首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aluminum lactate was injected either intraperitoneally or stereotactically into the lateral cerebral ventricles of rats. Rats were killed at various times after treatment, and frontal cortex, hippocampus, and striatum were dissected out. Microtiter plate-based sandwich ELISA and immunohistochemistry were used to measure the glial fibrillary acidic protein (GFAP) concentration. GFAP levels were significantly decreased in frontal cortex 7 days after a single lateral ventricular injection of aluminum lactate and 14 days following systemic treatment. In contrast, neither hippocampus nor striatum exhibited any significant changes in the content of this astrocytic intermediate filament protein after aluminum treatment. Levels of a predominantly astroglial enzyme, glutamine synthetase, were also selectively reduced in the frontal cortex following intraventricular injection of aluminum. This depression exhibited a regional and temporal specificity similar to that found for GFAP. These results suggest a selective and progressive diminution of astrocytic responsivity in frontal cortex following either systemic or intraventricular aluminum dosing. The depression of GFAP levels reported here, which was found in the rat cerebral cortex 7-14 days after aluminum treatment in a species that does not form neurofilamentous aggregates, may reflect extended impairment of astrocytic function and suggests that these cells may be the primary targets of aluminum neurotoxicity.  相似文献   

2.
The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on somatostatin (SS)-containing neurons were examined by measuring dopamine, norepinephrine (NE), SS, and SS mRNA in striatum and frontal cortex of C57/B16 mice at various times following treatment with MPTP-HCl (96 mg/kg i.p.). MPTP caused a 70% depletion of dopamine in striatum by 1 day and a 40% depletion of NE in frontal cortex within 3 days. SS content was increased in frontal cortex 4 days later, but not in striatum; there were no changes in SS mRNA. Maprotiline, a specific NE-uptake blocker, prevented both the depletion of NE and the increase of SS in frontal cortex due to MPTP administration. These results support the possibility that NE can regulate SS in frontal cortex and are discussed in terms of the decrease of SS seen in parkinsonian patients with dementia.  相似文献   

3.
The central nervous system is one of the primary target organs for hydrogen sulphide (H2S) toxicity; however, there are limited data on the neurotoxic effects of low-dose chronic exposure on the developing nervous system. Levels of serotonin and norepinephrine in the developing rat cerebellum and frontal cortex were determined following chronic exposure to 20 and 75 ppm H2S during perinatal development. Both monoamines were altered in rats exposed to 75 ppm H2S compared with controls; serotonin levels were significantly increased at days 14 and 21 postnatal in both brain regions, and norepinephrine levels were significantly increased at days 7, 14, and 21 postnatal in cerebellum and at day 21 in the frontal cortex. Exposure to 20 ppm H2S significantly increased the levels of serotonin in the frontal cortex at day 21, whereas levels of norepinephrine were significantly reduced in the frontal cortex at days 14 and 21, and at day 14 in the cerebellum.  相似文献   

4.
The topographical distribution of [125I]-LHRH binding sites was studied on brain sections of adult male rat by quantitative autoradiography. High density of sites was observed in the hippocampus, amygdala and entorhinal cortex (4-7 fmol of LHRH bound/mg protein). Lower density of sites was observed in the septum and frontal cortex. The receptor density was not significantly modified at day 5 following castration. Under the same conditions the pituitary receptors were significantly increased. The presence of specific LHRH binding sites in the limbic system may explain the behavioural effect observed following intracerebroventricular injection of LHRH. However, their functions under physiological conditions remain to be elucidated.  相似文献   

5.
6.
The aim of the present study was to examine the effect of normal aging on somatostatin neurotransmission. Somatostatin gene expression was analysed in several regions of the cerebral cortex and hippocampus in 3, 7 and 21 month-old Sprague-Dawley rats using quantitative in situ hybridization with a 48mer oligodeoxynucleotide antisense probe. Furthermore the distribution of 125I-Tyr11 somatostatin receptor binding sites was studied using quantitative receptor autoradiography. The results demonstrated a significant reduction of preprosomatostatin-mRNA in the frontal cortex of the aged (21 month) group compared with the young (3 month) and the middle-aged (7 month) groups. The receptor binding densities of the aged (21 month) group tended to be lower, compared to the other groups although no significant region-specific changes were evident. These results indicate neurochemical changes in somatostatin-containing neurons in the frontal cortex during aging.  相似文献   

7.
Repeated cocaine administration produces changes in gene expression that are thought to contribute to the behavioral alterations observed with cocaine abuse. This study focuses on gene expression changes in the frontal cortex, a component of reinforcement, sensory, associative, and executive circuitries. Changes in frontal cortex gene expression after repeated cocaine self-administration may lead to changes in the behaviors associated with this brain region. Rats self-administered cocaine for 10 days in a continuous access, discrete trial paradigm (averaging 100 mg/kg/day) and were examined for changes in relative frontal cortex mRNA abundance by cDNA hybridization arrays. Among the changes observed following array analysis, increased nerve-growth-factor–induced B (NGFI-B), adenylyl cyclase type VIII (AC VIII), and reduced cysteine-rich protein 2 (CRP2) mRNA were confirmed by quantitative RT-PCR. These changes share commonalities and exhibit differences with previous reports of gene expression changes in the frontal cortex after noncontingent cocaine administration.  相似文献   

8.
9.
The effects of a new thyrotropin releasing hormone (TRH) analogue, YM-14673 (N alpha-[[(S)-4-oxo-2-azetidinyl]carbonyl]-L-histidyl-L-prolinamide dihydrate), on the release of acetylcholine (ACh) in free-moving rats were examined in vivo by intracerebral dialysis. In the frontal cortex, YM-14673 (0.1-0.3 mg/kg) caused a significant dose-dependent increase in the extracellular levels of ACh, suggesting that YM-14673 stimulated the ACh release. These actions of YM-14673 were about 50 times more potent than those of TRH. On the other hand, extracellular levels of ACh in caudate nucleus were not changed following injection of YM-14673 even at 3 mg/kg. TRH and methamphetamine also increased the release of ACh in frontal cortex. Haloperidol prevented the increase in the methamphetamine-induced release of ACh, whereas the increased release of ACh produced by YM-14673 was partially antagonized by haloperidol. These results suggest that the dopaminergic system affects the facilitatory effects on the ACh release in the frontal cortex and that the stimulatory effect of YM-14673 on the frontal cholinergic neurons is partially mediated by dopaminergic neurons.  相似文献   

10.
The effects of neurotensin (NT) on endogenous acetylcholine (ACh) release from basal forebrain, frontal cortex, and parietal cortex slices were tested. The results show that NT differentially regulates evoked ACh release from frontal and parietal cortex slices without altering either spontaneous or evoked ACh release from basal forebrain slices. In the frontal cortex, NT significantly inhibited evoked ACh release by a tetrodotoxin (TTX)-insensitive mechanism, suggesting an action directly on cholinergic terminals. In the parietal cortex, NT enhanced evoked ACh release by a TTX-sensitive mechanism, suggesting an action of NT on the cholinergic neuron or in close proximity to the cholinergic neuron. The effects of NT on ACh release were confined to evoked ACh release; that is, spontaneous ACh release was not affected. NT did not affect spontaneous or potassium-evoked ACh release from occipital cortex slices. The second set of experiments tested the effects of quinolinic acid (QUIN) lesions of the basal forebrain cell bodies on the NT-induced regulation of evoked ACh release in the cerebral cortex. QUIN lesions of basal forebrain cell bodies caused decreases in choline acetyltransferase activity (27 and 28%), spontaneous ACh release (14 and 21%), and evoked ACh release (38 and 44%) in frontal and parietal cortex, respectively. In addition, 11 days following QUIN lesions of basal forebrain cell bodies, the action of NT to regulate evoked ACh release in frontal cortex or parietal cortex was no longer observed. The results suggest that in the rat frontal and parietal cortex, NT differentially regulates the activity of cholinergic neurons by decreasing and increasing evoked ACh release, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Following previous validation in baboons, we have studied the characteristics of [18F]setoperone as a radioligand for investigating serotonergic 5-hydroxytryptamine2 (5-HT2) receptors in the normal, unmedicated human brain with positron emission tomography (PET); subjects orally pretreated with therapeutic amounts of ketanserin, sulpiride, or prazosin were also studied to evaluate the specificity and sensitivity of [18F]setoperone brain specific binding. In controls (n = 10), the tracer showed a clear-cut retention in both frontal cortex and striatum (known to contain a high density of 5-HT2 receptors) relative to cerebellum (known to be devoid of 5-HT2 receptors). In the seven young controls (20-39 years old), the frontal cortex/cerebellum and striatum/cerebellum ratios increased during the first hour to reach similar values of 2.53 +/- 0.12 and 2.38 +/- 0.11 (mean +/- SEM), respectively, and were essentially stable during the second hour. Pretreatment with ketanserin (a 5-HT2 blocker) significantly reduced the frontal cortex/cerebellum ratio to 0.7-1.0 at 65 min, whereas the striatum/cerebellum ratio was significantly, but only partially, reduced. During sulpiride treatment (a D2 blocker), the frontal cortex/cerebellum ratio was not altered, whereas the striatum/cerebellum ratio was significantly, but only partially, reduced. With prazosin pretreatment (an alpha 1-adrenergic blocker), neither the frontal cortex/cerebellum nor the striatum/cerebellum ratio was modified. These data in humans with PET demonstrate that [18F]setoperone labels with high sensitivity and selectivity 5-HT2 receptors in the frontal cortex; in striata, however, binding is to both 5-HT2 and D2 receptors. The deproteinated-to-whole plasma radio-activity concentration ratio increased with time following injection. The mean percentage of intact [18F]setoperone, in deproteinated plasma, was 82, 74, 53, 45, 30, and 22% at 5, 10, 20, 30, 60, and 110 min following injection, respectively. These data indicate that [18F]setoperone (a) is significantly bound to plasma proteins and (b) is significantly metabolized into several labeled metabolites that are much more hydrophilic than setoperone and, hence, presumably do not cross the blood-brain barrier. These results suggest the suitability of [18F]setoperone data for modeling of 5-HT2 receptor binding in brain.  相似文献   

12.
The markers of oxidative stress were measured in four cerebrocortical regions of Alzheimer's disease (AD) and age-matched control brains. In controls the levels of diene conjugates (DC) and lipid peroxides (LOOH) were significantly higher in the sensory postcentral and occipital primary cortex than in the temporal inferior or frontal inferior cortex. The antioxidant capacity (AOC) was highest in the temporal, and GSH in the frontal inferior cortex. The highest activity of superoxide dismutase (SOD) and catalase (CAT) was found in the occipital primary cortex. Compared with controls, significantly higher level of DC and LOOH and attenuated AOC were evident in AD temporal inferior cortex. In AD frontal inferior cortex moderate increase in LOOH was associated with positive correlation between SOD activity and counts of senile plaques. Our data suggest that in AD cerebral cortex, the oxidative stress is expressed in the reducing sequence: temporal inferior cortex > frontal inferior cortex > sensory postcentral cortex occipital primary cortex, corresponding to the histopathological spreading of AD from the associative to primary cortical areas.  相似文献   

13.
The number of serotonin type 2 receptors (S2) was measured in the frontal cortex of mice belonging to 7 inbred strains using specific 3H-spiperone binding. In the same mice, measurements were also taken of the number of 5-hydroxytryptophan-induced (200 mg/kg i.p.) of head twitches (HT). A significant positive interspecific correlation was demonstrated between the number of S2 and HT. The conclusion is drawn that in the frontal cortex 3H-spiperone is bound to functionally active S2 and that the intensity of HT is largely controlled by the genetically determined number of S2 in the brain.  相似文献   

14.
Semax is a synthetic peptide, which consists of the N-terminal adrenocorticotropic hormone fragment (4-7) (ACTH4-7) and C-terminal Pro-Gly-Pro peptide. Semax promotes neuron survival in hypoxia, increases selective attention and memory storage. It was shown that this synthetic peptide exerted a number of gene expressions, especially brain derived neurotrophic factor gene (Bdnf) and nerve growth factor gene (Ngf). Temporary dynamics of Bdnf and Ngf ex- pression in rat hippocampus and frontal cortex under Semax action (50 mg/kg, single intranasal administration) was studied in this work. It was shown that the studied gene expression levels changed significantly both in the hippocampus and the frontal cortex tissues 20 minutes after the peptide preparation application. The expression levels decreased in the hippocampus and increased in the frontal cortex. Forty minutes after Semax administration both gene expression levels returned to the level typical of control tissues. After that they increased significantly by 90 minutes after experiment start. Bdnf and Ngf expression levels decreased up to the control levels by 8 hours after medicine applying maximum gene expression levels were attained. Thus, Semax administration results in rapid, long-term, and specific activation of Bdnf and Ngf expression changes in different rat brain departments.  相似文献   

15.
The development of the fields of the frontal zone (8, 3, 10, 11, 12) were compared in the pre- and postnatal periods oflife in the nacaque-rhesus and man. The cyto-mielcarchitectonical and guantitative methods wereused. The square surfaces of the above fields were measured, their per cent ratios to thesquare surface of all the cortex, new cortex and frontal zone were calculated. The work hasrevealed the following: 1. General regularities in the development of frontal zones in monkeysand man: a) shorter terms for the formation of philogenetically old fields-11, 12, 8 andlonger terms for the new ones-9 and 10:b) predominant development of the frontal zone at theexpense of progressive young fields 9 and 10: c) predominat formation of the frontal zone bothkinds of primates in the postnatal period. 2. The specific features for each field (the termsfor isolation of the fields, the rate and direction of their development). 3.Substantial difference: more rapid maturation of the frontal zone in macaques (by the 6th -12th months of life)and more prolonged one in humans-by 12 years. A considerable growth of philogenetically newstructures (fields 9 and 10) in the system of all the cortex and the frontal zone wasshown in man as compared with monkey. The experimental ontogentical material is interpreted.  相似文献   

16.
To address the role of oxidative DNA damage in focal cerebral ischemia lacking reperfusion, we investigated DNA base and strand damage in a rat model of permanent middle cerebral artery occlusion (MCAO). Contents of 8-hydroxyl-2'-deoxyguanosine (8-OHdG) and apurinic/apyrimidinic abasic sites (AP sites), hallmarks of oxidative DNA damage, were quantitatively measured in nuclear DNA extracts from brains obtained 4-72 h after MCAO. DNA single- and double-strand breaks were detected on coronal brain sections using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), respectively. Levels of 8-OHdG and AP sites were markedly elevated 16-72 h following MCAO in the frontal cortex, representing the peri-infarct region, but levels did not significantly change within the ischemic core regions of the caudateputamen and parietal cortex. PANT- and TUNEL-positive cells began to be detectable 4-8 h following MCAO in the caudate-putamen and parietal cortex and reached maximal levels at 72 h. PANT- and TUNEL-positive cells were also detected 16-72 h after MCAO in the lateral frontal cortex within the infarct border, where many cells also showed colocalization of DNA single-strand breaks and DNA fragmentation. In contrast, levels of PANT-positive cells alone were transiently increased (16 h after MCAO) in the medial frontal cortex, an area distant from the infarct zone. These data suggest that within peri-infarct brain regions, oxidative injury to nuclear DNA in the form of base and strand damage may be a significant and contributory cause of secondary expansion of brain damage following permanent focal ischemia.  相似文献   

17.
The activities of several enzymes involved in the metabolism of aspartate and glutamate were measured in striatal (nucleus caudatus and putamen) homogenates 2-3, 6-7, and 35-40 days following frontoparietal and frontal cortical ablation. The activity of glutamine synthetase (GS) was substantially increased (46-48%) on the operated side 6-7 days following the lesion whereas smaller changes were observed at 2-3 and 35-40 days after lesion. In contrast, decreased levels of glutaminase and malate dehydrogenase (MDH) were observed by 6-7 days while no significant change was found at either 2-3 or 35-40 after the lesion. The activities of glutamate dehydrogenase (GDH) and glutamate decarboxylase (GAD) were elevated after 35-40 days whereas no changes in the levels of either GDH or aspartate aminotransferase (ASAT) were found at 2-3 or 6-7 days after the fronto-parietal decortication. When only the frontal cortex was removed quantitatively similar changes were observed in striatal GS and glutaminase activity. The content of glutamate and glutamine in the denervated striatum followed qualitatively the changes in glutaminase and GS. The results indicate that the degeneration of cortico-striatal terminals causes a profound glial reaction in the striatum, and both glutaminase and MDH are present in relatively high concentrations in the corticostriatal terminals.  相似文献   

18.
We aimed to evaluate the response of dopaminergic system in acute stress (AS) and chronic unpredictable stress (CUS) by measuring dopamine (DA) levels, its receptor densities in the frontal cortex, striatum, hippocampus, amygdala and orbito-frontal cortex regions of rat brain, and investigated the corresponding behavioral locomotor changes. Involvement of D1 receptor was also examined during AS and CUS using A 68930, a D1 selective agonist. Rats were exposed to AS (single immobilization for 150 min) and CUS (two different stressors for 7 days). AS significantly decreased the DA levels in the striatum and hippocampus, and A 68930 pretreatment significantly reverted these changes. However, in the frontal cortex significantly increased DA levels were remain unchanged following A 68930. CUS led to a decrease of DA levels in the frontal cortex, striatum and hippocampus, which were normalized by A 68930. Saturation radioligand binding assays revealed a significant decrease in the number of D1-like receptors in the frontal cortex during CUS, which were further decreased by A 68930 pretreatment. However, in the striatum and hippocampus, A 68930 pretreatment reduced the CUS induced increase in the number of D1-like receptors. No significant changes were observed in the amygdala and orbito-frontal cortex during AS and CUS, while D2-like receptors were unchanged in all the brain regions studied. Locomotor activity was significantly decreased in both the stress models, A 68930 pretreatment significantly increased stereotypic counts and horizontal activity. Thus, present investigation provide insights into the differential regional response of dopaminergic system during AS and CUS. Further, neurochemical and behavioral effects of D1 agonist pretreatment suggest specific modulatory role of D1 receptor under such stressful episodes.  相似文献   

19.
The catechol and indole pathways are important components underlying plasticity in the frontal cortex and basal ganglia. This study demonstrates that administering rats either cocaine or a selective serotonin (or 5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) for 16 weeks results in reduced density of dopaminergic and noradrenergic terminals in the striatum and olfactory bulb, respectively, reflecting pruning of the terminal arbor of ventral midbrain dopaminergic and locus coeruleus noradrenergic neurones. In the striatum of cocaine-treated animals, basal dopamine levels, as well as cocaine-induced dopamine release, is diminished compared with controls. In contrast, serotonergic fibers, projecting from the raphe, sprout and have increased terminal density in the lateral septal nucleus and frontal cortex, following long-term cocaine or SSRI treatment. This is associated with elevated basal 5-HT and enhanced cocaine-induced 5-HT release in the frontal cortex. The anatomical and neurochemical changes in serotonergic fibers following cocaine or SSRI treatment may be explained by attenuated 5-HT1A autoreceptor function in the raphe. This study demonstrates extensive plasticity in the morphology and neurochemistry of the catechol and indole pathways that contribute to drug-induced plasticity of the corticostriatal (and other) projections. Moreover, our data suggest that drug-induced plastic adaptation is anatomically widespread and consequently, likely to have multiple and complex consequences.  相似文献   

20.
Nitric oxide (NO) is a free radical synthesized by nitric oxide synthase (NOS) during the conversion of l-arginine to citrulline. Lead (Pb) affects neuronal functioning in the rat brain. Nitric oxide, a neuronal messenger has a short half life and converts immediately into nitrite and nitrate. The present study is designed to determine lead-induced alterations in NO production by measuring nitrite and nitrate in the cerebellum, the hippocampus, the frontal cortex and the brain stem of the rat brain. Male Sprague–Dawley rats were treated with lead acetate (5 and 15 mg/kg body wt.) by intraperitoneal injection. The control and experimental rats were sacrificed at the end of 7 and 14 days after treatment and different regions of the brain were isolated. Nitrite and nitrate (NOx) levels were estimated by the chemiluminescent method using the NOA 280 (Sievers). The data suggested dose-dependent and region-specific responses to lead. Both treatments of lead reduced NOx levels in the cerebellum and the hippocampus. However, the frontal cortex and the brain stem responded differently to Pb exposure. NOx levels in the frontal cortex were significantly increased in rats treated with low and high doses of Pb for 7 days but not in rats treated for 14 days, whereas in the brain stem, NOx levels were increased in a dose- and time-dependent manner. Although, the response was time-dependent, the variation between 7- and 14-day treatment was not clearly delineated. These results provide additional evidence that Pb exposure alters NO-production in rat brain leading to neuronal dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号