首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen T  Embree HD  Wu LQ  Payne GF 《Biopolymers》2002,64(6):292-302
The enzyme tyrosinase was used for the in vitro conjugation of the protein gelatin to the polysaccharide chitosan. Tyrosinases are oxidative enzymes that convert accessible tyrosine residues of proteins into reactive o-quinone moieties. Spectrophotometric and dissolved oxygen studies indicate that tyrosinase can oxidize gelatin and we estimate that 1 in 5 gelatin chains undergo reaction. Oxidized tyrosyl residues (i.e., quinone residues) can undergo nonenzymatic reactions with available nucleophiles such as the nucleophilic amino groups of chitosan. Ultraviolet/visible, (1)H-NMR, and ir provided chemical evidence for the conjugation of oxidized gelatin with chitosan. Physical evidence for conjugation was provided by dynamic viscometry, which indicated that tyrosinase catalyzes the sol-to-gel conversion of gelatin/chitosan mixtures. The gels formed from tyrosinase-catalyzed reactions were observed to differ from gels formed by cooling gelatin. In contrast to gelatin gels, tyrosinase-generated gels had different thermal behavior and were broken by the chitosan-hydrolyzing enzyme chitosanase. These results demonstrate that tyrosinase can be exploited for the in vitro formation of protein-polysaccharide conjugates that offer interesting mechanical properties.  相似文献   

2.
The capability of mushroom tyrosinase to catalyze the oxidation of tyrosine residues of Bombyx mori silk fibroin was studied under heterogeneous reaction conditions, by using a series of silk substrates differing in surface and bulk morphology and structure, i.e. hydrated and insoluble gels, mechanically generated powder and fibre. Tyrosinase was able to oxidize 10-11% of the tyrosine residues of silk gels. The yield of the reaction was very low for the powder and undetectable for fibres. FT-Raman spectroscopy gave evidence of the oxidation reaction. New bands attributable to vibrations of oxidized tyrosine species (o-quinone) appeared, and the value of the I853/I829 intensity ratio of the tyrosine doublet changed following oxidation of tyrosine. The thermal behaviour of SF substrates was not affected by enzymatic oxidation. o-Quinones formed by tyrosinase onto gels and powder were able to undergo non-enzymatic coupling with chitosan. FT-IR and FT-Raman spectroscopy provided clear evidence of the formation of silk-chitosan bioconjugates under heterogeneous reaction conditions. Chitosan grafting caused a beta-sheet --> random coil conformational transition of silk fibroin and significant changes in the thermal behaviour. Chitosan grafting did not occur, or occurred at an undetectable level on silk fibres. The results reported in this study show the potential of the enzymatically initiated protein-polysaccharide grafting for the production of a new range of bio-based, environmentally friendly polymers.  相似文献   

3.
There are a series of examples in which phenols appear as contaminants in process streams and their selective removal is required for waste minimization. For the selective removal of a phenol from a mixture, we are exploiting the substrate specificity of the enzyme tyrosinase to convert phenols into reactive o-quinones which are then adsorbed onto the amine-containing polymer chitosan. To effectively package the enzyme and sorbent, tyrosinase was immobilized between two chitosan gel films. The entrapment of tyrosinase between the films led to little loss of activity during immobilization, while tyrosinase leakage during incubation was limited. The chitosan gels rapidly adsorb the tyrosinase-generated product(s) of phenol oxidation while the capacity of the gels is substantially greater than the capacity of chitosan flakes. The performance of tyrosinase-containing chitosan gels significantly depends on the ratio of tyrosinase-to-chitosan. High tyrosinase-to-chitosan ratios result in less efficient use of tyrosinase, presumably due to suicide inactivation. However, the efficiency of chitosan use increases with increased tyrosinase-to-chitosan ratios. (c) 1996 John Wiley & Sons, Inc.  相似文献   

4.
The biosynthesis of 4-hydroxybenzaldehyde and 3-bromo-4-hydroxybenzaldehyde from l-[U-(14)C]tyrosine has been demonstrated in chloroplast-containing fractions obtained by differential and isopycnic centrifugation from the marine red alga Odonthalia floccosa. Surfactant and high speed centrifugation studies indicate that the biosynthetic pathway involves a particulate enzyme system, possibly located on the thylakoid membranes. The following scheme, based upon identification of labeled (14)C-intermediates, is proposed for the formation of aldehydes: l-tyrosine --> 4-hydroxyphenylpyruvic acid --> 4-hydroxyphenylacetic acid --> 4-hydroxymandelic acid --> 4-hydroxybenzaldehyde --> 3-bromo-4-hydroxybenzaldehyde.  相似文献   

5.
Enzymatic removal of p-alkylphenols from aqueous solutions was investigated through the two-step approach, the quinone conversion of p-alkylphenols with mushroom tyrosinase (EC 1.14.18.1) and the subsequent adsorption of quinone derivatives enzymatically generated on chitosan beads at pH 7.0 and 45 degrees C as the optimum conditions. This technique is quite effective for removal of various p-alkylphenols from an aqueous solution. The % removal values of 97-100% were obtained for p-n-alkylphenols with carbon chain lengths of 5 to 9. In addition, removal of other p-alkylphenols was enhanced by increasing either the tyrosinase concentration or the amount of added chitosan beads, and their % removal values reached >93 except for 4-tert-pentylphenol. This technique was also applicable to remove 4-n-octylphenol (4NOP) and 4-n-nonylphenol (4NNP) as suspected endocrine disrupting chemicals. The reaction of quinone derivatives enzymatically generated with the chitosan's amino groups was confirmed by the appearance of peaks for UV-visible spectrum measurements of the chitosan films incubated in the p-alkylphenol and tyrosinase mixture solutions. In addition, 4-tert-pentylphenol underwent tyrosinase-catalyzed oxidation in the presence of hydrogen peroxide.  相似文献   

6.
Enzymatic removal of various phenol compounds from artificial wastewater was undertaken by the combined use of mushroom tyrosinase (EC 1.14.18.1) and chitosan beads as function of pH value, temperature, tyrosinase dose, and hydrogen peroxide-to-substrate ratio. Chitosan film incubated in a p-crersol+tyrosinase mixture had the main peaks at 400-470 nm assigned to chemically adsorbed quinone derivatives, which increased over the immersion time. These results indicate that removal of phenol compounds is caused by their tyrosinase-catalyzed oxidation to the corresponding quinone derivatives and the subsequent chemical adsorption on the chitosan film. The optimum conditions for quinone adsorption were determined to be pH 7 and 45 degrees C for p-cresol. Some alkyl-substituted phenol compounds were removed by adsorption of quinone derivatives enzymatically generated on the chitosan beads, and the % removal for p-cresol, 4-ethylphenol, 4-n-propylphenol, 4-n-butylphenol, and p-chlorophenol went up to 93%. In addition, 4-tert-butylphenol underwent tyrosinase-catalyzed oxidation in the presence of hydrogen peroxide. This procedure was applicable to removal of chlorophenols and alkyl-substituted phenols.  相似文献   

7.
Summary DeproteinatedA. niger biomass contains several covalently bound amino acids. The most abundant are arginine, serine, and proline in molar ratio of 3:2:2. One order of magnitude less is the amount of valine, phenylalanine, leucine and glycine. On deacetylation and separation of chitosan from glucan, the main three amino acids remain bound predominantly to chitosan, whereas the hydrophobic amino acids accompany mainly glucan. The presence of arginine could be the cause of stronger basicity of fungal chitosan compared to polyglucosamine.  相似文献   

8.
Free tyrosine and tyrosine residues in various peptides and proteins are converted into dopa and dopa residues by tyrosinase (monophenol,L-dopa:oxygen oxidoreductase, EC 1.14.18.1) in the presence of reductants. The efficiency of the tyrosine-to-dopa conversion was examined under varied conditions, such as the substrate-to-tyrosine ratio, concentrations of reductant and oxygen in the reaction solution, pH, temperature and reaction time. The highest dopa yields were achieved with the following optimal conditions for hydroxylation: 0.1 M phosphate buffer at pH 7, 25 mM ascorbic acid, 1 mM tyrosine, 50 micrograms/ml tyrosinase and 20 degrees C. Using these conditions, up to 70% of free tyrosine was converted into dopa, and tyrosine residues in several synthetic peptides were also hydroxylated to dopa residues at ratios as high as free tyrosine. The preparation of hydroxylated analogues of the decapeptide (Ala-Lys-Pro-Ser-Tyr-Pro-Pro-Thr-Tyr-Lys), in particular, may contribute to a better understanding of adhesion in the dopa-containing mussel glue protein.  相似文献   

9.
Chitosan derivatives such as N-vanillyl chitosan and 4-hydroxybenzyl chitosan were prepared by reacting chitosan with 4-hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxybenzaldehyde. Amino groups on chitosan reacts with these aldehydes to form a Schiff base intermediate, which is later on converted into N-alkyl chitosans by reduction with sodium cyanoborohydride. The chemical reaction was monitored by 1H NMR spectroscopy and the absence of aldehydic proton at 9.83 ppm in NMR spectra was observed for both the modified chitosan derivatives confirming the reaction. Modified chitosan films were later prepared by solution casting method and their physico-mechanical, barrier, optical and thermal properties were studied. The results clearly indicated significant change in tensile strength, water vapour transmission rate, and haze properties of modified chitosans. Modified chitosan films were also studied for their antimicrobial activity against Aspergillus flavus. The results showed a marked reduction of aflatoxins produced by the fungus in the presence of the N-vanillyl chitosan and 4-hydroxybenzyl chitosan film discs to 98.9% and non-detectable levels, respectively.  相似文献   

10.
We found a tyrosinase, which has high activity in the presence of organic solvents, in the culture filtrate of Streptomyces sp. REN-21. The organic solvent resistant tyrosinase (OSRT) was purified from the culture filtrate by three column chromatographies. About 1.2 mg of purified OSRT was obtained from 5.6 liters of the culture filtrate with a yield of 26.0%. The purified enzyme had a single polypeptide chain with a molecular mass of about 32,000 Da. The optimum pH and temperature of OSRT were pH 7.0 and 35 degrees C using L-beta-(3,4-dihydroxyphenyl)alanine (L-DOPA) as substrate. OSRT showed stereospecificity toward L-, DL-, and D-enantiomers of DOPA or tyrosine. OSRT had 44% of the activity of the control even in the presence of 50% ethanol, while a mushroom tyrosinase showed only 6% activity under the same conditions. Moreover, OSRT retained its original activity even after 20 h of incubation at 30 degrees C in the presence of 30% ethanol.  相似文献   

11.
12.
The chitosan/glucan complex isolated from the mycelia of the fungus, Gongronella butleri USDB 0201 can be cleaved with a heat-stable -amylase at 65 °C for 3 h. This results in the removal of the glucan side chain and gives a chitosan solution with 100 times lower turbidity. It is proposed that chitosan and glucan chains are bound by an (1 to 4) glucosidic bond. Both fungal chitosan and fungal glucan have been purified separately.  相似文献   

13.
14.
Protein recovery is often achieved by a series of capture and release steps that often involve chromatographic binding and elution. We report an alternative, non-chromatographic, capture and release approach that employs enzymes and the stimuli-responsive polysaccharide chitosan. We capture our protein using the enzyme tyrosinase that oxidizes accessible tyrosine residues of the protein and "activates" these residues for covalent capture (i.e., conjugation) onto chitosan. Using fusions of green fluorescent protein (GFP) we observed that: (i) enzymatic activation is required for protein capture to chitosan; and (ii) capture is enhanced (approximately five-fold) by engineering the protein to have a penta-tyrosine fusion tag that provides additional accessible tyrosine residues for enzymatic activation. Because the fusion tag appears to be the primary site for capture, and capture requires activation, we designate penta-tyrosine as a "pro-tag." The captured GFP-chitosan conjugate possesses the pH-responsive solubility that is characteristic of chitosan. We exploit this pH-responsive solubility to facilitate purification of the captured protein. Two enzymatic methods were explored to release the captured GFP from the chitosan conjugate. The first method employs enterokinase (EK) to cleave the protein at an engineered EK-cleavage site. The second method employs chitosanase to hydrolyze the chitosan backbone. Using GFP as a model protein, we demonstrated that enzymatic capture and release provides a simple, non-chromatographic means to recover proteins directly from cell lysates.  相似文献   

15.
The lag in cresolase activity and inhibition by excess tyrosine of mushroom tyrosinase which was observed when assayed at pH 6.8 was found to be absent when assayed at pH 5.0. The absence of lag and inhibition by excess tyrosine of tyrosinase at pH 5.0 were brought about only after the enzyme was kept at pH 5.0, at 0-4 degrees C, for 1.5 h. The enzyme kept at pH 5.0 for 1.5-3 h at 0-4 degrees C when brought back to pH 6.8, acquires lag and inhibition by excess tyrosine when its activity was measured at pH 6.8. The pH-dependent changes in the kinetic properties of the mushroom tyrosinase are similar to the pH-dependent changes in the kinetic properties of tyrosinase from B-16 murine melanoma and human skin, and thus appear to be a general property of tyrosinase from diverse sources.  相似文献   

16.
Gelatine gels originate from water in oil microemulsions in which the ternary system consists of isooctane/ sulfosuccinic acid bis [2-ethyl hexyl] ester/water; the solubilization of gelatin in the water pool of these microemulsions transforms them into viscous gels in which it is possible to cosolubilize various reactive molecules. These gels were used to immobilize two phenoloxidases, a laccase from Trametes versicolor and a tyrosinase from mushroom. The best balance between gel retention and catalytic activity was reached at a gelatine concentration of 2.5% (w/v) in the case of tyrosinase, while laccase immobilization was independent of gelatine concentration. Both enzymes kept the same optimum pH as the corresponding soluble controls, while a partial loss of activity was observed when they were immobilized. Immobilized enzymes showed an increased stability when incubated for several days at 4 degrees C with a very low release from the gels in the incubation solutions. The immobilization of tyrosinase and of laccase enhanced stability to thermal inactivation. Furthermore, gel-entrapped tyrosinase was almost completely preserved from proteolysis: more than 80% of the activity was maintained, while only 25% of the soluble control activity was detected after the same proteolytic treatments. A column packed with gel-immobilized tyrosinase was used to demonstrate that enzymes immobilized with this technique may be reused several times in the same reaction without loosing their efficiency. Finally, gel-entrapped tyrosinase and laccase were capable of removing naturally occurring and xeno-biotic aromatic compounds from aqueous suspensions with different degrees of efficiency. (c) 1995 John Wiley & Sons, Inc.  相似文献   

17.
Rheological properties of concentrated chitosan aqueous solutions and gels in the presence of different organic and inorganic acids were investigated. Viscosities of the solutions increased with polymer concentration and degree of ionization. Strong gels were obtained at pH around 2 with oxalic, phosphoric and sulfuric acids. Gelation was favored by simple and short chain length acids and was governed by ionic interactions. The gels could be distinguished from solutions by the frequency independence of their dynamic moduli and their high apparent activation energy for flow.  相似文献   

18.
Removal of phenols from wastewater by soluble and immobilized tyrosinase   总被引:2,自引:0,他引:2  
An enzymatic method for removal of phenols from industrial wastewater was investigated. Phenols in an aqueous solution were removed after treatment with mushroom tyrosinase. The reduction order of substituted phenols is catechol > p-cresol > p-chlorophenol > phenol > p-methoxyphenol. In the treatment of tyrosinase alone, no precipitate was formed but a color change from colorless to dark-brown was observed. The colored products were removed by chitin and chitosan which are available abundantly as shellfish waste. In addition, the reduction rate of phenols was observed to be accelerated in the presence of chitosan. Tyrosinase, immobilized by using amino groups in the enzyme on cation exchange resins, can be used repeatedly. By treatment with immobilized tyrosinase, 100% of phenol was removed after 2 h, and the activity was reduced very little even after 10 repeat treatments. (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
Novel chitosan derivatives with UV-curable functional groups, such as 3-methoxy-4-(2-hydroxy-3-methacryloyloxypropoxy)benzyl, 3,4-bis(2-hydroxy-3-methacryloyloxypropoxy)benzyl, 3-methoxy-4-methacryloyloxybenzyl, and 3,5-dimethacryloyloxybenzyl groups, were prepared. Introduction of photosensitive functional groups to chitosan was accomplished by reductive N-alkylation via Schiff’s bases using corresponding photosensitive aldehydes. Compared to starting chitosan, UV-curable chitosan derivatives showed better solubility in several organic solvents, such as DMSO and 70% methacrylic acid. The solubility of these compounds increased with an increase in the degree of substitution of the N-alkyl side chains. After UV irradiation for 20 s under a high-pressure mercury lamp at a distance of 15 cm from the samples, acidic methanol solutions of these derivatives were transformed to gels in the presence of photo-initiator, and their dried films adsorbed palladium (II) at pH 1.1 and pH 5.3. The UV-curable chitosan derivatives were successfully used as coating materials for electroless plating on non-conductive substances.  相似文献   

20.
2-Thiouracil (TU), an antithyroid drug, is receiving growing interest as a specific tumor marker for malignant melanoma, owing to its capability of being selectively accumulated into active melanin-producing tissues. However, up until now, the molecular mechanism of TU uptake by growing melanin has remained largely unknown. In an attempt to fill this gap, we have investigated the effect of TU on the tyrosinase catalyzed oxidation of tyrosine. At a concentration of 0.5 mM, TU was found to totally inhibit melanin formation by tyrosinase catalyzed oxidation of 0.25 mM tyrosine in phosphate buffer at pH 6.8. Polarographical monitoring of oxygen consumption under conditions of complete suppression of melanogenesis revealed a significant tyrosinase activity, with TU acting as a modest non-competitive inhibitor of the enzyme (Ki = 0.6 mM). HPLC and TLC analysis of the tyrosine-tyrosinase reaction in the presence of excess TU showed that the substrate is progressively consumed and a major hitherto unknown product (lambda max = 284 nm), positive to ninhydrin and ferric chloride, is concomitantly formed. This was isolated by repeated gel filtration chromatography of the reaction mixture on Sephadex G-10 and was formulated as the TU-dopa adduct 3,4-dihydroxy-6-(4'-hydroxypyrimidinyl-2'-thio)phenylalanine by spectral analysis. These results suggest that selective TU incorporation in pigmented melanomas and other melanin-producing systems is due to the covalent binding to dopaquinone, produced by tyrosinase catalyzed oxidation of tyrosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号