首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A variable combination of developmental delay, retinitis pigmentosa, dementia, seizures, ataxia, proximal neurogenic muscle weakness, and sensory neuropathy occurred in four members of a family and was maternally transmitted. There was no histochemical evidence of mitochondrial myopathy. Blood and muscle from the patients contained two populations of mitochondrial DNA, one of which had a previously unreported restriction site for AvaI. Sequence analysis showed that this was due to a point mutation at nucleotide 8993, resulting in an amino acid change from a highly conserved leucine to arginine in subunit 6 of mitochondrial H(+)-ATPase. There was some correlation between clinical severity and the amount of mutant mitochondrial DNA in the patients; this was present in only small quantities in the blood of healthy elderly relatives in the same maternal line.  相似文献   

2.
Heteroplasmic nucleotide polymorphisms are rarely observed in wild animal mitochondrial DNA. The occurrence of such site heteroplasmy is expected to be extremely rare at nonsynonymous sites where the number of nucleotide substitutions per site is low due to functional constraints. This report deals with nonsynonymous mitochondrial heteroplasmy from two wild fish species, chum salmon and Japanese flounder. We detected an A/C nonsynonymous heteroplasmic site corresponding to putative amino acids, Ile or Met, in NADH dehydrogenase subunit-5 (ND5) region of chum salmon. The heteroplasmic site was at the 3rd position of 58th codon. As for Japanese flounder we detected a C/T nonsynonymous heteroplasmic site corresponding to putative amino acids, Leu or Pro, in ND4 region. The heteroplasmic site was at the 2nd position of 450th codon. We also verified heteroplasmy at these sites by sequencing cloned fragments.  相似文献   

3.
The presence of multiple mitochondrial genotypes (heteroplasmy) has been studied in normal individuals. Six multigenerational normal families were screened for heteroplasmy by PCR of the mitochondrial control region and the cytochrome c oxidase intergenic regions. Two individuals from different families exhibited multiple length polymorphisms in a homopolymeric tract at positions 16 184–16 193 and a grandmother in a third family was heteroplasmic for both cytosine and thymidine at position 15 945. Although the 15 945 T variant comprised 28% of the grandmother’s mitochondrial DNA, this sequence was not present in any of her descendants. Heteroplasmy was detected in 2.5% of the 96 mother-offspring pairs, consistent with the possibility that it may not be rare. Received: 18 August 1997 / Accepted: 10 November 1997  相似文献   

4.
Polymorphism of animal mitochondrial DNA (mtDNA) has been shown to involve point mutations and limited length variations affecting essentially noncoding regions. In two wild mice of the European subspecies Mus mus musculus we found a mitochondrial mutant with a very large deletion in a coding region. The deletion is 5 kbp long (31% of the mitochondrial chromosome) and encompasses six tRNA genes and seven protein genes. The two mice were heteroplasmic: they contained a mixture of normal mtDNA and the deletion mutant. Although the latter is functionally defective, it represents 78%-79% of the mtDNA molecules in our preparations from each animal.   相似文献   

5.
Mitochondria are the source of most oxygen-derived free radicals. Mutations in mitochondrial DNA can impair mitochondrial electron transport resulting in decreased ATP production and increased free radical-induced oxidant injury. The specific mitochondrial DNA mutation A8344G alters the TPsiC loop or the mitochondrial tRNA for lysine. We investigated a large five-generational family harboring this mutation to determine whether the degree of heteroplasmy (proportion of mutated mitochondrial genomes) for the mtA8344G mutation correlated with a marker of oxidant damage. We measured F2-isoprostanes because they are specific and reliable markers of oxidant injury formed when free radicals attack esterified arachidonate in cell membranes. Family members with high heteroplasmy (>40%) had significantly higher F2-isoprostane levels (62 +/- 39 pg/ml) than those with lower heteroplasmy (33 +/- 13 pg/ml, P < 0.001). The degree of heteroplasmy for the mtA8344G mutation in this family correlated positively with F2-isoprostane levels (P = 0.03). This study highlights the underappreciated role free radicals play in the complex pathophysiology of inherited mitochondrial DNA disorders. The most important novel finding from this family is that some currently asymptomatic individuals with moderate heteroplasmy have evidence of ongoing free-radical mediated oxidant injury.  相似文献   

6.
A 5 kilobase deletion in mitochondrial DNA (mtDNA) has been reported to be responsible for the specific complex I deficiency in the substantia nigra (SN) of the Parkinson's disease (PD) brain. We have studied mitochondrial respiratory chain function in the SN from control and PD subjects, and analysed mtDNA, extracted from the same tissues, by Southern blot and the polymerase chain reaction (PCR). Quantitation of the levels of the deletion indicate that it does not contribute to the pathogenesis of PD nor to a complex I deficiency but seems likely to be an age-related observation.  相似文献   

7.
Guppies Poecilia reticulata from the Rio Grande, Trinidad are heteroplasmic; individuals possess up to nine different-sized mtDNA haplotypes. A PCR survey of mtDNA length variation that included mothers and embryos suggests that a large number of mitochondrial genomes (possibly within a much smaller number of organelles) pass from one generation to the next.  相似文献   

8.
The MRL/MpJ mouse is an inbred laboratory strain of Mus musculus, known to exhibit enhanced autoimmunity, increased wound healing, and increased regeneration properties. We report the full-length mitochondrial DNA (mtDNA) sequence of the MRL mouse (Accession # EU450583), and characterize the discovery of two naturally occurring heteroplasmic sites. The first is a T3900C substitution in the TPsiC loop of the tRNA methionine gene (tRNA-Met; mt-Tm). The second is a heteroplasmic insertion of 1-6 adenine nucleotides in the A-tract of the tRNA arginine gene (tRNA-Arg; mt-Tr) at positions 9821-9826. The level of heteroplasmy varied independently at these two sites in MRL individuals. The length of the tRNA-Arg A-tract increased with age, but heteroplasmy at the tRNA-Met site did not change with age. The finding of naturally occurring mtDNA heteroplasmy in an inbred strain of mouse makes the MRL mouse a powerful new experimental model for studies designed to explore therapeutic measures to alter the cellular burden of heteroplasmy.  相似文献   

9.
Temporal temperature gradient gel electrophoresis was used to screen 70% of the mtDNA, including all 22 tRNA genes, for heteroplasmy in 75 children with neuromuscular and/or multi-system dysfunction and elevated lactate levels, and in 95 controls. Standard PCR/ASO (allele specific oligonucleotide) and Southern analyses were also employed. Excluding common length variants, heteroplasmy was found in 22 patients and two controls (P < 0.001), with four patients demonstrating heteroplasmy in two locations each. Of the 23 heteroplasmic variants sequenced among the patients, 17 were novel point variants in the control region (CR) and only two involved tRNA genes. Heteroplasmy is highly associated with the disease group, and is predominately found in the CR, an area rarely studied in patient populations. These variants may be pathological mutations or disease markers.  相似文献   

10.
Maternal inheritance of mitochondrial DNA (mtDNA) is generally observed in many eukaryotes. Sperm-derived paternal mitochondria and their mtDNA enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism underlying this clearance of paternal mitochondria has remained largely unknown. Recently, we showed that autophagy is required for the elimination of paternal mitochondria in Caenorhabditis elegans embryos. Shortly after fertilization, autophagosomes are induced locally around the penetrated sperm components. These autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genomes remain even in the larval stage. Therefore, maternal inheritance of mtDNA is accomplished by autophagic degradation of paternal mitochondria. We also found that another kind of sperm-derived structure, called the membranous organelle, is degraded by zygotic autophagy as well. We thus propose to term this allogeneic (nonself) organelle autophagy as allophagy.  相似文献   

11.
Length polymorphism due to tandem repeats is a common feature in animal mitochondrial DNA. The rabbit mitochondrial genome contains a 20 bp repeat domain, which generates a general heteroplasmic state. The observed polymorphic patterns suggest a dynamic equilibrium between gain and loss of units that maintains the copy number in the range 3-19 repeat units. In the apparent absence of recombination, slipped-strand mispairing during replication appears to be the primary cause of additions and deletions. To investigate this hypothesis we have set up a plasmid assay in Escherichia coli. A variable number of repeat units was inserted into a plasmid in both orientations relative to the colE1 origin of replication. Our data show that (i) a minimum unit number (>3) is necessary to generate length polymorphs, (ii) the number of events increases with the length tract, (iii) an excess of additions over deletions is found when the copy number is less than 10 and the trend is reversed when it is over 10, (iv) the frequency of deletions-additions is dependent on the orientation, (v) the polymorphism patterns are different according to the orientation. The length polymorphic pattern generated in the bacteria, in one orientation, mimics that observed in the mitochondria, suggesting that slipped mispairing between repeated sequences during DNA replication is responsible for the mitochondrial heteroplasmic state.  相似文献   

12.
Skeletal muscles from a mother and her daughter both with chronic progressive ophthalmoplegia were analyzed. Histological and biochemical analyses of their muscle samples showed typical features of this type of mitochondrial myopathy. Southern blot analysis revealed that, in both patients, there were two species of mitochondrial DNA (mtDNA): normal one and partially deleted one. The sizes of the deletion were different; the mutant mtDNAs from the mother and the daughter had about 2.5- and 5-kilobase deletions, respectively. The two mutant mtDNAs shared a common deleted region of 1.2-kilobase. However, both the start and the end of deletion were different between them, implying a novel mode of inheritance. This is the first report that the mutant mtDNA is responsible for the maternal inheritance of a human disease.  相似文献   

13.
Evidence for maternal inheritance of mitochondrial DNA in allotetraploid.   总被引:1,自引:0,他引:1  
The complete mitochondrial DNA (mtDNA) sequences of the allotetraploid and red crucian carp were determined in this paper. We compared the complete mtDNA sequences between the allotetraploid and its female parent red crucian carp, and between the allotetraploid and its male parent common carp. The results indicated that the complete mtDNA nucleotide identity (99.7%) between the allotetraploid and its female parent red crucian carp was higher than that (89.0%) between the allotetraploid and its male parent common carp. Moreover, the analysis on the start and stop codons, overlaps and spacers, and phylogeny of the mt genomes indicated the genetic relationship between the allotetraploid and its female parent red crucian carp was closer than that between the allotetraploid and its male parent common carp. Our results indicated that the allotetraploid mt genome was strictly maternally inherited. Through maternal inheritance, the mt genome in the F(11) allotetraploid displayed extremely high similarity to that in the female parent red crucian carp after 11 generations (from F(1) to F(11) hybrids). Such results indicated that the F(11) allotetraploid possessed the stable inheritance characteristic. Thus the tetraploid stocks possessed the good base to form a new tetraploid species in the future. Since the establishment of the new tetraploid stocks has the great significance in analyzing evolutionary theory of vertebrate and in improving aquaculture industry, analysis of the mt genome and the elucidation of the variation of the mt genome in the allotetraploid and its parents proved that it was a useful genetic marker to monitor the variations in the progeny of the crosses.  相似文献   

14.
A mutant strain of Drosophila subobscura possesses two mitochondrial genome types: a minority population (20%) identical to the wild strain mtDNA (15.9 kb), and a largely predominant population (80%) of shorter genomes (10.9 kb), presenting a deletion of more than 30% of its coding region. Study of tissular distribution of heteroplasmy shows it to be identical — about 80% — in the head (nervous tissue) and thorax (muscles). On the other hand, a lower percentage (64%) is observed in the ovaries. The strain is apparently unaffected despite this massive loss of genes, coding for four tRNA and for complex I and III subunits. Contrary to observations of similar situations in man, the mutant strain shows no accumulation or structurally abnormal mitochondria. Furthermore, cytochemical studies fail to detect mitochondria devoid of cytochrome oxidase activity (COX?). Finally, mitoribosome populations are identical in mitochondria from both strains. These results suggest that, in the mutant strain, there are no mitochondria containing deleted genomes only: heteroplasmy would thus be intramitochondrial.  相似文献   

15.
Summary The inheritance of organelle DNAs in loblolly pine was studied by using restriction fragment length polymorphisms. Chloroplast DNA from loblolly pine is paternally inherited in pitch pine x loblolly pine hybrids. Mitochondrial DNA is maternally inherited in loblolly pine crosses. The uniparental inheritance of organelle genomes from opposite sexes within the same plant appears to be unique among those higher plants that have been tested and indicates that loblolly pine, and possibly other conifers, must have special mechanisms for organelle exclusion or degradation or both. This genetic system creates an exceptional opportunity for the study of maternal and paternal genetic lineages within a single species.  相似文献   

16.
The mitochondrial DNA of the bowfin fish and each of two species of treefrogs displays large-scale size variation. Within each species, mitochondrial genomes span more than a 700 base pair range, and the size polymorphism is localized to one portion of the genome. In addition, about 5 percent of the total 357 individuals surveyed were observed to carry two size classes of mtDNA. These findings are among the few documented instances of extensive within-species mtDNA size polymorphism and individual heteroplasmy, and constitute exceptions to previously reached generalizations about the molecular basis of mtDNA variation.  相似文献   

17.
Using PCR, we found that normal heart muscle and brain from adult human individuals contain low levels of a specific mitochondrial DNA deletion, previously found only in patients affected with certain types of neuromuscular disease. This deletion was not observed in fetal heart or brain. Experimental tests support the idea that the deletion exists in vivo in adult mitochondria and is not an in vitro artifact of PCR. Our data provide direct experimental support for the idea that accumulation of mitochondrial DNA deletions may be important in aging.  相似文献   

18.
PCR amplification of four chloroplast DNA (cpDNA) and two mitochondrial DNA (mtDNA) regions followed by restriction of the amplified products was used to identify restriction fragment length polymorphisms in 21 Actinidia taxa. Subsequently, the mode of organelle inheritance was investigated in both interspecific and intraspecific controlled crosses made between genotypes showing different cpDNA and/or mtDNA haplotypes. Fifty-six seedlings produced from three interspecific crosses, including in one case the pseudo reciprocal (different genotypes of the same species used as opposite parents), were checked for cpDNA inheritance, and 102 seedlings from the same interspecific crosses and 32 seedlings from two intraspecific crosses within the species A. deliciosa were checked for mtDNA inheritance. In all cases, cpDNA was inherited from the father and mtDNA was inherited from the mother. Maternal inheritance of mtDNA was expected, being the rule in plants, but A. deliciosa is the first genus in angiosperms for which a widespread and strictly paternal inheritance of cpDNA has been reported. Transmission of chloroplastic and mitochondrial genomes through opposite parents provides an exceptional opportunity for studying the paternal and maternal genetic lineages of species in the genus Actinidia.  相似文献   

19.
Plant mitochondria have very active DNA recombination activities that are responsible for its plastic structures and that should be involved in the repair of double-strand breaks in the mitochondrial genome. Little is still known on plant mitochondrial DNA repair, but repair by recombination is believed to be a major determinant in the rapid evolution of plant mitochondrial genomes. In flowering plants, mitochondria possess at least two eubacteria-type RecA proteins that should be core components of the mitochondrial repair mechanisms. We have performed functional analyses of the two Arabidopsis (Arabidopsis thaliana) mitochondrial RecAs (RECA2 and RECA3) to assess their potential roles in recombination-dependent repair. Heterologous expression in Escherichia coli revealed that RECA2 and RECA3 have overlapping as well as specific activities that allow them to partially complement bacterial repair pathways. RECA2 and RECA3 have similar patterns of expression, and mutants of either display the same molecular phenotypes of increased recombination between intermediate-size repeats, thus suggesting that they act in the same recombination pathways. However, RECA2 is essential past the seedling stage and should have additional important functions. Treatment of plants with several DNA-damaging drugs further showed that RECA3 is required for different recombination-dependent repair pathways that significantly contribute to plant fitness under stress. Replication repair of double-strand breaks results in the accumulation of crossovers that increase the heteroplasmic state of the mitochondrial DNA. It was shown that these are transmitted to the plant progeny, enhancing the potential for mitochondrial genome evolution.  相似文献   

20.
Mitochondrial DNA mutations cause disease in > 1 in 5000 of the population, and ~ 1 in 200 of the population are asymptomatic carriers of a pathogenic mtDNA mutation. Many patients with these pathogenic mtDNA mutations present with a progressive, disabling neurological syndrome that leads to major disability and premature death. There is currently no effective treatment for mitochondrial disorders, placing great emphasis on preventing the transmission of these diseases. An empiric approach can be used to guide genetic counseling for common mtDNA mutations, but many families transmit rare or unique molecular defects. There is therefore a pressing need to develop techniques to prevent transmission based on a solid understanding of the biological mechanisms. Several recent studies have cast new light on the genetics and cell biology of mtDNA inheritance, but these studies have also raised new controversies. Here we compare and contrast these findings and discuss their relevance for the transmission of human mtDNA diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号