首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lim AC  Qu D  Qi RZ 《Neuro-Signals》2003,12(4-5):230-238
Cdk5 is a unique member of the cyclin-dependent kinase (Cdk) family of small protein kinases. In association with its neuron-specific activator p35 or p39, Cdk5 displays many regulatory properties distinct from other Cdks. A growing body of evidence has suggested that Cdk5-p35 has important implications in a variety of neuronal activities occurring in the central nervous system. In brain, Cdk5-p35 appears to exist as large molecular complexes with other proteins, and protein-protein interactions appear to be a molecular principle for Cdk5-p35 to conduct its physiological functions. Over the past decade, a number of proteins have been identified to associate with Cdk5-p35. While the majority of these proteins mediate their interaction with Cdk5 through p35, implying that p35 may act not only as an activator of Cdk5 but also as an adaptor to associate Cdk5 with its regulators and physiological targets, a small group of other proteins are found to link directly with Cdk5. In addition, Cdk5 has been found to phosphorylate a diverse list of substrates, further implicating its regulatory roles in a wide range of cellular processes. In this review, we present an updated inventory of the interacting proteins of Cdk5-p35 kinase and its substrates as well as a discussion on the implicated effects of these interactions.  相似文献   

2.
Protein kinases mediate the intracellular signal transduction pathways controlling synaptic plasticity in the central nervous system. While the majority of protein kinases achieve this function via the phosphorylation of synaptic substrates, some kinases may contribute through alternative mechanisms in addition to enzymatic activity. There is growing evidence that protein kinases may often play structural roles in plasticity as well. Cyclin-dependent kinase 5 (Cdk5) has been implicated in learning and synaptic plasticity. Initial scrutiny focused on its enzymatic activity using pharmacological inhibitors and genetic modifications of Cdk5 cofactors. Quite recently Cdk5 has been shown to govern learning and plasticity via regulation of glutamate receptor degradation, a function that may not dependent on phosphorylation of downstream effectors. From these new studies, two roles emerge for Cdk5 in plasticity: one in which it controls structural plasticity via phosphorylation of synaptic substrates, and a second where it regulates functional plasticity via protein-protein interactions.  相似文献   

3.
Cyclin-dependent kinase 5 (Cdk5) is a member of the cyclin-dependent kinase family that is involved in the regulation of the cell cycle. As their name suggests, the Cdks require association with activator proteins called cyclins for their activity. Cdk5, however, is unique to this family of proline-directed serine/threonine kinases on two accounts. Firstly, Cdk5 has not been found to function in the cell cycle and, although expressed in a number of tissues, its activity is restricted to the nervous system. Secondly, unlike the other members of the Cdk family, Cdk5 is not activated by association with a cyclin, although it can bind them. Instead, Cdk5 is activated by the activator proteins p35 and p39 that are structurally distinct from cyclins and have, for the most part, a neuronal-specific expression pattern. In the past decade of research on Cdk5, it is now established that Cdk5 activity is critical for the proper formation and function of the brain. Moreover, its role as a central kinase, phosphorylating its substrates in its 'cross-talk' control of other kinase and signal transduction pathways, has also been determined. In addition to the normal physiological role of Cdk5, the kinase has been implicated in certain neurodegenerative disorders. For example, Cdk5 associates with the proteolytic, more active p25 fragment that is derived through the cleavage of p35. In turn, the p25/Cdk5 complex aberrantly phosphorylates its substrates tau and neurofilaments, which has been implicated in the pathogenesis of these disorders. Here, we attempt to review the past decade of research on Cdk5 from our laboratory and others, on the roles of Cdk5 in nervous system function. Additionally, our research has recently uncovered a possible therapeutic avenue of research, focusing on inhibition of aberrant Cdk5 hyperactivity which may well be used to treat the symptoms of a number of neurodegenerative diseases. The elucidation of a specific inhibitor of p25/Cdk5, termed CIP, also inhibits p25/Cdk5-mediated tau phosphorylation. This may well provide us with avenues of research focusing on the inhibition of pathologically damaging p25/Cdk5 species.  相似文献   

4.
The cell cycle is regulated by sequential activation, inactivation of cyclin dependent kinases (Cdk-s). Like all other Cdk-s, the catalytic subunit of Cdk5 is present in cycling cells. However, its highest concentration is found in differentiated neurons, and the only known protein that activates Cdk5 (i.e., p35) is expressed solely in the brain. Active Cdk5 is thought to be involved in the in vivo phosphorylation of the neurofilament proteins and tau which are hyperphosphorylated in neurodegenerative diseases. Recent reports suggest that Cdk5 may also contribute to cellular differentiation. Therefore, it would not be unusual to surmise that there exist specific proteins that regulate Cdk5 activity in cycling cells. In order to find if this was true, a cDNA library prepared from HeLa cells was screened using the yeast-two-hybrid system. The 60S ribosomal protein, L34, was identified as a Cdk5-interacting protein. Biochemical analyses reveal that L34 cannot activate Cdk5 but potently inhibits the p35-activated kinase. L34 also interacts with Cdk4 and, in parallel, inhibits the Cdk4/cyclin D1 activity. Interestingly, L34 does not interact with Cdk2 in the two-hybrid assay nor does it inhibit the Cdk2/cyclin A enzyme. The fact that a ribosomal protein inhibits Cdk5 and Cdk4 may suggest that these two kinases have a cellular role in translational regulation.  相似文献   

5.
A set of different protein kinases have been involved in tau phosphorylations, including glycogen synthase kinase 3beta (GSK3 beta), MARK kinase, MAP kinase, the cyclin-dependent kinase 5 (Cdk5) system and others. The latter system include the catalytic component Cdk5 and the regulatory proteins p35, p25 and p39. Cdk5 and its neuron-specific activator p35 are essential molecules for neuronal migration and for the laminar configuration of the cerebral cortex. Recent evidence that the Cdk5/p35 complex concentrates at the leading edge of axonal growth cones, together with the involvement of this system in the phosphorylation of neuronal microtubule-asociated proteins (MAPs), provide further support to the role of this protein kinase in regulating axonal extension in developing brain neurons. Although the aminoacid sequence of p35 has little similarity with those of normal cyclins, studies have shown that its activation domain may adopt a conformation of the cyclin-folded structure. The computed structure for Cdk5 is compatible with experimental data obtained from studies on the Cdk5/p35 complex, and has allowed predictions on the protein interacting domains. This enzyme exhibits a wide cell distribution, even though a regulated Cdk5 activity has been shown only in neuronal cells. Cdk5 has been characterized as a proline-directed Ser/Thr protein kinase, that contributes to phosphorylation of human tau on Ser202, Thr205, Ser235 and Ser404. Cdk5 is active in postmitiotic neurons, and it has been implicated in cytoskeleton assembly and its organization during axonal growth. In addition to tau and other MAPs, Cdk5 phosphorylates the high molecular weight neurofilament proteins at their C-terminal domain. Moreover, nestin, a protein that regulates cytoskeleton organization of neuronal and muscular cells during development of early embryos, and several other regulatory proteins appear to be substrates of Cdk5 and are phosphorylated by this kinase. Studies also suggest, that in addition to Cdk5 involvement in neuronal differentiation, its activity is induced during myogenesis, however, the mechanisms of how this activity is regulated during muscular differentiation has not yet been elucidated. Recent studies have shown that the beta-amyloid peptide (A beta) induces a deregulation of Cdk5 in cultured brain cells, and raises the question on the possible roles of this tau-phosphorylating protein kinase in the sequence of molecular events leading to neuronal death triggered by A beta. In this context, there are evidence that Cdk5 is involved in tau hyperphosphorylation promoted by A beta in its fibrillary form. Cdk5 inhibitors protect hippocampal neurons against both tau anomalous phosphorylations and neuronal death. The links between the studies on the Cdk5/p35 system in normal neurogenesis and its claimed participation in neurodegeneration, provide the framework to understand the regulatory relevance of this kinase system, and changes in its regulation that may be implicated in disturbances such as those occurring in Alzheimer disease.  相似文献   

6.
Cdk5 is essential for synaptic vesicle endocytosis   总被引:1,自引:0,他引:1  
Synaptic vesicle endocytosis (SVE) is triggered by calcineurin-mediated dephosphorylation of the dephosphin proteins. SVE is maintained by the subsequent rephosphorylation of the dephosphins by unidentified protein kinases. Here, we show that cyclin-dependent kinase 5 (Cdk5) phosphorylates dynamin I on Ser 774 and Ser 778 in vitro, which are identical to its endogenous phosphorylation sites in vivo. Cdk5 antagonists and expression of dominant-negative Cdk5 block phosphorylation of dynamin I, but not of amphiphysin or AP180, in nerve terminals and inhibit SVE. Thus Cdk5 has an essential role in SVE and is the first dephosphin kinase identified in nerve terminals.  相似文献   

7.
Neurofibrillary tangles (NFT) of hyperphosphorylated tau protein are a major pathological hallmark of Alzheimer's disease (AD). One of the tau phosphorylating kinases with pathological relevance in AD has been suggested to be the cyclin-dependent kinase 5 (Cdk5). The proposed mechanism leading to pathological Cdk5 activity is through induced cleavage of p35 to a proteolytic product, p25. To further study activation of Cdk5 and its role in tau phosphorylation in vitro, we used differentiated SH-SY5Y cells treated with neurotoxic stimuli or transfected with p25. We show that glutamate increased tau phosphorylation, concomitant with an increased Cdk5 activity achieved by upregulation of Cdk5 and p35 protein levels. Treatment with the calcium ionophore A23187 generated the calpain cleaved p25 fragment but only in toxic conditions that caused dephosphorylation and loss of tau. When p25 was transfected to the cells, increased tau phosphorylation was achieved. However, application of the Cdk5 inhibitor Roscovitine did not result in inhibition of tau phosphorylation possibly due to activation of extracellular regulated kinase 1/2 (Erk1/2), which also is capable of phosphorylating tau. Cdk5 and Erk1/2 kinases share some common substrates but impact of their cross talk on tau phosphorylation has not previously been demonstrated. We also show that p25 is degraded via the proteasome in Roscovitine treated cells.  相似文献   

8.
The fidelity of chromosome segregation depends on proper regulation of mitotic spindle behaviour. In anaphase, spindle stability is promoted by the dephosphorylation of cyclin-dependent kinase (Cdk) substrates, which results from Cdk inactivation and phosphatase activation. Few of the critical Cdk targets have been identified. Here, we identify the budding-yeast protein Fin1 (ref. 7) as a spindle-stabilizing protein whose activity is strictly limited to anaphase by changes in its phosphorylation state and rate of degradation. Phosphorylation of Fin1 from S phase to metaphase, by the cyclin-dependent kinase Clb5-Cdk1, inhibits Fin1 association with the spindle. In anaphase, when Clb5-Cdk1 is inactivated, Fin1 is dephosphorylated by the phosphatase Cdc14. Fin1 dephosphorylation targets it to the poles and microtubules of the elongating spindle, where it contributes to spindle integrity. A non-phosphorylatable Fin1 mutant localizes to the spindle before anaphase and impairs efficient chromosome segregation. As cells complete mitosis and disassemble the spindle, the ubiqutin ligase APC(Cdh1) targets Fin1 for destruction. Our studies illustrate how phosphorylation-dependent changes in the behaviour of Cdk1 substrates influence complex mitotic processes.  相似文献   

9.
10.
Cyclin-dependent kinase 5 (Cdk5) is emerging as a neuronal protein kinase involved in multiple aspects of neurotransmission in both post- and presynaptic compartments. Within the reward/motor circuitry of the basal ganglia, Cdk5 regulates dopamine neurotransmission via phosphorylation of the postsynaptic signal transduction pathway integrator, DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, M(r) 32,000). Cdk5 has also been implicated in regulating various steps in the presynaptic vesicle cycle. Here we report that Cdk5 phosphorylates tyrosine hydroxylase (TH), the key enzyme for synthesis of dopamine. Using phosphopeptide mapping, site-directed mutagenesis, and phosphorylation state-specific antibodies, the site was identified as Ser31, a previously defined extracellular signal-regulated kinases 1/2 (ERK1/2) site. The phosphorylation of Ser31 by Cdk5 versus ERK1/2 was investigated in intact mouse striatal tissue using a pharmacological approach. The results indicated that Cdk5 phosphorylates TH directly and also regulates ERK1/2-dependent phosphorylation of TH through the phosphorylation of mitogen-activated protein kinase kinase 1 (MEK1). Finally, phospho-Ser31 TH levels were increased in dopaminergic neurons of rats trained to chronically self-administer cocaine. These results demonstrate direct and indirect regulation of the phosphorylation state of a Cdk5/ERK1/2 site on TH and suggest a role for these pathways in the neuroadaptive changes associated with chronic cocaine exposure.  相似文献   

11.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as tau protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

12.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper, control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as τ protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

13.
Cyclin-dependent kinases (Cdks) play a key role in orchestrating the coordination of cell cycle progression in proliferating cells. The escape from the proper control of the cell cycle by the upregulation of cyclins or aberrant activation of Cdks leads to malignant transformation. In quiescent cells and/or terminally differentiated cells, the expression pattern and activity of Cdks is altered. In postmitotic neurons, expression of mitotic kinases is downregulated, whereas Cdk5 expression becomes upregulated. Similarly to other Cdks, free Cdk5 displays no enzymatic activity and requires complex formation with a specific regulatory subunit. Two activators of Cdk5 have been identified. p35 and its isoform p39 bind to, and thereby activate, Cdk5. Unlike mitotic kinases, Cdk5 does not require activating phosphorylation within the T-loop. Because p35 is a short-lived protein, the p35/Cdk5 complexes are unstable. The stability of the p35 protein is regulated by its Cdk5-mediated phosphorylation of p35. Activated p35/Cdk5 kinase phosphorylates numerous physiological targets. The proper phosphorylation of the most important substrates, such as tau protein and neurofilament H, is essential for the correct regulation of the cytoskeletal organization, thereby regulating cell adhesion, motility, and synaptic plasticity. Moreover, Cdk5 regulates the activity of the p53 tumor suppressor via phosphorylation. p53 is upregulated in multiple neuronal death paradigms, including hypoxia, ischemia, and excitotoxicity, and plays a key role in the induction of apoptosis. On the other hand, an abnormally high expression and elevated activity of Cdk5 was observed in neurodegenerative diseases, suggesting the application of Cdk inhibitors for their therapy. Considering the action of some Cdk inhibitors on the expression and activity of the p53 protein, their therapeutic efficacy must be carefully evaluated.  相似文献   

14.
Collapsin response mediator protein 2 (CRMP2) binds to microtubules and regulates axon outgrowth in neurons. This action is regulated by sequential phosphorylation by the kinases cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 (GSK3) at sites that are hyperphosphorylated in Alzheimer disease. The increased phosphorylation in Alzheimer disease could be due to increases in Cdk5 and/or GSK3 activity or, alternatively, through decreased activity of a CRMP phosphatase. Here we establish that dephosphorylation of CRMP2 at the residues targeted by GSK3 (Ser-518/Thr-514/Thr-509) is carried out by a protein phosphatase 1 family member in vitro, in neuroblastoma cells, and primary cortical neurons. Inhibition of GSK3 activity using insulin-like growth factor-1 or the highly selective inhibitor CT99021 causes rapid dephosphorylation of CRMP2 at these sites. In contrast, pharmacological inhibition of Cdk5 using purvalanol results in only a gradual and incomplete dephosphorylation of CRMP2 at the site targeted by Cdk5 (Ser-522), suggesting a distinct phosphatase targets this residue. A direct comparison of dephosphorylation at the Cdk5 versus GSK3 sites in vitro shows that the Cdk5 site is comparatively resistant to phosphatase treatment. The presence of the peptidyl-prolyl isomerase enzyme, Pin1, does not affect dephosphorylation of Ser-522 in vitro, in cells, or in Pin1 transgenic mice. Instead, the relatively high resistance of this site to phosphatase treatment is at least in part due to the presence of basic residues located nearby. Similar sequences in Tau are also highly resistant to phosphatase treatment. We propose that relative resistance to phosphatases might be a common feature of Cdk5 substrates and could contribute to the hyperphosphorylation of CRMP2 and Tau observed in Alzheimer disease.  相似文献   

15.
Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase that is activated mostly by association with its activators, p35 and p39. Initially projected as a neuron-specific kinase, cdk5 is expressed ubiquitously and its kinase activity solely depends on the presence of its activators, which are also found in some non-neuronal tissues. As a multifunctional protein, cdk5 has been linked to axonogenesis, cell migration, exocytosis, neuronal differentiation and apoptosis. Cdk5 plays a critical role in functions other than normal physiology, especially in neurodegeneration. Its contribution to both normal physiological as well as pathological processes is mediated by its specific substrates. Cdk5-null mice are embryonically lethal, therefore making it difficult to study precisely what cdk5 does to the nervous system at early stages of development, be it neuron development or programmed cell death. Zebrafish model system bypasses the impediment, as it is amenable to reverse genetics studies. One of the functions that we have followed for the cdk5 ortholog in zebrafish in vivo is its effect on the Rohon-Beard (RB) neurons. RB neurons are the primary sensory spinal neurons that die during the first two days of zebrafish development eventually to be replaced by the dorsal root ganglia (DRG). Based on ours studies and others’, here we discuss possible mechanisms that may be involved in cdk5’s role in RB neuron development and survival.  相似文献   

16.
Lolli G  Johnson LN 《Proteins》2007,67(4):1048-1059
Cdk7, a member of the cyclin dependent protein kinase family, regulates the activities of other Cdks through phosphorylation on their activation segment, and hence contributes to control of the eukaryotic cell cycle. Cdk7 is itself phosphorylated on the activation segment. Cdk7 phosphorylates Cdk1, Cdk2, Cdk4, and Cdk6, but only Cdk1 and Cdk2 can phosphorylate Cdk7 and none of them is able to auto-phosphorylate. The activation segments of the Cdks are very similar in sequence. Their specificity does not appear to be dictated by the sequences surrounding the phosphorylation sites but by structural determinants at remote sites. Through mutagenesis studies, we have identified regions in Cdk2 responsible for its interaction with Cdk7. A model has been built that explains the molecular basis for the specificity observed in Cdk recognition. The two kinases are arranged in a quasi-symmetric head-to-tail arrangement in which the N-terminal lobe from one kinase docks against the C-terminal lobe from the other kinase, and the activation segments are within reach of the opposite catalytic sites. Further experiments demonstrate that cyclin A hydrophobic pocket is not a recruitment site for Cdk7.  相似文献   

17.
Protein kinase CK2 is an inhibitor of the neuronal Cdk5 kinase   总被引:1,自引:0,他引:1  
The complex of Cdk5 and its neuronal activator p35 is a proline-directed Ser/Thr kinase that plays an important role in various neuronal functions. Deregulation of the Cdk5 enzymatic activity was found to associate with a number of neurodegenerative diseases. To search for regulatory factors of Cdk5-p35 in the brain, we developed biochemical affinity isolation using a recombinant protein comprising the N-terminal 149 amino acids of p35. The catalytic alpha-subunit of protein kinase CK2 (formerly known as casein kinase 2) was identified by mass spectrometry from the isolation. The association of CK2 with p35 and Cdk5 was demonstrated, and the CK2-binding sites were delineated in p35. Furthermore, CK2 displayed strong inhibition toward the Cdk5 activation by p35. The Cdk5 inhibition is dissociated from the kinase function of CK2 because the kinase-dead mutant of CK2 displayed the similar Cdk5 inhibitory activity as the wild-type enzyme. Further characterization showed that CK2 blocks the complex formation of Cdk5 and p35. Together, these findings suggest that CK2 acts as an inhibitor of Cdk5 in the brain.  相似文献   

18.
Cdk5 is a member of the cyclin-dependent kinase (Cdk) family. Unlike other Cdks that promote cell cycle, Cdk5 is activated in postmitotic neurons and critically regulates neuronal migration by phosphorylating its substrates during brain development. Recently, we found that Cdk5 phosphorylates focal adhesion kinase (FAK) at Serine 732 in vitro and is responsible for this phosphorylation in the developing brain. Our experiments using a phospho-specific antibody and an S732-unphosphorylatable mutant FAK suggest that S732 phosphorylation may regulate a centrosome-associated microtubule structure to promote nuclear translocation, a critical step in neuronal migration. S732 phosphorylation does not directly impact on the kinase activity of FAK, but appears to prevent the accumulation of FAK at the centrosome. Our study reveals a similarity between Cdk5 and Cdk1 in the regulation of neuronal migration and cell division, respectively. In addition, our study implicates FAK in a signaling pathway that directly regulates microtubules.  相似文献   

19.
Cdk5/p35 expression in the mouse ovary   总被引:1,自引:0,他引:1  
Cyclin-dependent kinase 5 (Cdk5) is primarily associated with brain development but it is also implicated in lens and muscle differentiation. We found that Cdk5 is also expressed in mouse ovary, and explored the possibility that it plays a role in that tissue. We show by Western blotting and immunohistochemistry that the known Cdk5 activator, p35, is also present in the mouse ovary. Cdk5 and p35 were detected in oocytes at all stages of the follicle. While Cdk5 was present in the cytoplasm and nucleus of the oocyte, p35 was observed only in the cytoplasm. Both proteins were detected in the cytoplasm of luteinized cells in the corpus luteum. Immunoprecipitation and histone H1 kinase assays revealed that they form an ovarian complex with considerable kinase activity. Phosphorylation assays showed that several ovarian proteins are substrates for Cdk5/p35 in vitro. Together our findings suggest that p35-associated Cdk5 activity plays an important role in the ovary, where it may regulate cell differentiation and apoptosis as it does in the brain.  相似文献   

20.
Cyclin-dependent kinase 5 (Cdk5), a complex of Cdk5 and its activator p35 (Cdk5/p35), phosphorylates diverse substrates which have multifunctional roles in the nervous system. During development, it participates in neuronal differentiation, migration, axon outgrowth and synaptogenesis. Cdk5, acting together with other kinases, phosphorylates numerous KSPXK consensus motifs in diverse cytoskeletal protein target molecules, including neurofilaments, and microtubule associated proteins, tau and MAPs. Phosphorylation regulates the dynamic interactions of cytoskeletal proteins with one another during all aspects of neurogenesis and axon radial growth. In this review we shall focus on Cdk5 and its regulation as it modulates neurofilament metabolism in axon outgrowth, cytoskeletal stabilization and radial growth. We suggest that Cdk5/p35 forms compartmentalized macromolecular complexes of cytoskeletal substrates, other neuronal kinases, phosphatases and activators ('phosphorylation machines') which facilitate the dynamic molecular interactions that underlie these processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号