumption of meiosis as manifested by germinal vesicle breakdown (GVBD). This decrease apparently occurred before or during a period of time in which follicle and cumulus cell cAMP were increasing. Associated with commitment to resume meiosis was a characteristic set of changes in oocyte phosphoprotein metabolism that preceded GVBD. These changes are, to date, some of the first reported biochemical changes that precede GVBD. Results from these experiments are discussed in terms of a possible role cAMP may play in regulation of resumption of meiosis in mammals.  相似文献   

14.
Mature antral follicles were removed from the ovaries of pregnant mare serum gonadotropin (PMSG)-primed hamsters at proestrus prior to the LH surge. Following various incubation times with either LH (ovine) or FSH (rat), cAMP levels were determined in whole follicles, cumulus-oocyte complexes (COCs), and zona-intact or zona-free oocytes. LH produced a dose- and time-dependent change in follicle cAMP but had a minimal effect on the COCs and caused no change in cAMP in zona-free oocytes. By contrast, rFSH stimulated a small rise in follicular cAMP but significantly increased levels in COCs and zona-free oocytes. In a second series of experiments follicles were exposed for short periods to various additives after which they were washed and returned to hormone-free medium for a 6-hr total incubation period. LH (1 microgram/ml) initiated maturation in follicle-enclosed oocytes after a 5- to 15-min exposure period while groups incubated with 100 ng/ml required 60 min. FSH did not stimulate maturation after a 60-min exposure and when combined with 1 microgram or 100 ng/ml of LH negated the maturational effects seen with LH alone. It was postulated that the reason that lower concentrations of LH did not stimulate maturation following short-term incubations was due to an insufficient rise in cAMP. However, neither dbcAMP nor forskolin augmented the capacity of LH to initiate maturation following short-term exposure. By contrast dbcGMP and the guanylate cyclase activator, sodium nitroprusside (NP) did augment the maturation-inducing effects of LH. NP + LH raised cGMP concentrations in the follicle and oocyte and decreased follicular cAMP at 30 and 120 min. The results of this study indicate that the component cells within a follicle respond selectively with cAMP changes, depending on the gonadotropin, in a variable time- and dose-dependent manner. While LH is the more potent activator of cAMP in whole follicles, cAMP levels in the cumulus oophorus and oocyte show the greatest increase following exposure to FSH. LH was the more potent initiator of maturation, possibly through its effects on the mural granulosa cells. FSH appears to exert a more inhibitory role which may be due in part to elevated cAMP levels and/or a putitative inhibitor in the COC and oocyte.  相似文献   

15.
本文研究了血管紧张素II在小鼠卵母细胞中的免疫组织化学定位。结果表明血管紧张素II不仅分布在卵巢内的黄体细胞、卵泡的膜细胞、基质和血管,在卵母细胞的细胞质和细胞膜上也见有阳性分布。颗粒细胞和卵丘细胞上未见着色。在恢复减数分裂过程中,处于生发泡破裂和第一极体排放期的卵母细胞内也检测到血管紧张素II[(\265\304\303\342\322\337\321\364\320\324\316\357\241\243)238.1(\322\362\264\313)],血管紧张素II有可能在卵泡的生长发育和卵母细胞的成熟过程中起着重要作用。  相似文献   

16.
Although it has been shown that granulosa cells regulate the growth and meiotic maturation of mammalian oocytes, there is little evidence of a role for the oocyte in the differentiation or function of granulosa cells. To test the hypothesis that the oocyte participates in the regulation of granulosa cell function, oocytes were removed from isolated oocyte-cumulus cell complexes by a microsurgical procedure and oocytectomized complexes were tested for their ability to undergo expansion in response to follicle-stimulating hormone (FSH). FSH increased the levels of intracellular cAMP, the activity of the hyaluronic acid-synthesizing enzyme system, and induced cumulus expansion in intact complexes. In contrast, FSH did not induce increased hyaluronic acid-synthesizing enzyme activity or cumulus expansion in oocytectomized complexes. Therefore, the participation of the oocyte is necessary for the cumulus cells to synthesize hyaluronic acid and undergo cumulus expansion in vitro in response to stimulation with FSH. FSH induced the elevation of intracellular cAMP to the same extent in both intact and oocytectomized complexes and the cAMP analog 8-bromo cyclic adenosine monophosphate (8Br-cAMP) did not stimulate expansion in oocytectomized complexes. Therefore, the influence of the oocyte on cumulus expansion occurs downstream from the elevation of cAMP levels in the cumulus cells. Epidermal growth factor (EGF), a potent stimulator of cumulus expansion in intact complexes, which probably acts by a mechanism at least initially different from FSH, failed to stimulate cumulus expansion after oocytectomy. Next, oocytectomized complexes were either cocultured with germinal vesicle stage denuded oocytes or cultured in medium conditioned by denuded oocytes. In both cases, FSH or EGF stimulated expansion by oocytectomized complexes. The degree of expansion was directly correlated to the number of oocytes used to condition the medium. Contact between the oocyte and the cumulus cells is not necessary for cumulus expansion. Rather, a factor(s) secreted by the oocyte is necessary for the cumulus cells to undergo expansion in response to either FSH or EGF. FSH did not induce expansion of oocytectomized complexes in media conditioned by various somatic cells such as granulosa cells, fibroblasts, and Sertoli cells; by a mixed population of male germ cells; or by spermatozoa. This suggests that the expansion enabling activity is specific to the oocyte. These results demonstrate that the oocyte participates in the regulation of cumulus cell function.  相似文献   

17.
Rat oocytes resume meiosis spontaneously in vitro within 3 h after their isolation from the ovarian follicles. We report here that the spontaneous maturation of isolated rat oocytes is preceded by a drop in intracellular levels of cyclic adenosine 3',5'-monophosphate (cAMP). Further experiments were carried out to examine the possible correlation between the meiotic status and cAMP levels within the oocyte. To challenge rat cumulus-free oocytes to generate cAMP, bypassing their own adenylate cyclase, a preparation of an invasive adenylate cyclase from Bordetella pertussis was used. We found a dose-dependent elevation of cAMP levels within these oocytes that corresponded to inhibition of their spontaneous maturation. Persistent inhibition of meiosis was obtained with the continuous presence of the enzymatic preparation, whereas its removal resulted in a transient inhibition associated with a drop in cAMP. We suggest that the presence of elevated cAMP levels in the oocyte is directly responsible for the maintenance of meiotic arrest.  相似文献   

18.
Cryopreservation of mature oocytes and embryos has provided numerous benefits in reproductive medicine. Although successful cryopreservation of germinal-vesicle stage (GV) oocytes holds promise for further advances in reproductive biology and clinical embryology fields, reports regarding cryopreservation of immature oocytes are limited. Oocyte survival and maturation rates have improved since vitrification is being performed at the GV stage, but the subsequent developmental competence of GV oocytes is still low. The purpose of this study was to evaluate the effects of supplementation of the maturation medium with cyclic adenosine monophosphate (cAMP) modulators on the developmental competence of vitrified-warmed GV bovine oocytes. GV oocytes were vitrified-warmed and cultured to allow for oocyte maturation, and then parthenogenetically activated or fertilized in vitro. Our results indicate that addition of a cAMP modulator forskolin (FSK) or 3-isobutyl-1-methylxanthine (IBMX) to the maturation medium significantly improved the developmental competence of vitrified-warmed GV oocytes. We also demonstrated that vitrification of GV oocytes led to a decline in cAMP levels and maturation-promoting factor (MPF) activity in the oocytes during the initial and final phases of maturation, respectively. Nevertheless, the addition of FSK or IBMX to the maturation medium significantly elevated cAMP levels and MPF activity during IVM. Taken together, our results suggest that the cryopreservation-associated meiotic and developmental abnormalities observed in GV oocytes may be ameliorated by an artificial increase in cAMP levels during maturation culture after warming.  相似文献   

19.
Li YH  Jiao LH  Liu RH  Chen XL  Wang H  Wang WH 《Theriogenology》2004,61(2-3):447-459
The renin-angiotensin system (RAS) has been found in mammalian ovarian tissue; however, its physiological role is unclear. This study examined the content of angiotensin II (Ang II) in porcine follicular fluid (pFF), Ang II localization and its receptors in ovary, and the effects of Ang II on porcine oocyte maturation. The concentrations of Ang II were 6951.82 +/- 1295.83, 3502.99 +/- 679.10, 3147.89 +/- 690.60, and 2545.92 +/- 407.01 pg/ml in pFF from small, medium, large, and extra-large follicles, respectively. In addition, Ang II was found on zona pellucidae (ZP) and granulosa cells by immunoreactive staining. The distribution of AT1, an Ang II receptor subtype, was in accordance with that of Ang II. However, AT2, another Ang II receptor, was mainly distributed in the stroma and thecal layers of follicles. When oocytes were cultured in media containing various concentrations of Ang II, a higher (P<0.05) proportion of oocytes reached metaphase II (MII) in the medium with 100 ng/ml (87.0%) than without Ang II (61%). When oocytes from different sizes of follicles were separately cultured in media containing 100 ng/ml Ang II, maturation rates were significantly higher in oocytes from small (61.5%) and medium (85.1%) follicles than that of their controls (45.1 and 72.6%, respectively). However, addition of Ang II inhibited nuclear maturation in oocytes from large follicles (77.8% versus 87.3%). Fertilization and male pronuclear (MPN) formation rates of oocytes matured in medium containing 100 or 1000 ng/ml of Ang II were higher (P<0.05) than that of oocytes matured in medium containing 0 or 10 ng/ml Ang II. Glutathione content in oocytes cultured for 44 h in medium containing 100 or 1000 ng/ml of Ang II was also higher (P<0.01) than that of oocytes cultured in medium containing 0 or 10 ng/ml Ang II. In conclusion, Ang II was present in porcine ovaries and may regulate follicle growth and oocyte maturation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号