首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LPS stimulated B-1 cell polyclonal in vivo IgM responses depend on IL-4 release by invariant Valpha14+Jalpha18+ NKT (iNKT) cells. The IgM Abs can recruit effector T cells to mediate contact sensitivity. LPS activates the B-1 cell response just 1 day later, and depends on CD1d, iNKT cells, IL-4, TLR4, and MyD88. LPS in vivo and in vitro stimulates rapid preferential production of IL-4 in hepatic iNKT cells within 2 h. TLR4 were demonstrated in iNKT cells by flow cytometry and functional studies. Thus, innate microbial stimulation via TLR can activate iNKT cell and B-1 cell collaboration. The result is polyclonal IgM Ab responses capable of recruiting Ag-specific T cells into tissues. This may be involved in the promotion of autoimmunity by infectious agents.  相似文献   

2.
Elicitation of contact sensitivity (CS), a classic example of T cell-mediated immunity, requires Ag-specific IgM Abs to trigger an initiation process. This early process leads to local recruitment of CS-effector T cells after secondary Ag challenge. These Abs are produced by the B-1 subset of B cells within 1 day after primary skin immunization. In this study we report the surprising observation that B-1 cells in the peritoneal cavity are activated as early as 1 h after naive mice are painted with a contact-sensitizing Ag on the skin of the trunk and feet to begin the initiation of CS. B-1 cells in the spleen and draining lymph nodes produce the initiating Abs by 1 day after immunization, when we found increased numbers of Ag-specific IgM Ab-producing cells in these tissues by ELISPOT assay. Importantly, we show that contact-activated peritoneal B-1 cells migrate to these lymphoid tissues and then differentiate into Ag-specific IgM Ab-producing cells, resulting in specific CS-initiating IgM Abs in the serum by 1 day. Furthermore, pertussis toxin, which is known to inhibit signaling via G protein-coupled chemokines, inhibited the migration of contact-activated peritoneal B-1 cells to the lymphoid tissues, probably due to BLR-1 (Burkitt lymphoma receptor-1). These findings indicate that within 1 h after contact skin immunization, B-1 cells in the peritoneal cavity are activated to migrate to the lymphoid tissues by chemokine-dependent mechanisms to produce serum Ag-specific IgM Abs within 1 day after immunization, leading to local recruitment of CS-effector T cells.  相似文献   

3.
We define the initiation of elicited delayed-type hypersensitivity (DTH) as a series of processes leading to local extravascular recruitment of effector T cells. Responses thus have two sequential phases: 1) 2-h peaking initiation required for subsequent recruitment of T cells, and 2) the late classical 24-h component mediated by the recruited T cells. We analyzed DTH initiation to protein Ags induced by intradermal immunization without adjuvants. Ag-spceific initiating cells are present by 1 day in spleen and lymph nodes. Their phenotypes, determined by depletion of cell transfers by mAb and complement, are CD5(+), CD19(+), CD22(+), B220(+), Thy1(+), and Mac1(+), suggesting that they are B-1 B cells. DTH initiation is absent in micro MT B cell and xid B-1 cell deficient mice, is impaired in mice unable to secrete IgM, and is reconstituted with 1 day immune serum, suggesting that early B-1 cell-derived IgM is responsible. Study of complement C5a receptor-deficient mice, anti-C5 mAb neutralization, or mast cell deficiency suggests that DTH initiation depends on complement and mast cells. ELISPOT assay confirmed production of Ag-specific IgM Abs at days 1 and 4 in wild-type mice, but not in B-1 cell-deficient xid mice. We conclude that rapidly activated B-1 cells produce specific IgM Abs which, after local secondary skin challenge, form Ag-Ab complexes that activate complement to generate C5a. This stimulates C5a receptors on mast cells to release vasoactive substances, leading to endothelial activation for the 2-h DTH-initiating response, allowing local recruitment of DTH-effector T cells.  相似文献   

4.
Cells of the innate immune system interact with pathogens via conserved pattern-recognition receptors, whereas cells of the adaptive immune system recognize pathogens through diverse, antigen-specific receptors that are generated by somatic DNA rearrangement. Invariant natural killer T (iNKT) cells are a subset of lymphocytes that bridge the innate and adaptive immune systems. Although iNKT cells express T cell receptors that are generated by somatic DNA rearrangement, these receptors are semi-invariant and interact with a limited set of lipid and glycolipid antigens, thus resembling the pattern-recognition receptors of the innate immune system. Functionally, iNKT cells most closely resemble cells of the innate immune system, as they rapidly elicit their effector functions following activation, and fail to develop immunological memory. iNKT cells can become activated in response to a variety of stimuli and participate in the regulation of various immune responses. Activated iNKT cells produce several cytokines with the capacity to jump-start and modulate an adaptive immune response. A variety of glycolipid antigens that can differentially elicit distinct effector functions in iNKT cells have been identified. These reagents have been employed to test the hypothesis that iNKT cells can be harnessed for therapeutic purposes in human diseases. Here, we review the innate-like properties and functions of iNKT cells and discuss their interactions with other cell types of the immune system.  相似文献   

5.
CD1d-restricted invariant NKT (iNKT) cells can enhance immunity to cancer or prevent autoimmunity, depending on the cytokine profile secreted. Antitumor effects of the iNKT cell ligand alpha-galactosylceramide (alphaGC) and iNKT cell adoptive transfer have been demonstrated in various tumor models. Together with reduced numbers of iNKT cells in cancer patients, which have been linked to poor clinical outcome, these data suggest that cancer patients may benefit from therapy aiming at iNKT cell proliferation and activation. Herein we present results of investigations on the effects of human iNKT cells on Ag-specific CTL responses. iNKT cells were expanded using alphaGC-pulsed allogeneic DC derived from the acute myeloid leukemia cell line MUTZ-3, transduced with CD1d to enhance iNKT cell stimulation, and with IL-12 to stimulate type 1 cytokine production. Enhanced activation and increased IFN-gamma production was observed in iNKT cells, irrespective of CD4 expression, upon stimulation with IL-12-overexpressing dendritic cells. IL-12-stimulated iNKT cells strongly enhanced the MART-1 (melanoma Ag recognized by T cell 1)-specific CD8(+) CTL response, which was dependent on iNKT cell-derived IFN-gamma. Furthermore, autologous IL-12-overexpressing dendritic cells, loaded with Ag as well as alphaGC, was superior in stimulating both iNKT cells and Ag-specific CTL. This study shows that IL-12-overexpressing allogeneic dendritic cells expand IFN-gamma-producing iNKT cells, which may be more effective against tumors in vivo. Furthermore, the efficacy of autologous Ag-loaded DC vaccines may well be enhanced by IL-12 overexpression and loading with alphaGC.  相似文献   

6.
Cutaneous immune responses to contact sensitizers such as picryl chloride or oxazolone, are classical manifestations of T cell-mediated immunity in vivo. In fact, the first documentation of T cell-mediated immunity was the ability to adoptively transfer contact sensitivity (CS) responses. Although it is now clear that Ag/MHC-restricted alpha beta TCR positive effector T cells are responsible for 24 to 48 h CS responses, other subsets of Thy-1+ cells in mice also participate in the elicitation of CS. Thus, Thy-1+, CD5+, CD3-, B220+, hapten-specific, non-MHC-restricted early-acting cells are required to initiate CS responses by leading to local serotonin release, which allows for extravascular recruitment of the late-acting, alpha beta TCR+, CS effector T cells. This study describes another T cell population that is needed for the adoptive transfer of CS by alpha beta T cells. In vitro treatment of a mixture of CS effector cells with hamster mAb to gamma delta TCR, together with rabbit complement, or by panning on anti-hamster Ig-coated dishes, diminished substantially the subsequent transfer of CS reactivity without affecting either CS-initiating cells, or the later-acting, alpha beta TCR+ CS effector T cells. Immune cells treated with anti-alpha beta TCR mAb, or recovered as adherent cells from petri dishes after anti-gamma delta TCR panning (i.e., gamma delta TCR-enriched cells), reconstituted the ability of anti-gamma delta TCR-treated immune cells (i.e., alpha beta TCR-enriched cells) to transfer 24-h CS responsiveness. The phenotype of the gamma delta T cells that assisted CS effector alpha beta T cells was: CD3+, CD4-, and CD8+. The gamma delta T cells that assisted alpha beta T cells were not Ag-specific since anti-alpha beta-TCR-treated cells (gamma delta T-enriched) from picryl chloride immunized donors aided alpha beta T cells (anti-gamma delta TCR-treated) from oxazolone-immunized donors, and conversely gamma delta T cells from oxazolone-immunized donors aided alpha beta T cells from picryl chloride immunized donors. Furthermore, the CS-regulating gamma delta T cells were not MHC-restricted because gamma delta T cells from H2d or H2b donors could assist alpha beta T cells from H2k donors. It was concluded that a regulatory population of non-Ag specific, non-MHC-restricted gamma delta T cells was needed to assist immune effector, Ag/MHC-specific alpha beta T cells in the adoptive transfer of CS.  相似文献   

7.
Bispecific Abs (bsAb) are promising immunological tools for the elimination of tumor cells in minimal residual disease situations. In principle, they target an Ag on tumor cells and recruit one class of effector cell. Because immune reactions in vivo are more complex and are mediated by different classes of effector cell, we argue that conventional bsAb might not yield optimal immune responses at the tumor site. We therefore constructed a bsAb that combines the two potent effector subclasses mouse IgG2a and rat IgG2b. This bispecific molecule not only recruits T cells via its one binding arm, but simultaneously activates FcgammaR+ accessory cells via its Fc region. We demonstrate here that the activation of both T lymphocytes and accessory cells leads to production of immunomodulating cytokines like IL-1beta, IL-2, IL-6, IL-12, and DC-CK1. Thus this new class of bsAb elicits excellent antitumor activity in vitro even without the addition of exogenous IL-2, and therefore represents a totally self-supporting system.  相似文献   

8.
B cells require MHC class II (MHC II)-restricted cognate help and CD40 engagement by CD4(+) T follicular helper (T(FH)) cells to form germinal centers and long-lasting Ab responses. Invariant NKT (iNKT) cells are innate-like lymphocytes that jumpstart the adaptive immune response when activated by the CD1d-restricted lipid α-galactosylceramide (αGalCer). We previously observed that immunization of mice lacking CD4(+) T cells (MHC II(-/-)) elicits specific IgG responses only when protein Ags are mixed with αGalCer. In this study, we investigated the mechanisms underpinning this observation. We find that induction of Ag-specific Ab responses in MHC II(-/-) mice upon immunization with protein Ags mixed with αGalCer requires CD1d expression and CD40 engagement on B cells, suggesting that iNKT cells provide CD1d-restricted cognate help for B cells. Remarkably, splenic iNKT cells from immunized MHC II(-/-) mice display a typical CXCR5(hi)programmed death-1(hi)ICOS(hi)Bcl-6(hi) T(FH) phenotype and induce germinal centers. The specific IgG response induced in MHC II(-/-) mice has shorter duration than that developing in CD4-competent animals, suggesting that iNKT(FH) cells preferentially induce transient rather than long-lived Ab responses. Together, these results suggest that iNKT cells can be co-opted into the follicular helper function, yet iNKT(FH) and CD4(+) T(FH) cells display distinct helper features, consistent with the notion that these two cell subsets play nonredundant functions throughout immune responses.  相似文献   

9.
The contribution of B lymphocytes as APCs for CD4+ T cell priming remains controversial, based on findings that B cells cannot provide the requisite ligating and costimulatory signals for naive T cells to be activated. In the current study, we have examined Ag-specific T:B cell collaboration under circumstances in which B cells take up Ag through Ig receptors in vivo. This results in their activation and an ability to effectively stimulate naive CD4+ T cells both in vitro and in vivo. The aim of this work was to establish some of the key molecular interactions, as well as kinetics, between Ag-specific T and B cells that enable this priming to take place. Our approach was to amplify the starting pools of both Ag-specific T and B cell populations in vivo to track directly the events during initial T:B cell collaborations. We show that the induction of optimal levels of T cell priming to a protein Ag requires the involvement of Ag-specific B cells. The interaction that results between Ag-specific T and B cells prevents the down-modulation of B7 costimulatory molecules usually observed in the absence of appropriate T cells. Moreover, this prevention in down-modulation is independent of CD40:CD40 ligand contact. Finally, we present data suggesting that once Ag-specific T and B cells interact, there is a rapid (1-2-h) down-regulation of antigenic complexes on the surface of the B lymphocytes, possibly to prevent them from engaging other T cells in the vicinity and therefore focus the initial interaction.  相似文献   

10.
Invariant NKT cells (iNKT cells) have been reported to play a role not only in innate immunity but also to regulate several models of autoimmunity. Furthermore, iNKT cells are necessary for the generation of the prototypic eye-related immune regulatory phenomenon, anterior chamber associated immune deviation (ACAID). In this study, we explore the role of iNKT cells in regulation of autoimmunity to retina, using a model of experimental autoimmune uveitis (EAU) in mice immunized with a uveitogenic regimen of the retinal Ag, interphotoreceptor retinoid-binding protein. Natural strain-specific variation in iNKT number or induced genetic deficiencies in iNKT did not alter baseline susceptibility to EAU. However, iNKT function seemed to correlate with susceptibility and its pharmacological enhancement in vivo by treatment with iNKT TCR ligands at the time of uveitogenic immunization reproducibly ameliorated disease scores. Use of different iNKT TCR ligands revealed dependence on the elicited cytokine profile. Surprisingly, superior protection against EAU was achieved with alpha-C-GalCer, which induces a strong IFN-gamma but only a weak IL-4 production by iNKT cells, in contrast to the ligands alpha-GalCer (both IFN-gamma and IL-4) and OCH (primarily IL-4). The protective effect of alpha-C-GalCer was associated with a reduction of adaptive Ag-specific IFN-gamma and IL-17 production and was negated by systemic neutralization of IFN-gamma. These data suggest that pharmacological activation of iNKT cells protects from EAU at least in part by a mechanism involving innate production of IFN-gamma and a consequent dampening of the Th1 as well as the Th17 effector responses.  相似文献   

11.
Extensive replicative capacity of human central memory T cells   总被引:3,自引:0,他引:3  
To characterize the replicative capacity of human central memory (T(CM)) CD4 T cells, we have developed a defined culture system optimized for the ex vivo expansion of Ag-specific CD4(+) T cells. Artificial APCs (aAPCs) consisting of magnetic beads coated with Abs to HLA class II and a costimulatory Ab to CD28 were prepared; peptide-charged HLA class II tetramers were then loaded on the beads to provide Ag specificity. Influenza-specific DR*0401 CD4 T(CM) were isolated from the peripheral blood of normal donors by flow cytometry. Peptide-loaded aAPC were not sufficient to induce resting CD4 T(CM) to proliferate. In contrast, we found that the beads efficiently promoted the growth of previously activated CD4 T(CM) cells, yielding cultures with >80% Ag-specific CD4 cells after two stimulations. Further stimulation with peptide-loaded aAPC increased purity to >99% Ag-specific T cells. After in vitro culture for 3-12 wk, the flu-specific CD4 T(CM) had surface markers that were generally consistent with an effector phenotype described for CD8 T cells, except for the maintenance of CD28 expression. The T(CM) were capable of 20-40 mean population doublings in vitro, and the expanded cells produced IFN-gamma, IL-2, and TNF-alpha in response to Ag, and a subset of cells also secreted IL-4 with PMA/ionomycin treatment. In conclusion, aAPCs expand T(CM) that have extensive replicative capacity, and have potential applications in adoptive immunotherapy as well as for studying the biology of human MHC class II-restricted T cells.  相似文献   

12.
Dendritic cells (DC) represent potent APCs that are capable of generating tumor-specific immunity. We performed a pilot clinical trial using Ag-pulsed DC as a tumor vaccine. Twenty-one patients with metastatic prostate cancer received two monthly injections of DC enriched and activated from their PBMC. DC were cocultured ex vivo with recombinant mouse prostatic acid phosphatase as the target neoantigen. Following enrichment, DC developed an activated phenotype with up-regulation of CD80, CD86, and CD83 expression. During culture, the DC maintained their levels of various adhesion molecules, including CD44, LFA-1, cutaneous lymphocyte-associated Ag, and CD49d, up-regulated CCR7, but lost CD62 ligand and CCR5. In the absence of CD62 ligand, such cells would not be expected to prime T cells efficiently if administered i.v. due to their inability to access lymphoid tissue via high endothelial venules. To assess this possibility, three patient cohorts were immunized with Ag-pulsed DC by i.v., intradermal (i.d.), or intralymphatic (i.l.) injection. All patients developed Ag-specific T cell immune responses following immunization, regardless of route. Induction of IFN-gamma production, however, was seen only with i.d. and i.l. routes of administration, and no IL-4 responses were seen regardless of route, consistent with the induction of Th1-type immunity. Five of nine patients who were immunized by the i.v. route developed Ag-specific Abs compared with one of six for i.d. and two of six for i.l. routes. These results suggest that while activated DC can prime T cell immunity regardless of route, the quality of this response and induction of Ag-specific Abs may be affected by the route of administration.  相似文献   

13.
14.
The molecular basis and genetic restrictions of collaboration between Th cells and macrophages (Mo) and the numbers of types of collaboration in the Ag-specific cellular immune response were analyzed. Using the response of cloned Ag-specific T cells we examined the mechanisms of induction of the macrophage procoagulant response. Two generic types of collaboration were identified. One was mediated by the lymphokine monocyte procoagulant inducing factor (MPIF) and the second mechanism was by apparent contact collaboration. The lymphokine MPIF was produced by T cells and cloned CD4+ T cells after specific Ag stimulation. Cloned CD8+ cells, most of which also exhibited cytolytic activity, produced little MPIF. There was no evident restriction of the response of Mo of different MHC or background genes. In the second collaborative pathway a subset of CD4+ cloned Th cells were able to directly collaborate by an apparent contact mechanism with Mo for the procoagulant response. There was no correlation of this latter capacity with MPIF production. In addition abrogation of protein synthesis and lymphokine production by Ag-driven clones did not abrogate the direct cell association type of collaboration. Both forms of collaboration were equally efficient across MHC incompatibility barriers and different genetic background. We conclude that there are two independent and parallel Th:Mo collaborative pathways for Ag-driven responses in this limb of the cellular immune response, i.e., a MPIF lymphokine pathway and a contact pathway, and that there are quantitative and qualitative clonal differences in the use of these two pathways. We suggest that the existence of multiple parallel pathways for cellular collaboration may occur more widely in the Th:Mo limb of the immune response in respect to other Mo effector molecules and should be explored to understand the orchestration of this limb of the immune response.  相似文献   

15.
Following inoculation of Ag into the anterior chamber (a.c.), systemic tolerance develops that is mediated in part by Ag-specific efferent CD8(+) T regulatory (Tr) cells. This model of tolerance is called a.c.-associated immune deviation. The generation of the efferent CD8(+) Tr cell in a.c.-associated immune deviation is dependent on IL-10-producing, CD1d-restricted, invariant Valpha14(+) NKT (iNKT) cells. The iNKT cell subpopulations are either CD4(+) or CD4(-)CD8(-) double negative. This report identifies the subpopulation of iNKT cells that is important for induction of the efferent Tr cell. Because MHC class II(-/-) (class II(-/-)) mice generate efferent Tr cells following a.c. inoculation, we conclude that conventional CD4(+) T cells are not needed for the development of efferent CD8(+) T cells. Furthermore, Ab depletion of CD4(+) cells in both wild-type mice (remove both conventional and CD4(+) NKT cells) and class II(-/-) mice (remove CD4(+) NKT cells) abrogated the generation of Tr cells. We conclude that CD4(+) NKT cells, but not the class II molecule or conventional CD4(+) T cells, are required for generation of efferent CD8(+) Tr cells following Ag introduction into the eye. Understanding the mechanisms that lead to the generation of efferent CD8(+) Tr cells may lead to novel immunotherapy for immune inflammatory diseases.  相似文献   

16.
Invariant NKT (iNKT) cells play an effector/adjuvant function during antimicrobial and antitumoral immunity and a regulatory role to induce immune tolerance and prevent autoimmunity. iNKT cells that differentially modulate adaptive immunity do not bear a unique phenotype and/or specific cytokine secretion profile, thus opening questions on how a single T cell subset can exert opposite immunological tasks. In this study, we show that iNKT cells perform their dual roles through a single mechanism of action relying on the cognate interaction with myeloid dendritic cells (DCs) and leading to opposite effects depending on the presence of other maturation stimuli simultaneously acting on DCs. The contact of murine purified iNKT cells with immature autologous DCs directly triggers the tolerogenic maturation of DCs, rendering them able to induce regulatory T cell differentiation and prevent autoimmune diabetes in vivo. Conversely, the interaction of the same purified iNKT cells with DCs, in the presence of simultaneous TLR4 stimulation, significantly enhances proinflammatory DC maturation and IL-12 secretion. The different iNKT cell effects are mediated through distinct mechanisms and activation of different molecular pathways within the DC: CD1d signaling and activation of the ERK1/2 pathway for the tolerogenic action, and CD40-CD40L interaction and NF-κB activation for the adjuvant effect. Our data suggest that the DC decision to undergo proinflammatory or tolerogenic maturation results from the integration of different signals received at the time of iNKT cell contact and could have important therapeutic implications for exploiting iNKT cell adjuvant/regulatory properties in autoimmune diseases, infections, and cancer.  相似文献   

17.
Successful Ag activation of naive T helper cells requires at least two signals consisting of TCR and CD28 on the T cell interacting with MHC II and CD80/CD86, respectively, on APCs. Recent evidence demonstrates that a third signal consisting of proinflammatory cytokines and reactive oxygen species (ROS) produced by the innate immune response is important in arming the adaptive immune response. In an effort to curtail the generation of an Ag-specific T cell response, we targeted the synthesis of innate immune response signals to generate Ag-specific hyporesponsiveness. We have reported that modulation of redox balance with a catalytic antioxidant effectively inhibited the generation of third signal components from the innate immune response (TNF-alpha, IL-1beta, ROS). In this study, we demonstrate that innate immune-derived signals are necessary for adaptive immune effector function and disruption of these signals with in vivo CA treatment conferred Ag-specific hyporesponsiveness in BALB/c, NOD, DO11.10, and BDC-2.5 mice after immunization. Modulating redox balance led to decreased Ag-specific T cell proliferation and IFN-gamma synthesis by diminishing ROS production in the APC, which affected TNF-alpha levels produced by CD4(+) T cells and impairing effector function. These results demonstrate that altering redox status can be effective in T cell-mediated diseases such as autoimmune diabetes to generate Ag-specific immunosuppression because it inhibits the third signal necessary for CD4(+) T cells to transition from expansion to effector function.  相似文献   

18.
19.
The quality of signals received by dendritic cells (DC) in response to pathogens influences the nature of the adaptive response. We show that pathogen-derived signals to DC mediated via TLRs can be modulated by activated invariant NKT (iNKT) cells. DC maturation induced in vivo with any one of a variety of TLR ligands was greatly improved through simultaneous administration of the iNKT cell ligand alpha-galactosylceramide. DC isolated from animals treated simultaneously with TLR and iNKT cell ligands were potent stimulators of naive T cells in vitro compared with DC from animals treated with the ligands individually. Injection of protein Ags with both stimuli resulted in significantly improved T cell and Ab responses to coadministered protein Ags over TLR stimulation alone. Ag-specific CD8(+) T cell responses induced in the presence of the TLR4 ligand monophosphoryl lipid A and alpha-galactosylceramide showed faster proliferation kinetics, and increased effector function, than those induced with either ligand alone. Human DC exposed to TLR ligands and activated iNKT cells in vitro had enhanced expression of maturation markers, suggesting that a cooperative action of TLR ligands and iNKT cells on DC function is a generalizable phenomenon across species. These studies highlight the potential for manipulating the interactions between TLR ligands and iNKT cell activation in the design of effective vaccine adjuvants.  相似文献   

20.
TCR aggregation at the point of contact with an APC is thought to play an important role in T cell signal transduction. However, this potentially important phenomenon has never been documented during an immune response in vivo. Here we used immunohistology to show that the TCR on naive Ag-specific CD4 T cells in the lymph nodes of mice injected with Ag redistributed to one side of the cell. In cases where the APC could be identified, the TCR was concentrated on the side of the T cell facing the APC. In those T cells that produced IL-2, the TCR and IL-2 localized to the same side of the cell. In vivo IL-2 production depended on costimulatory signaling through CD28, whereas TCR redistribution did not. These results show that Ag-stimulated CD4 T cells produce IL-2 in a polarized fashion and undergo CD28-independent TCR redistribution in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号